1
|
Tingle JL, Jurestovsky DJ, Astley HC. The relative contributions of multiarticular snake muscles to movement in different planes. J Morphol 2023; 284:e21591. [PMID: 37183497 DOI: 10.1002/jmor.21591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Muscles spanning multiple joints play important functional roles in a wide range of systems across tetrapods; however, their fundamental mechanics are poorly understood, particularly the consequences of anatomical position on mechanical advantage. Snakes provide an excellent study system for advancing this topic. They rely on the axial muscles for many activities, including striking, constriction, defensive displays, and locomotion. Moreover, those muscles span from one or a few vertebrae to over 30, and anatomy varies among muscles and among species. We characterized the anatomy of major epaxial muscles in a size series of corn snakes (Pantherophis guttatus) using diceCT scans, and then took several approaches to calculating contributions of each muscle to force and motion generated during body bending, starting from a highly simplistic model and moving to increasingly complex and realistic models. Only the most realistic model yielded equations that included the consequence of muscle span on torque-displacement trade-offs, as well as resolving ambiguities that arose from simpler models. We also tested whether muscle cross-sectional areas or lever arms (total magnitude or pitch/yaw/roll components) were related to snake mass, longitudinal body region (anterior, middle, posterior), and/or muscle group (semispinalis-spinalis, multifidus, longissimus dorsi, iliocostalis, and levator costae). Muscle cross-sectional areas generally scaled with positive allometry, and most lever arms did not depart significantly from geometric similarity (isometry). The levator costae had lower cross-sectional area than the four epaxial muscles, which did not differ significantly from each other in cross-sectional area. Lever arm total magnitudes and components differed among muscles. We found some evidence for regional variation, indicating that functional regionalization merits further investigation. Our results contribute to knowledge of snake muscles specifically and multiarticular muscle systems generally, providing a foundation for future comparisons across species and bioinspired multiarticular systems.
Collapse
Affiliation(s)
| | - Derek J Jurestovsky
- Department of Biology, University of Akron, Akron, Ohio, USA
- Department of Kinesiology, Biomechanics Laboratory, Pennsylvania State University, Pennsylvania, USA
| | - Henry C Astley
- Department of Biology, University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Huby A, Mansuit R, Herbin M, Herrel A. Revision of the muscular anatomy of the paired fins of the living coelacanth Latimeria chalumnae (Sarcopterygii: Actinistia). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
As a sarcopterygian fish, the extant coelacanth Latimeria has muscular paired fins, different in their skeletal and muscular anatomy from the paired fins of actinopterygians. Although the muscular anatomy of the pectoral and pelvic fins of Latimeria has been described by several studies, a detailed functional description of the muscles and their architecture has never been performed. Our detailed functional description of the muscles of the paired fins shows a more complex organization than previously described. The pectoral and pelvic fins have a different organization of their muscular anatomy, and the pelvic fin shows a more plesiomorphic configuration of the muscles since most of them are poly-articular and run from the pelvic girdle to the fin rays, an organization typical of actinopterygians. We found that the pectoral fins are stronger than the pelvic fins which is likely to be associated with the greater contribution of the pectoral fins to locomotion and manoeuvring. Finally, the study of the joint mobility of the paired fins showed that the pectoral fins show greater mobility than the pelvic fins. The reduced mobility of the pelvic fin is possibly a consequence of the morphology of the mesomeres and the large pre-axial radials.
Collapse
Affiliation(s)
- Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, FOCUS Research Unit, Department of Biology, Ecology and Evolution, University of Liège, 4000 Liège, Belgium
| | - Rohan Mansuit
- UMR 7207 Centre de Recherche en Paléontologie, Paris, Département Orgines & Evolution, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 8 rue Buffon, CP38, Paris, France
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| | - Marc Herbin
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| | - Anthony Herrel
- UMR 7179 Mécanismes Adaptatifs et Evolution, Département Adaptations du Vivant, Muséum national d’Histoire naturelle – Sorbonne Université – CNRS, 57 rue Cuvier, CP55, Paris, France
| |
Collapse
|
3
|
Jones KE, Dickson BV, Angielczyk KD, Pierce SE. Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution. Curr Biol 2021; 31:1883-1892.e7. [PMID: 33657406 DOI: 10.1016/j.cub.2021.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.
Collapse
Affiliation(s)
- Katrina E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK.
| | - Blake V Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC 27708, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Jones KE, Gonzalez S, Angielczyk KD, Pierce SE. Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals. Nat Ecol Evol 2020; 4:470-478. [PMID: 32015524 DOI: 10.1038/s41559-020-1094-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022]
Abstract
The evolution of semi-independent modules is hypothesized to underlie the functional diversification of serially repeating (metameric) structures. The mammal vertebral column is a classic example of a metameric structure that is both modular, with well-defined morphological regions, and functionally differentiated. How the evolution of regions is related to their functional differentiation in the forerunners of mammals remains unclear. Here we gathered morphometric and biomechanical data on the presacral vertebrae of two extant species that bracket the synapsid-mammal transition and use the relationship between form and function to predict functional differentiation in extinct non-mammalian synapsids. The origin of vertebral functional diversity does not correlate with the evolution of new regions but appears late in synapsid evolution. This decoupling of regions from functional diversity implies that an adaptive trigger is needed to exploit existing modularity. We propose that the release of axial respiratory constraints, combined with selection for novel mammalian behaviours in Late Triassic cynodonts, drove the functional divergence of pre-existing morphological regions.
Collapse
Affiliation(s)
- Katrina E Jones
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA.
| | - Sarah Gonzalez
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA
| | - Kenneth D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Stephanie E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Galbusera F, Bassani T. The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics (Basel) 2019; 4:E60. [PMID: 31480241 PMCID: PMC6784295 DOI: 10.3390/biomimetics4030060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
From its first appearance in early vertebrates, the spine evolved the function of protecting the spinal cord, avoiding excessive straining during body motion. Its stiffness and strength provided the basis for the development of the axial skeleton as the mechanical support of later animals, especially those which moved to the terrestrial environment where gravity loads are not alleviated by the buoyant force of water. In tetrapods, the functions of the spine can be summarized as follows: protecting the spinal cord; supporting the weight of the body, transmitting it to the ground through the limbs; allowing the motion of the trunk, through to its flexibility; providing robust origins and insertions to the muscles of trunk and limbs. This narrative review provides a brief perspective on the development of the spine in vertebrates, first from an evolutionary, and then from an embryological point of view. The paper describes functions and the shape of the spine throughout the whole evolution of vertebrates and vertebrate embryos, from primordial jawless fish to extant animals such as birds and humans, highlighting its fundamental features such as strength, stability, and flexibility, which gives it huge potential as a basis for bio-inspired technologies.
Collapse
Affiliation(s)
- Fabio Galbusera
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Tito Bassani
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| |
Collapse
|
6
|
Morinaga G, Bergmann PJ. Angles and waves: intervertebral joint angles and axial kinematics of limbed lizards, limbless lizards, and snakes. ZOOLOGY 2019; 134:16-26. [PMID: 31146904 DOI: 10.1016/j.zool.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/15/2022]
Abstract
Segmentation gives rise to the anterior-posterior axis in many animals, and in vertebrates this axis comprises serially arranged vertebrae. Modifications to the vertebral column abound, and a recurring, but functionally understudied, change is the elongation of the body through the addition and/or elongation of vertebrae. Here, we compared the vertebral and axial kinematics of the robustly limbed Fire skink (Riopa fernandi) representing the ancestral form, the limbless European glass lizard (Ophisaurus apodus), and the Northern water snake (Nerodia sipedon). We induced these animals to traverse through channels and peg arrays of varied widths and densities, respectively, using high-speed X-ray and light video. We found that even though the snake had substantially more and shorter vertebrae than either lizard, intervertebral joint angles did not differ between species in most treatment levels. All three species decreased the amplitude and wavelength of their undulations as channels narrowed and the lizard species increased wave frequency in narrower channels. In peg arrays, both lizard species decreased wave amplitude, while the snake showed no differences. All three species maintained similar wavelengths and frequencies as peg density increased in most cases. Our results suggest that amplitude is decoupled from wavelength and frequency in all three focal taxa. The combination of musculoskeletal differences and the decoupling of axial kinematic traits likely facilitates the formation of different undulatory waves, thereby allowing limbless species to adopt different modes of locomotion.
Collapse
Affiliation(s)
- Gen Morinaga
- Department of Biology, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA.
| | - Philip J Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| |
Collapse
|
7
|
Petermann H, Gauthier JA. Fingerprinting snakes: paleontological and paleoecological implications of zygantral growth rings in Serpentes. PeerJ 2018; 6:e4819. [PMID: 29844972 PMCID: PMC5971835 DOI: 10.7717/peerj.4819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/01/2018] [Indexed: 11/23/2022] Open
Abstract
We introduce a new non-destructive source of skeletochronological data with applications to species identification, associating disarticulated remains, assessing minimum number of individuals (MNI), and collection management of fossil snakes, but with potential implications for all bony vertebrates, extinct or extant. Study of a diverse sample of Recent henophidian snakes confirms that annual growth cycles (AGCs) visible on the surface of the vertebral zygantrum correspond to lines of arrested growth in osteohistological thin sections and accordingly reflect chronological age. None of the specimens considered here showed signs of remodelling of the zygantrum, suggesting that a complete, unaltered age record is preserved. We tested potential influences on AGCs with a single experimental organism, a male Bogertophis subocularis, that was raised at a controlled temperature and with constant access to mice and water. The conditions in which this individual was maintained, including that it had yet to live through a full reproductive cycle, enabled us to determine that its AGCs reflect only the annual solar cycle, and neither temperature, nor resource availability, nor energy diversion to gametogenesis could explain that it still exhibited lines of arrested growth. Moreover, growth lines in this specimen are deposited toward the end of the growth season in the fall, and not in the winter, during which this individual continued to feed and grow, even though this mid-latitude species would normally be hibernating and not growing. This suggests that growth lines are not caused by hibernation, but reflect the onset of a physiological cycle preparing Bogertophis subocularis for winter rest. That being said, hibernation and reproductive cycle could still influence the amount of time represented by an individual growth line. Growth-line number and AGC spacing-pattern, plus centrum length, are used to estimate MNI of the Early Eocene fossil snake Boavus occidentalis collected from the Willwood Formation over two field seasons during the late 19th century. We identified eight or nine individuals among specimens previously parcelled among two specimen lots collected during those expeditions.
Collapse
Affiliation(s)
- Holger Petermann
- Department of Geology and Geophysics, Yale University, New Haven, CT, United States of America
| | - Jacques A Gauthier
- Department of Geology and Geophysics, Yale University, New Haven, CT, United States of America.,Yale Peabody Museum of Natural History, Yale University, New Haven, CT, United States of America
| |
Collapse
|
8
|
Shape Covariation (or the Lack Thereof) Between Vertebrae and Other Skeletal Traits in Felids: The Whole is Not Always Greater than the Sum of Parts. Evol Biol 2018; 45:196-210. [PMID: 29755151 PMCID: PMC5938317 DOI: 10.1007/s11692-017-9443-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.
Collapse
|
9
|
Tingle JL, Gartner GEA, Jayne BC, Garland T. Ecological and phylogenetic variability in the spinalis muscle of snakes. J Evol Biol 2017; 30:2031-2043. [PMID: 28857331 DOI: 10.1111/jeb.13173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 02/06/2023]
Abstract
Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least-squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein-Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes.
Collapse
Affiliation(s)
- J L Tingle
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - G E A Gartner
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - B C Jayne
- Department of Biological Sciences, ML006, University of Cincinnati, Cincinnati, OH, USA
| | - T Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
10
|
Randau M, Goswami A, Hutchinson JR, Cuff AR, Pierce SE. Cryptic complexity in felid vertebral evolution: shape differentiation and allometry of the axial skeleton. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12403] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marcela Randau
- Department of Genetics, Evolution and Environment; University College London; London UK
| | - Anjali Goswami
- Department of Genetics, Evolution and Environment; University College London; London UK
| | - John R. Hutchinson
- Department of Genetics, Evolution and Environment; University College London; London UK
- Department of Comparative Biomedical Sciences and Structure & Motion Laboratory; The Royal Veterinary College; Hertfordshire UK
| | - Andrew R. Cuff
- Department of Genetics, Evolution and Environment; University College London; London UK
- Department of Comparative Biomedical Sciences and Structure & Motion Laboratory; The Royal Veterinary College; Hertfordshire UK
| | - Stephanie E. Pierce
- Department of Comparative Biomedical Sciences and Structure & Motion Laboratory; The Royal Veterinary College; Hertfordshire UK
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA USA
| |
Collapse
|
11
|
Differential occupation of axial morphospace. ZOOLOGY 2014; 117:70-6. [DOI: 10.1016/j.zool.2013.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/12/2023]
|
12
|
Jack-of-all-trades master of all? Snake vertebrae have a generalist inner organization. Naturwissenschaften 2013; 100:997-1006. [DOI: 10.1007/s00114-013-1102-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/20/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
13
|
Roscito JG, Rodrigues MT. A comparative analysis of the post-cranial skeleton of fossorial and non-fossorial gymnophthalmid lizards. J Morphol 2013; 274:845-58. [DOI: 10.1002/jmor.20139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/17/2012] [Accepted: 01/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juliana G. Roscito
- Departamento de Zoologia; Instituto de Biociências; Universidade de São Paulo; São Paulo; Brasil
| | - Miguel T. Rodrigues
- Departamento de Zoologia; Instituto de Biociências; Universidade de São Paulo; São Paulo; Brasil
| |
Collapse
|
14
|
Abstract
Abstract
The forces acting on the vertebral column of varanid lizards differ greatly during swimming and walking. To examine the long-term impact of these forces, the dorsal vertebrae of terrestrial and aquatic species of Varanus were compared using 3-D laser scanning and morphometric analysis. There were significant differences between the two groups in vertebral anatomical features, particularly in the articular surfaces. Further analysis demonstrated that the dorsal vertebrae could be significantly divided into three groups of nearly equal size: the sternal group (dorsal vertebrae 1–7), the middle group (dorsal vertebrae 8–14), and the pelvic group (dorsal vertebrae 15–22). Within each of these groups there was significant differences between the terrestrial and aquatic species; these differences were least in the more conserved sternal region and greatest in the highly variable pelvic region. The results suggest that vertebral morphometrics can be used as a tool to further delineate the habitat preferences of extinct varanoid lizards, and could serve to highlight the functional transitions between terrestrial and aquatic species.
Collapse
Affiliation(s)
- Amy Burnell
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Sean Collins
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Bruce A. Young
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
15
|
Wotherspoon D, Burgin S. Allometric variation among juvenile, adult male and female eastern bearded dragons Pogona barbata (Cuvier, 1829), with comments on the behavioural implications. ZOOLOGY 2011; 114:23-8. [DOI: 10.1016/j.zool.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/19/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
|
16
|
Houssaye A, Mazurier A, Herrel A, Volpato V, Tafforeau P, Boistel R, De Buffrénil V. Vertebral microanatomy in squamates: structure, growth and ecological correlates. J Anat 2010; 217:715-27. [PMID: 21039477 PMCID: PMC3039184 DOI: 10.1111/j.1469-7580.2010.01307.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2010] [Indexed: 11/29/2022] Open
Abstract
The histological study of vertebrae in extant squamates shows that the internal vertebral structure in this group differs from that of other tetrapods. Squamate vertebrae are lightly built and basically composed of two roughly concentric osseous tubes--one surrounding the neural canal and the other constituting the peripheral cortex of the vertebra--connected by few thin trabeculae. This structure, which characteristically evokes that of a tubular bone, results from a peculiar remodelling process characterised by an imbalance between local bone resorption and redeposition; in both periosteal and endosteo-endochondral territories, bone is extensively resorbed but not reconstructed in the same proportion by secondary deposits. This process is particularly intense in the deep region of the centrum, where originally compact cortices are made cancellous, and where the endochondral spongiosa is very loose. This remodelling process starts at an early stage of development and remains active throughout subsequent growth. The growth of squamate centra is also strongly asymmetrical, with the posterior (condylar) part growing much faster than the anterior (cotylar) part. Preliminary analyses testing for associations between vertebral structure and habitat use suggest that vertebrae of fossorial taxa are denser than those of terrestrial taxa, those in aquatic taxa being of intermediate density. However, phylogenetically informed analyses do not corroborate these findings, thus suggesting a strong phylogenetic signal in the data. As our analyses demonstrate that vertebrae in snakes are generally denser than those of lizards sensu stricto, this may drive the presence of a phylogenetic signal in the data. More comprehensive sampling of fossorial and aquatic lizards is clearly needed to more rigorously evaluate these patterns.
Collapse
Affiliation(s)
- Alexandra Houssaye
- UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bergmann PJ, Irschick DJ. ALTERNATE PATHWAYS OF BODY SHAPE EVOLUTION TRANSLATE INTO COMMON PATTERNS OF LOCOMOTOR EVOLUTION IN TWO CLADES OF LIZARDS. Evolution 2009; 64:1569-82. [DOI: 10.1111/j.1558-5646.2009.00935.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zammit M, Daniels CB, Kear BP. Elasmosaur (Reptilia: Sauropterygia) neck flexibility: Implications for feeding strategies. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:124-30. [PMID: 17933571 DOI: 10.1016/j.cbpa.2007.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/21/2007] [Accepted: 09/09/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Maria Zammit
- School of Earth and Environmental Sciences, Darling Building, DP 418, North Terrace Campus, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
19
|
Speed versus manoeuvrability: association between vertebral number and habitat structure in lacertid lizards. J Zool (1987) 2006. [DOI: 10.1017/s0952836902001462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
|
21
|
Herrel A, De Grauw E, Lemos-Espinal JA. Head shape and bite performance in xenosaurid lizards. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:101-7. [PMID: 11471139 DOI: 10.1002/jez.1039] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bite performance in lizards influences many aspects of the animal's lifestyle. During feeding, inter- and intrasexual interactions, and defensive behavior, the ability to bite hard might be advantageous. Although biomechanical considerations predict clear relations between head shape and bite performance, this has rarely been tested. Here we investigate the effect of head shape on bite performance in three closely related species of xenosaurid lizards. Our data show that in this family of lizards, bite performance is mainly determined by head height, with high headed animals biting harder than flat headed ones. Species clearly differ in head shape and bite performance and show a marked sexual dimorphism. The dimorphism in head shape also results in an intersexual difference in bite performance. As head height is the major determinant of bite performance in xenosaurid lizards, trade offs between a crevice dwelling life-style and bite performance seem to occur. The evolutionary implications of these results are discussed. J. Exp. Zool. 290:101-107, 2001.
Collapse
Affiliation(s)
- A Herrel
- Department of Biology, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | |
Collapse
|
22
|
Bennett WO, Simons RS, Brainerd EL. Twisting and Bending: The Functional Role of Salamander Lateral Hypaxial Musculature During Locomotion. J Exp Biol 2001; 204:1979-89. [PMID: 11441039 DOI: 10.1242/jeb.204.11.1979] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion during walking. The second, supported by EMG data from lizards during relatively high-speed locomotion, suggests that these muscles function primarily to bend the body during locomotion, not to resist torsional forces. To determine whether the results from D. ensatus hold for another salamander, we recorded lateral hypaxial muscle EMGs synchronized with body and limb kinematics in the tiger salamander Ambystoma tigrinum. In agreement with results from aquatic locomotion in D. ensatus, all four layers of lateral hypaxial musculature were found to show synchronous EMG activity during swimming in A. tigrinum. Our findings for terrestrial locomotion also agree with previous results from D. ensatus and support the torsion resistance hypothesis for terrestrial locomotion. We observed asynchronous EMG bursts of relatively high intensity in the lateral and medial pairs of hypaxial muscles during walking in tiger salamanders (we call these ‘α-bursts’). We infer from this pattern that the more lateral two layers of oblique hypaxial musculature, Mm. obliquus externus superficialis (OES) and obliquus externus profundus (OEP), are active on the side towards which the trunk is bending, while the more medial two layers, Mm. obliquus internus (OI) and transversus abdominis (TA), are active on the opposite side. This result is consistent with the hypothesis proposed for D. ensatus that the OES and OEP generate torsional moments to counteract ground reaction forces generated by forelimb support, while the OI and TA generate torsional moments to counteract ground reaction forces from hindlimb support. However, unlike the EMG pattern reported for D. ensatus, a second, lower-intensity burst of EMG activity (‘β-burst’) was sometimes recorded from the lateral hypaxial muscles in A. tigrinum. As seen in other muscle systems, these β-bursts of hypaxial muscle coactivation may function to provide fine motor control during locomotion. The presence of asynchronous, relatively high-intensity α-bursts indicates that the lateral hypaxial muscles generate torsional moments during terrestrial locomotion, but it is possible that the balance of forces from both α- and β-bursts may allow the lateral hypaxial muscles to contribute to lateral bending of the body as well.
Collapse
Affiliation(s)
- W O Bennett
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, 611 North Pleasant Road, Amherst, MA 01003-9297, USA
| | | | | |
Collapse
|
23
|
Moon BR. The mechanics and muscular control of constriction in gopher snakes (Pituophis melanoleucus) and a king snake (Lampropeltis getula). J Zool (1987) 2000. [DOI: 10.1111/j.1469-7998.2000.tb00823.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|