1
|
Donnelly LL, Hogan TC, Lenahan SM, Nandagopal G, Eaton JG, Lebeau MA, McCann CL, Sarausky HM, Hampel KJ, Armstrong JD, Cameron MP, Sidiropoulos N, Deming P, Seward DJ. Functional assessment of somatic STK11 variants identified in primary human non-small cell lung cancers. Carcinogenesis 2021; 42:1428-1438. [PMID: 34849607 PMCID: PMC8727739 DOI: 10.1093/carcin/bgab104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Serine/Threonine Kinase 11 (STK11) encodes an important tumor suppressor that is frequently mutated in lung adenocarcinoma. Clinical studies have shown that mutations in STK11 resulting in loss of function correlate with resistance to anti-PD-1 monoclonal antibody therapy in KRAS-driven non-small cell lung cancer (NSCLC), but the molecular mechanisms responsible remain unclear. Despite this uncertainty, STK11 functional status is emerging as a reliable biomarker for predicting non-response to anti-PD-1 therapy in NSCLC patients. The clinical utility of this biomarker ultimately depends upon accurate classification of STK11 variants. For nonsense variants occurring early in the STK11 coding region, this assessment is straightforward. However, rigorously demonstrating the functional impact of missense variants remains an unmet challenge. Here we present data characterizing four STK11 splice-site variants by analyzing tumor mRNA, and 28 STK11 missense variants using an in vitro kinase assay combined with a cell-based p53-dependent luciferase reporter assay. The variants we report were identified in primary human NSCLC biopsies in collaboration with the University of Vermont Genomic Medicine group. Additionally, we compare our experimental results with data from 22 in silico predictive algorithms. Our work highlights the power, utility and necessity of functional variant assessment and will aid STK11 variant curation, provide a platform to assess novel STK11 variants and help guide anti-PD-1 therapy utilization in KRAS-driven NSCLCs.
Collapse
Affiliation(s)
- Liam L Donnelly
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Tyler C Hogan
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA
| | - Sean M Lenahan
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Gopika Nandagopal
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA
| | - Jenna G Eaton
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA
| | - Meagan A Lebeau
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA
| | | | - Hailey M Sarausky
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jordan D Armstrong
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Margaret P Cameron
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.,University of Vermont Cancer Center, Burlington, VT, USA
| | - Paula Deming
- Department of Biomedical and Health Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, VT, USA.,University of Vermont Cancer Center, Burlington, VT, USA
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.,University of Vermont Cancer Center, Burlington, VT, USA
| |
Collapse
|
2
|
Danis D, Jacobsen JOB, Carmody LC, Gargano MA, McMurry JA, Hegde A, Haendel MA, Valentini G, Smedley D, Robinson PN. Interpretable prioritization of splice variants in diagnostic next-generation sequencing. Am J Hum Genet 2021; 108:1564-1577. [PMID: 34289339 DOI: 10.1016/j.ajhg.2021.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, specifically the interpretation of nucleotide changes located outside of the highly conserved dinucleotide sequences at the 5' and 3' ends of introns. To address this gap, we developed the Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates a small set of interpretable features for machine learning by calculating the information-content of wild-type and variant sequences of canonical and cryptic splice sites, assessing changes in candidate splicing regulatory sequences, and incorporating characteristics of the sequence such as exon length, disruptions of the AG exclusion zone, and conservation. We curated a comprehensive collection of disease-associated splice-altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns. SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by logistic regression to yield a final score. We show that SQUIRLS transcends previous state-of-the-art accuracy in classifying splice variants as assessed by rank analysis in simulated exomes, and is significantly faster than competing methods. SQUIRLS provides tabular output files for incorporation into diagnostic pipelines for exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on splicing to make it easier to interpret splice variants in diagnostic settings.
Collapse
Affiliation(s)
- Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Julius O B Jacobsen
- William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry Queen, Queen Mary University of London, EC1M 6BQ London, UK
| | - Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Michael A Gargano
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Julie A McMurry
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ayushi Hegde
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | | | - Giorgio Valentini
- Anacleto Lab - Dipartimento di Informatica and DSRC, Università degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy; CINI National Laboratory in Artificial Intelligence and Intelligent Systems-AIIS, Rome, Italy
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry Queen, Queen Mary University of London, EC1M 6BQ London, UK
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
3
|
Baeza-Centurion P, Miñana B, Valcárcel J, Lehner B. Mutations primarily alter the inclusion of alternatively spliced exons. eLife 2020; 9:59959. [PMID: 33112234 PMCID: PMC7673789 DOI: 10.7554/elife.59959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.
Collapse
Affiliation(s)
- Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Belén Miñana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
4
|
Rogan PK, Mucaki EJ, Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Res 2020; 9:943. [PMID: 33299552 PMCID: PMC7676395 DOI: 10.12688/f1000research.25390.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N1), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.
Collapse
Affiliation(s)
- Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
- CytoGnomix Inc, London, Ontario, N5X 3X5, Canada
| | - Eliseos J. Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
| | | |
Collapse
|
5
|
Rogan PK, Mucaki EJ, Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Res 2020; 9:943. [PMID: 33299552 PMCID: PMC7676395 DOI: 10.12688/f1000research.25390.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N2), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.
Collapse
Affiliation(s)
- Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
- CytoGnomix Inc, London, Ontario, N5X 3X5, Canada
| | - Eliseos J. Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
| | | |
Collapse
|
6
|
Mucaki EJ, Shirley BC, Rogan PK. Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing. Front Genet 2020; 11:109. [PMID: 32211018 PMCID: PMC7066660 DOI: 10.3389/fgene.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays and custom designed q-RT-PCR or TaqMan assays. The majority of these SNPs (15 of 22) as well as an independent set of 24 variants were then subjected to RNAseq analysis using the ValidSpliceMut web beacon (http://validsplicemut.cytognomix.com), which is based on data from the Cancer Genome Atlas and International Cancer Genome Consortium. SNPs from different genes analyzed with gene expression microarray and q-RT-PCR exhibited significant changes in affected splice site use. Thirteen SNPs directly affected exon inclusion and 10 altered cryptic site use. Homozygous SNP genotypes resulting in stronger splice sites exhibited higher levels of processed mRNA than alleles associated with weaker sites. Four SNPs exhibited variable expression among individuals with the same genotypes, masking statistically significant expression differences between alleles. Genome-wide information theory and expression analyses (RNAseq) in tumor exomes and genomes confirmed splicing effects for 7 of the HapMap SNP and 14 SNPs identified from tumor genomes. q-RT-PCR resolved rare splice isoforms with read abundance too low for statistical significance in ValidSpliceMut. Nevertheless, the web-beacon provides evidence of unanticipated splicing outcomes, for example, intron retention due to compromised recognition of constitutive splice sites. Thus, ValidSpliceMut and q-RT-PCR represent complementary resources for identification of allele-specific, alternative splicing.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | | | - Peter K Rogan
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,CytoGnomix, London, ON, Canada.,Department of Oncology University of Western Ontario, London, ON, Canada.,Department of Computer Science, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2019; 7:1908. [PMID: 31275557 DOI: 10.12688/f1000research.17204.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
8
|
Shirley BC, Mucaki EJ, Rogan PK. Pan-cancer repository of validated natural and cryptic mRNA splicing mutations. F1000Res 2018; 7:1908. [PMID: 31275557 PMCID: PMC6544075 DOI: 10.12688/f1000research.17204.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
We present a major public resource of mRNA splicing mutations validated according to multiple lines of evidence of abnormal gene expression. Likely mutations present in all tumor types reported in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) were identified based on the comparative strengths of splice sites in tumor versus normal genomes, and then validated by respectively comparing counts of splice junction spanning and abundance of transcript reads in RNA-Seq data from matched tissues and tumors lacking these mutations. The comprehensive resource features 341,486 of these validated mutations, the majority of which (69.9%) are not present in the Single Nucleotide Polymorphism Database (dbSNP 150). There are 131,347 unique mutations which weaken or abolish natural splice sites, and 222,071 mutations which strengthen cryptic splice sites (11,932 affect both simultaneously). 28,812 novel or rare flagged variants (with <1% population frequency in dbSNP) were observed in multiple tumor tissue types. An algorithm was developed to classify variants into splicing molecular phenotypes that integrates germline heterozygosity, degree of information change and impact on expression. The classification thresholds were calibrated against the ClinVar clinical database phenotypic assignments. Variants are partitioned into allele-specific alternative splicing, likely aberrant and aberrant splicing phenotypes. Single variants or chromosome ranges can be queried using a Global Alliance for Genomics and Health (GA4GH)-compliant, web-based Beacon "Validated Splicing Mutations" either separately or in aggregate alongside other Beacons through the public Beacon Network, as well as through our website. The website provides additional information, such as a visual representation of supporting RNAseq results, gene expression in the corresponding normal tissues, and splicing molecular phenotypes.
Collapse
Affiliation(s)
| | - Eliseos J Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| | - Peter K Rogan
- CytoGnomix Inc., London, Ontario, N5X 3X5, Canada.,Biochemistry, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Computer Science, University of Western Ontario, London, Ontario, N6A 2C1, Canada.,Oncology, University of Western Ontario, London, Ontario, N6A 2C1, Canada
| |
Collapse
|
9
|
Functional characterization of biallelic RTTN variants identified in an infant with microcephaly, simplified gyral pattern, pontocerebellar hypoplasia, and seizures. Pediatr Res 2018; 84:435-441. [PMID: 29967526 PMCID: PMC6258334 DOI: 10.1038/s41390-018-0083-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Biallelic deleterious variants in RTTN, which encodes rotatin, are associated with primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in human infants. METHODS AND RESULTS We performed exome sequencing of an infant with primary microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated parents. We cultured the infant's fibroblasts to determine primary ciliary phenotype. RESULTS We identified biallelic variants in RTTN in the affected infant: a novel missense variant and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the infant demonstrated reduced length and number of primary cilia. CONCLUSION Biallelic variants in RTTN cause primary microcephaly in infants. Functional characterization of primary cilia length and number can be used to determine pathogenicity of RTTN variants.
Collapse
|
10
|
Ohno K, Takeda JI, Masuda A. Rules and tools to predict the splicing effects of exonic and intronic mutations. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [DOI: 10.1002/wrna.1451] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
11
|
Lu R, Mucaki EJ, Rogan PK. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 2017; 45:e27. [PMID: 27899659 PMCID: PMC5389469 DOI: 10.1093/nar/gkw1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.
Collapse
Affiliation(s)
- Ruipeng Lu
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada
| | - Peter K Rogan
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada.,Department of Oncology, Western University, London, Ontario, N6A 4L6, Canada.,Cytognomix Inc., London, Ontario, N5X 3X5, Canada
| |
Collapse
|
12
|
Urbanek MO, Krzyzosiak WJ. Discriminating RNA variants with single-molecule allele-specific FISH. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:230-241. [DOI: 10.1016/j.mrrev.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
13
|
Yang XR, Devi BCR, Sung H, Guida J, Mucaki EJ, Xiao Y, Best A, Garland L, Xie Y, Hu N, Rodriguez-Herrera M, Wang C, Jones K, Luo W, Hicks B, Tang TS, Moitra K, Rogan PK, Dean M. Prevalence and spectrum of germline rare variants in BRCA1/2 and PALB2 among breast cancer cases in Sarawak, Malaysia. Breast Cancer Res Treat 2017; 165:687-697. [PMID: 28664506 DOI: 10.1007/s10549-017-4356-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE To characterize the spectrum of germline mutations in BRCA1, BRCA2, and PALB2 in population-based unselected breast cancer cases in an Asian population. METHODS Germline DNA from 467 breast cancer patients in Sarawak General Hospital, Malaysia, where 93% of the breast cancer patients in Sarawak are treated, was sequenced for the entire coding region of BRCA1; BRCA2; PALB2; Exons 6, 7, and 8 of TP53; and Exons 7 and 8 of PTEN. Pathogenic variants included known pathogenic variants in ClinVar, loss of function variants, and variants that disrupt splice site. RESULTS We found 27 pathogenic variants (11 BRCA1, 10 BRCA2, 4 PALB2, and 2 TP53) in 34 patients, which gave a prevalence of germline mutations of 2.8, 3.23, and 0.86% for BRCA1, BRCA2, and PALB2, respectively. Compared to mutation non-carriers, BRCA1 mutation carriers were more likely to have an earlier age at onset, triple-negative subtype, and lower body mass index, whereas BRCA2 mutation carriers were more likely to have a positive family history. Mutation carrier cases had worse survival compared to non-carriers; however, the association was mostly driven by stage and tumor subtype. We also identified 19 variants of unknown significance, and some of them were predicted to alter splicing or transcription factor binding sites. CONCLUSION Our data provide insight into the genetics of breast cancer in this understudied group and suggest the need for modifying genetic testing guidelines for this population with a much younger age at diagnosis and more limited resources compared with Caucasian populations.
Collapse
Affiliation(s)
- Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA.
| | - Beena C R Devi
- Department of Radiotherapy, Oncology and Palliative Care, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Hyuna Sung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Jennifer Guida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Ana Best
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Lisa Garland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Maria Rodriguez-Herrera
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tieng Swee Tang
- Department of Radiotherapy, Oncology and Palliative Care, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Karobi Moitra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA.,Department of Biology, Trinity Washington University, Washington, DC, USA
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, NCI/NIH, Bethesda, Rockville, MD, USA
| |
Collapse
|
14
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
15
|
Caminsky NG, Mucaki EJ, Perri AM, Lu R, Knoll JHM, Rogan PK. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations. Hum Mutat 2016; 37:640-52. [PMID: 26898890 DOI: 10.1002/humu.22972] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer (HBOC) does not identify all pathogenic variants. Sequencing of 20 complete genes in HBOC patients with uninformative test results (N = 287), including noncoding and flanking sequences of ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51B, STK11, TP53, and XRCC2, identified 38,372 unique variants. We apply information theory (IT) to predict and prioritize noncoding variants of uncertain significance in regulatory, coding, and intronic regions based on changes in binding sites in these genes. Besides mRNA splicing, IT provides a common framework to evaluate potential affinity changes in transcription factor (TFBSs), splicing regulatory (SRBSs), and RNA-binding protein (RBBSs) binding sites following mutation. We prioritized variants affecting the strengths of 10 splice sites (four natural, six cryptic), 148 SRBS, 36 TFBS, and 31 RBBS. Three variants were also prioritized based on their predicted effects on mRNA secondary (2°) structure and 17 for pseudoexon activation. Additionally, four frameshift, two in-frame deletions, and five stop-gain mutations were identified. When combined with pedigree information, complete gene sequence analysis can focus attention on a limited set of variants in a wide spectrum of functional mutation types for downstream functional and co-segregation analysis.
Collapse
Affiliation(s)
- Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Endale Ahanda ML, Bienvenu T, Sermet-Gaudelus I, Mazzolini L, Edelman A, Zoorob R, Davezac N. The hsa-miR-125a/hsa-let-7e/hsa-miR-99b cluster is potentially implicated in Cystic Fibrosis pathogenesis. J Cyst Fibros 2015; 14:571-9. [DOI: 10.1016/j.jcf.2015.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 01/26/2023]
|
17
|
Shankar SP, Birch DG, Ruiz RS, Hughbanks-Wheaton DK, Sullivan LS, Bowne SJ, Stone EM, Daiger SP. Founder Effect of a c.828+3A>T Splice Site Mutation in Peripherin 2 (PRPH2) Causing Autosomal Dominant Retinal Dystrophies. JAMA Ophthalmol 2015; 133:511-7. [PMID: 25675413 DOI: 10.1001/jamaophthalmol.2014.6115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Screening for splice site mutation c.828+3A>T in the peripherin 2 (PRPH2) gene should be a high priority in families with highly variable retinal dystrophies. The correction of missplicing is a potential therapeutic target. OBJECTIVE To determine the prevalence, genetic origin, and molecular mechanism of a donor c.828+3A>T mutation in the PRPH2 (peripherin 2, retinal degeneration slow) gene in individuals with retinal dystrophies. DESIGN, SETTING, AND PARTICIPANTS Case-control study that took place at the University of Texas Health Science Center, the University of Iowa, and the Retina Foundation of the Southwest, from January 1, 1987, to August 1, 2014, including affected individuals from 200 families with a diagnosis of autosomal dominant retinitis pigmentosa, 35 families with unspecified macular dystrophies, and 116 families with pattern dystrophy. Participants were screened for the c.828+3A>T mutation by restriction-enzyme digest, single-strand conformational polymorphism screening, or bidirectional sequencing. Haplotypes of polymorphic markers flanking the PRPH2 locus and sequence variants within the gene were determined by denaturing gel electrophoresis or automated capillary-based cycle sequencing. The effect of the splice site mutation on the PRPH2 transcript was analyzed using NetGene2, a splice prediction program and by the reverse transcription polymerase chain reaction of illegitimate transcripts from peripheral white blood cells. MAIN OUTCOMES AND MEASURES Results of testing for splice site mutation, haplotypes, and alternate transcripts. RESULTS The PRPH2 mutation was found in 97 individuals of 19 independently ascertained families with a clinical diagnosis of retinitis pigmentosa, macular dystrophy, and/or pattern dystrophy. All affected individuals also shared a rare haplotype of approximately 644 kilobase pairs containing the c.828+3A>T mutation, which extends from the short tandem repeat polymorphism D6S282 to c.1013G>A (rs434102, a single-nucleotide polymorphism) in exon 3 of PRPH2, suggesting this mutation is from a common ancestor and is a founder mutation. It has a prevalence of 2% in families diagnosed as having autosomal dominant retinitis pigmentosa and 10% in families with variable clinical diagnosis of pattern, macular, and retinal dystrophies. Individuals with the c.828+3A>T mutation expressed a PRPH2 transcript not found in control participants and that was consistent with abnormal splicing. CONCLUSIONS AND RELEVANCE The PRPH2 c.828+3A>T splice site mutation is a frequent cause of inherited retinal dystrophies and is owing to the founder effect. The likely cause of disease is the missplicing of the PRPH2 message that results in a truncated protein product. Identifying the genetic etiology assists in more accurate management and possible future therapeutic options.
Collapse
Affiliation(s)
- Suma P Shankar
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston2Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Stephen A. Wynn Institute for Vision Research, Howard Hughes Medical Institute
| | | | - Richard S Ruiz
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| | | | - Lori S Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston
| | - Sara J Bowne
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Stephen A. Wynn Institute for Vision Research, Howard Hughes Medical Institute, University of Iowa, Iowa City
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston6Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston
| |
Collapse
|
18
|
Ghazali N, Rahman NA, Kannan TP, Jaafar S. Screening of Transforming Growth Factor Beta 3 and Jagged2 Genes in the Malay Population with Nonsyndromic Cleft Lip with or without Cleft Palate. Cleft Palate Craniofac J 2015; 52:e88-94. [DOI: 10.1597/14-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To determine the prevalence of mutations in transforming growth factor beta 3 (TGFβ3) and Jagged2 genes and their association with nonsyndromic cleft lip with or without cleft palate (CL±P) patients. Design Cross-sectional study on nonsyndromic CL±P and noncleft patients. Setting Reconstructive clinic and outpatient dental clinic, Hospital Universiti Sains Malaysia. Patients Blood samples of 96 nonsyndromic CL±P and 96 noncleft subjects. Main Outcome Measure Prevalence and association of mutations in TGFβ3 and Jagged2 genes with nonsyndromic CL±P. Results Most of the nonsyndromic CL±P patients (53.1%) had left unilateral CLP. There were slightly more females (56.6%) compared with males. The prevalence of the mutations in the TGFβ3 gene was 17.7% (95% confidence interval [CI]: 9.5, 24.5) and in the Jagged2 gene was 12.5% (95% CI: 5.5, 18.5), which was higher compared with the noncleft group. For the TGFβ3 gene, there was no mutation in the coding region in either of the groups. All variants were single nucleotide polymorphisms located within the intronic flanking region. Two variants were identified (g.15812T>G and g.15966A>G) in both nonsyndromic CL±P and noncleft patients. However, the association was not significant ( P > .05). Three variants (g.19779C>T, g.19547G>A, and g.19712C>T) were identified in the Jagged2 gene among nonsyndromic CL±P and noncleft patients. Only g.19712C>T showed a significant association with nonsyndromic CL±P patients ( P = .039). Conclusion g.19712C>T might play a crucial role in the development of cleft lip and palate. To the best of our knowledge, this is the first report of the mutation found within intron 13 of the Jagged2 gene among nonsyndromic CL±P Malay patients.
Collapse
Affiliation(s)
- Norliana Ghazali
- Dental Public Health Unit, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | - Saidi Jaafar
- Molecular Biology Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
19
|
Frykholm C, Klar J, Arnesson H, Rehnman AC, Lodahl M, Wedén U, Dahl N, Tranebjærg L, Rendtorff ND. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation. Gene 2015; 563:10-6. [DOI: 10.1016/j.gene.2015.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/04/2015] [Indexed: 11/26/2022]
|
20
|
Schneider TD. Twenty Years of Delila and Molecular Information Theory: The Altenberg-Austin Workshop in Theoretical Biology Biological Information, Beyond Metaphor: Causality, Explanation, and Unification Altenberg, Austria, 11-14 July 2002. ACTA ACUST UNITED AC 2015; 1:250-260. [PMID: 18084638 DOI: 10.1162/biot.2006.1.3.250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A brief personal history is given about how information theory can be applied to binding sites of genetic control molecules on nucleic acids. The primary example used is ribosome binding sites in Escherichia coli. Once the sites are aligned, the information needed to describe the sites can be computed using Claude Shannon's method. This is displayed by a computer graphic called a sequence logo. The logo represents an average binding site, and the mathematics easily allows one to determine the components of this average. That is, given a set of binding sites, the information for individual binding sites can also be computed. One can go further and predict the information of sites that are not in the original data set. Information theory also allows one to model the flexibility of ribosome binding sites, and this led us to a simple model for ribosome translational initiation in which the molecular components fit together only when the ribosome is at a good ribosome binding site. Since information theory is general, the same mathematics applies to human splice junctions, where we can predict the effect of sequence changes that cause human genetic diseases and cancer. The second example given is the Pribnow 'box' which, when viewed by the information theory method, reveals a mechanism for initiation of both transcription and DNA replication. Replication, transcription, splicing, and translation into protein represent the central dogma, so these examples show how molecular information theory is contributing to our knowledge of basic biology.
Collapse
Affiliation(s)
- Thomas D Schneider
- National Cancer Institute at Frederick, Laboratory of Experimental and Computational Biology, P. O. Box B, Frederick, MD 21702-1201. (301) 846-5581 (-5532 for messages), fax: (301) 846-5598, . http://www.lecb.ncifcrf.gov/ toms/
| |
Collapse
|
21
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
22
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
23
|
Taube JR, Sperle K, Banser L, Seeman P, Cavan BCV, Garbern JY, Hobson GM. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum Mol Genet 2014; 23:5464-78. [PMID: 24890387 DOI: 10.1093/hmg/ddu271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.
Collapse
Affiliation(s)
- Jennifer R Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Linda Banser
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Pavel Seeman
- Department of Child Neurology, DNA Laboratory, 2nd School of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | | | - James Y Garbern
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA and Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Genetic testing in Tunisian families with heritable retinoblastoma using a low cost approach permits accurate risk prediction in relatives and reveals incomplete penetrance in adults. Exp Eye Res 2014; 124:48-55. [PMID: 24810223 DOI: 10.1016/j.exer.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 01/16/2023]
Abstract
Heritable retinoblastoma is caused by oncogenic mutations in the RB1 tumor suppressor gene. Identification of these mutations in patients is important for genetic counseling and clinical management of relatives at risk. In order to lower analytical efforts, we designed a stepwise mutation detection strategy that was adapted to the spectrum of oncogenic RB1 gene mutations. We applied this strategy on 20 unrelated patients with familial and/or de novo bilateral retinoblastoma from Tunisia. In 19 (95%) patients, we detected oncogenic mutations including base substitutions, small length mutations, and large deletions. Further analyses on the origin of the mutations showed mutational mosaicism in one unilaterally affected father of a bilateral proband and incomplete penetrance in two mothers. In a large family with several retinoblastoma patients, the mutation identified in the index patient was also detected in several non-penetrant relatives. RNA analyses showed that this mutation results in an in-frame loss of exon 9. In summary, our strategy can serve as a model for RB1 mutation identification with high analytical sensitivity. Our results point out that genetic testing is needed to reveal or exclude incomplete penetrance specifically in parents of patients with sporadic disease.
Collapse
|
25
|
Vemula SR, Xiao J, Zhao Y, Bastian RW, Perlmutter JS, Racette BA, Paniello RC, Wszolek ZK, Uitti RJ, Van Gerpen JA, Hedera P, Truong DD, Blitzer A, Rudzińska M, Momčilović D, Jinnah HA, Frei K, Pfeiffer RF, LeDoux MS. A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia. Mol Genet Genomic Med 2014; 2:261-72. [PMID: 24936516 PMCID: PMC4049367 DOI: 10.1002/mgg3.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022] Open
Abstract
Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia.
Collapse
Affiliation(s)
- Satya R Vemula
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Yu Zhao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | | | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, Missouri
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Jay A Van Gerpen
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Nashville, Tennessee
| | - Daniel D Truong
- Parkinson's & Movement Disorder Institute Fountain Valley, California, 92708
| | - Andrew Blitzer
- New York Center for Voice and Swallowing Disorders New York, New York
| | - Monika Rudzińska
- Department of Neurology, Jagiellonian University Medical College in Krakow Kraków, Poland
| | - Dragana Momčilović
- Clinic for Child Neurology and Psychiatry, Medical Faculty University of Belgrade Belgrade, Serbia
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, School of Medicine, Emory University Atlanta, Georgia, 30322
| | - Karen Frei
- Department of Neurology, Loma Linda University Health System Loma Linda, California, 92354
| | - Ronald F Pfeiffer
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| |
Collapse
|
26
|
Viner C, Dorman SN, Shirley BC, Rogan PK. Validation of predicted mRNA splicing mutations using high-throughput transcriptome data. F1000Res 2014; 3:8. [PMID: 24741438 PMCID: PMC3983938 DOI: 10.12688/f1000research.3-8.v2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/20/2023] Open
Abstract
Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an
in silico method for the automatic validation of DNA sequencing variants that alter mRNA splicing. Veridical performs statistically valid comparisons of the normalized read counts of abnormal RNA species in mutant versus non-mutant tissues. This leverages large numbers of control samples to corroborate the consequences of predicted splicing variants in complete genomes and exomes.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Stephanie N Dorman
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | - Peter K Rogan
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada ; Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada ; Cytognomix, Inc., London, Ontario, N6G 4X8, Canada
| |
Collapse
|
27
|
Abstract
Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an in silico method for the automatic validation of DNA sequencing variants that alter mRNA splicing. Veridical performs statistically valid comparisons of the normalized read counts of abnormal RNA species in mutant versus non-mutant tissues. This leverages large numbers of control samples to corroborate the consequences of predicted splicing variants in complete genomes and exomes.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Stephanie N Dorman
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | - Peter K Rogan
- Department of Computer Science, University of Western Ontario, London, Ontario, N6A 5B7, Canada ; Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada ; Cytognomix, Inc., London, Ontario, N6G 4X8, Canada
| |
Collapse
|
28
|
Rajkumar S, Vasavada AR, Praveen MR, Ananthan R, Reddy GB, Tripathi H, Ganatra DA, Arora AI, Patel AR. Exploration of molecular factors impairing superoxide dismutase isoforms activity in human senile cataractous lenses. Invest Ophthalmol Vis Sci 2013; 54:6224-33. [PMID: 23970468 DOI: 10.1167/iovs.13-11935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To explore different molecular factors impairing the activities of superoxide dismutase (SOD) isoforms in senile cataractous lenses. METHODS Enzyme activity of SOD isoforms, levels of their corresponding cofactors copper (Cu), manganese (Mn), zinc (Zn), and expression of mRNA transcripts and proteins were determined in the lenses of human subjects with and without cataract. DNA from lens epithelium (LE) and peripheral blood was isolated. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) followed by sequencing was carried out to screen somatic mutations. The impact of intronic insertion/deletion (INDEL) variations on the splicing process and on the resultant transcript was evaluated. Genotyping of IVS4+42delG polymorphism of SOD1 gene was done by PCR-restriction fragment length polymorphism (RFLP). RESULTS A significant decrease in Cu/Zn- and Mn-SOD activity (P < 0.001) and in Cu/Zn-SOD transcript (P < 0.001) and its protein (P < 0.05) were found in cataractous lenses. No significant change in the level of copper (P = 0.36) and an increase in the level of manganese (P = 0.01) and zinc (P = 0.02) were observed in cataractous lenses. A significant positive correlation between the level of Cu/Zn-SOD activity and the levels of Cu (P = 0.003) and Zn (P = 0.005) was found in the cataractous lenses. DNA sequencing revealed three intronic INDEL variations in exon4 of SOD1 gene. Splice-junction analysis showed the potential of IVS4+42delG in creating a new cryptic acceptor site. If it is involved in alternate splicing, it could result in generation of SOD1 mRNA transcripts lacking exon4 region. Transcript analysis revealed the presence of complete SOD1 mRNA transcripts. Genotyping revealed the presence of IVS4+42delG polymorphism in all subjects. CONCLUSIONS The decrease in the activity of SOD1 isoform in cataractous lenses was associated with the decreased level of mRNA transcripts and their protein expression and was not associated with either modulation in the level of enzyme cofactors or with INDEL variations.
Collapse
Affiliation(s)
- Sankaranarayanan Rajkumar
- Department of Molecular Genetics and Biochemistry, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rogan PK, Zou GY. Best Practices for Evaluating Mutation Prediction Methods. Hum Mutat 2013; 34:1581-2. [DOI: 10.1002/humu.22401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Peter K. Rogan
- Departments of Biochemistry; Schulich School of Medicine and Dentistry, Western University; Ontario Canada
- Department of Computer Science; Faculty of Science, Western University; Ontario Canada
| | - Guang Yong Zou
- Department of Epidemiology and Biostatistics; Schulich School of Medicine and Dentistry, Western University; Ontario Canada
| |
Collapse
|
30
|
Locke G, Haberman D, Johnson SM, Morozov AV. Global remodeling of nucleosome positions in C. elegans. BMC Genomics 2013; 14:284. [PMID: 23622142 PMCID: PMC3663828 DOI: 10.1186/1471-2164-14-284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/17/2013] [Indexed: 11/24/2022] Open
Abstract
Background Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. Results To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Conclusions Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans. Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational predictions are available on the Nucleosome Explorer website (http://nucleosome.rutgers.edu).
Collapse
Affiliation(s)
- George Locke
- Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
31
|
Shirley BC, Mucaki EJ, Whitehead T, Costea PI, Akan P, Rogan PK. Interpretation, stratification and evidence for sequence variants affecting mRNA splicing in complete human genome sequences. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:77-85. [PMID: 23499923 PMCID: PMC4357664 DOI: 10.1016/j.gpb.2013.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Abstract
Information theory-based methods have been shown to be sensitive and specific for predicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the Shannon pipeline software for genome-scale mutation analysis and provide evidence that the software predicts variants affecting mRNA splicing. Individual information contents (in bits) of reference and variant splice sites are compared and significant differences are annotated and prioritized. The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS, U251 and A431), which were supported by expression analyses. After filtering, tractable numbers of potentially deleterious variants are predicted by the software, suitable for further laboratory investigation. In these cell lines, novel functional variants comprised 6–17 inactivating mutations, 1–5 leaky mutations and 6–13 cryptic splicing mutations. Predicted effects were validated by RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis of SNPs in HapMap cell lines.
Collapse
Affiliation(s)
- Ben C Shirley
- Department of Computer Science, Middlesex College, The University of Western Ontario, London, ON N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Mucaki EJ, Shirley BC, Rogan PK. Prediction of mutant mRNA splice isoforms by information theory-based exon definition. Hum Mutat 2013; 34:557-65. [PMID: 23348723 DOI: 10.1002/humu.22277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 11/09/2022]
Abstract
Mutations that affect mRNA splicing often produce multiple mRNA isoforms, resulting in complex molecular phenotypes. Definition of an exon and its inclusion in mature mRNA relies on joint recognition of both acceptor and donor splice sites. This study predicts cryptic and exon-skipping isoforms in mRNA produced by splicing mutations from the combined information contents (R(i), which measures binding-site strength, in bits) and distribution of the splice sites defining these exons. The total information content of an exon (R(i),total) is the sum of the R(i) values of its acceptor and donor splice sites, adjusted for the self-information of the distance separating these sites, that is, the gap surprisal. Differences between total information contents of an exon (ΔR(i,total)) are predictive of the relative abundance of these exons in distinct processed mRNAs. Constraints on splice site and exon selection are used to eliminate nonconforming and poorly expressed isoforms. Molecular phenotypes are computed by the Automated Splice Site and Exon Definition Analysis (http://splice.uwo.ca) server. Predictions of splicing mutations were highly concordant (85.2%; n = 61) with published expression data. In silico exon definition analysis will contribute to streamlining assessment of abnormal and normal splice isoforms resulting from mutations.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
33
|
Wadt K, Choi J, Chung JY, Kiilgaard J, Heegaard S, Drzewiecki KT, Trent JM, Hewitt SM, Hayward NK, Gerdes AM, Brown KM. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 2012; 25:815-8. [PMID: 22889334 DOI: 10.1111/pcmr.12006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Abstract
Inactivating germ line BRCA1-associated protein-1 (BAP1) mutations have recently been reported in families with uveal or cutaneous malignant melanoma (UMM, CMM), mesothelioma, and meningioma. Although apparently predisposing to a wide range of tumors, the exact tumor spectrum associated with germ line BAP1 mutations has yet to be established. Here, we report a novel germ line BAP1 splice mutation, c.1708C>G (p.Leu570fs*40), in a multiple-case Danish UMM family with a spectrum of other tumors. Whole-exome sequencing identified an apparent missense mutation of BAP1 in UMM, CMM, as well as paraganglioma, breast cancer, and suspected mesothelioma cases in the family. Bioinformatic analysis and splicing assays demonstrated that this mutation creates a strong cryptic splice donor, resulting in aberrant splicing and a truncating frameshift of the BAP1 transcript. Somatic loss of the wild-type allele was also confirmed in the UMM and paraganglioma tumors. Our findings further support BAP1 as a melanoma susceptibility gene and extend the potential predisposition spectrum to paraganglioma.
Collapse
Affiliation(s)
- Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lou H, Li H, Yeager M, Im K, Gold B, Schneider TD, Fraumeni JF, Chanock SJ, Anderson SK, Dean M. Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts. Hum Genet 2012; 131:1453-1466. [PMID: 22661295 PMCID: PMC3956317 DOI: 10.1007/s00439-012-1182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
Beta-microseminoprotein (MSP)/MSMB is an immunoglobulin superfamily protein synthesized by prostate epithelial cells and secreted into seminal plasma. Variants in the promoter of the MSMB gene have been associated with the risk of prostate cancer (PCa) in several independent genome-wide association studies. Both MSMB and an adjacent gene, NCOA4, are subjected to transcriptional control via androgen response elements. The gene product of NCOA4 interacts directly with the androgen receptor as a co-activator to enhance AR transcriptional activity. Here, we provide evidence for the expression of full-length MSMB-NCOA4 fusion transcripts regulated by the MSMB promoter. The predominant MSMB-NCOA4 transcript arises by fusion of the 5'UTR and exons 1-2 of the MSMB pre-mRNA, with exons 2-10 of the NCOA4 pre-mRNA, producing a stable fusion protein, comprising the essential domains of NCOA4. Analysis of the splice sites of this transcript shows an unusually strong splice acceptor at NCOA4 exon 2 and the presence of Alu repeats flanking the exons potentially involved in the splicing event. Transfection experiments using deletion clones of the promoter coupled with luciferase reporter assays define a core MSMB promoter element located between -27 and -236 of the gene, and a negative regulatory element immediately upstream of the start codon. Computational network analysis reveals that the MSMB gene is functionally connected to NCOA4 and the androgen receptor signaling pathway. The data provide an example of how GWAS-associated variants may have multiple genetic and epigenetic effects.
Collapse
Affiliation(s)
- Hong Lou
- Human Genetics Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Hongchuan Li
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Meredith Yeager
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Kate Im
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Bert Gold
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Thomas D Schneider
- Gene Regulation and Chromosome Biology Laboratory, Molecular Information Theory Group, Frederick, MD 21702, USA
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen K Anderson
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Michael Dean
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Mullins RF, Kuehn MH, Radu RA, Enriquez GS, East JS, Schindler EI, Travis GH, Stone EM. Autosomal recessive retinitis pigmentosa due to ABCA4 mutations: clinical, pathologic, and molecular characterization. Invest Ophthalmol Vis Sci 2012; 53:1883-94. [PMID: 22395892 DOI: 10.1167/iovs.12-9477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Autosomal recessive retinitis pigmentosa (ARRP) is a genetically heterogeneous condition characterized by progressive loss of retinal photoreceptor cells. In order to gain new insights into the pathogenesis of ARRP, we evaluated the morphological, biochemical, and gene expression changes in eyes from a human donor with ARRP due to mutations in the ABCA4 gene. METHODS Eyes were obtained postmortem from a donor with end-stage retinitis pigmentosa. The coding sequences of the RDS, RHO, and ABCA4 genes were screened for disease-causing mutations. Morphological changes in different regions of the retina were examined histologically, and levels of lipofuscin-associated bisretinoids were measured. Gene expression was examined in retinal/choroidal tissue using microarray analysis, and all parameters were compared to those in unaffected control donors. RESULTS Genetic analysis of the donor's DNA identified two mutations in the ABCA4 gene, IVS14+1G > C and Phe1440del1 cT, each on a separate allele. Morphological evaluation revealed complete loss of the outer nuclear layer, remodeling of the inner retina, loss of retinal vasculature, and regional neovascularization. The retinal pigment epithelium and choriocapillaris exhibited regional preservation. Microarray analysis revealed loss of photoreceptor cell-associated transcripts, with preservation of multiple genes expressed specifically in inner retinal neurons. CONCLUSIONS The persistence of transcripts expressed by inner retinal neurons suggests that despite significant plasticity that occurs during retinal degeneration, bipolar cells and ganglion cells remain at least partially differentiated. Findings from this study suggest that some forms of therapy currently under investigation may have benefit even in advanced retinal degeneration.
Collapse
Affiliation(s)
- Robert F Mullins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsai KN, Chen GW, Chen CYC. A Novel Algorithm for Identification of Activated Cryptic 5′ Splice Sites. J Biomol Struct Dyn 2012; 29:1089-99. [DOI: 10.1080/073911012010525033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Tsai KN, Wang D. Identification of activated cryptic 5' splice sites using structure profiles and odds measure. Nucleic Acids Res 2012; 40:e73. [PMID: 22323516 PMCID: PMC3378896 DOI: 10.1093/nar/gks061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The activation of cryptic 5′ splice sites (5′ SSs) is often related to human hereditary diseases. The DNA-based mutation screening strategies are commonly used to recognize the cryptic 5′ SSs, because features of the local DNA sequence can influence the choice of cryptic 5′ SSs. To improve the identification of the cryptic 5′ SSs, we developed a structure-based method, named SPO (structure profiles and odds measure), which combines two parameters, the structural feature derived from hydroxyl radical cleavage pattern and odds measure, to assess the likelihood of a cryptic 5′ SS activation in competing with its paired authentic 5′ SS. Compared to the current tools for identifying activated cryptic 5′ SSs, the SPO algorithm achieves higher prediction accuracy than the other methods, including MaxEnt, MDD, Markov model, weight matrix model, Shapiro and Senapathy matrix, Ri and ΔG. In addition, the predicted ΔSPO scores from the SPO algorithm exhibited a greater degree of correlation with the strength of cryptic 5′ SS activation than that measured from the other seven methods. In conclusion, the SPO algorithm provides an optimal identification of cryptic 5′ SSs, can be applied in designing mutagenesis experiments for various splicing events and may be helpful to investigate the relationship between structural variants and human hereditary diseases.
Collapse
Affiliation(s)
- Kun-Nan Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
38
|
Slavotinek AM, Chao R, Vacik T, Yahyavi M, Abouzeid H, Bardakjian T, Schneider A, Shaw G, Sherr EH, Lemke G, Youssef M, Schorderet DF. VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: the first description of a VAX1 phenotype in humans. Hum Mutat 2011; 33:364-8. [PMID: 22095910 DOI: 10.1002/humu.21658] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/09/2011] [Indexed: 01/30/2023]
Abstract
Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia (A/M). In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate, and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for A/M.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California 94143-0748, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Qadah T, Finlayson J, Ghassemifar R. In vitroCharacterization of the α-Thalassemia Point Mutation HBA2:c.95+1G>A [IVS-I-1(G>A) (α2)]. Hemoglobin 2011; 36:38-46. [DOI: 10.3109/03630269.2011.599086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Lehtokari VL, Pelin K, Herczegfalvi A, Karcagi V, Pouget J, Franques J, Pellissier JF, Figarella-Branger D, von der Hagen M, Huebner A, Schoser B, Lochmüller H, Wallgren-Pettersson C. Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy. Neuromuscul Disord 2011; 21:556-62. [DOI: 10.1016/j.nmd.2011.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/10/2011] [Accepted: 05/27/2011] [Indexed: 11/26/2022]
|
41
|
Ozaltin F, Ibsirlioglu T, Taskiran E, Baydar D, Kaymaz F, Buyukcelik M, Kilic B, Balat A, Iatropoulos P, Asan E, Akarsu N, Schaefer F, Yilmaz E, Bakkaloglu A. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet 2011; 89:139-47. [PMID: 21722858 DOI: 10.1016/j.ajhg.2011.05.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/26/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is a genetically heterogeneous group of disorders characterized by proteinuria, hypoalbuminemia, and edema. Because it typically results in end-stage kidney disease, the steroid-resistant subtype (SRNS) of INS is especially important when it occurs in children. The present study included 29 affected and 22 normal individuals from 17 SRNS families; genome-wide analysis was performed with Affymetrix 250K SNP arrays followed by homozygosity mapping. A large homozygous stretch on chromosomal region 12p12 was identified in one consanguineous family with two affected siblings. Direct sequencing of protein tyrosine phosphatase receptor type O (PTPRO; also known as glomerular epithelial protein-1 [GLEPP1]) showed homozygous c.2627+1G>T donor splice-site mutation. This mutation causes skipping of the evolutionarily conserved exon 16 (p.Glu854_Trp876del) at the RNA level. Immunohistochemistry with GLEPP1 antibody showed a similar staining pattern in the podocytes of the diseased and control kidney tissues. We used a highly polymorphic intragenic DNA marker-D12S1303-to search for homozygosity in 120 Turkish and 13 non-Turkish individuals in the PodoNet registry. This analysis yielded 17 candidate families, and a distinct homozygous c.2745+1G>A donor splice-site mutation in PTPRO was further identified via DNA sequencing in a second Turkish family. This mutation causes skipping of exon 19, and this introduces a premature stop codon at the very beginning of exon 20 (p.Asn888Lysfs*3) and causes degradation of mRNA via nonsense-mediated decay. Immunohistochemical analysis showed complete absence of immunoreactive PTPRO. Ultrastructural alterations, such as diffuse foot process fusion and extensive microvillus transformation of podocytes, were observed via electron microscopy in both families. The present study introduces mutations in PTPRO as another cause of autosomal-recessive nephrotic syndrome.
Collapse
|
42
|
Cartault F, Nava C, Malbrunot AC, Munier P, Hebert JC, N’guyen P, Djeridi N, Pariaud P, Pariaud J, Dupuy A, Austerlitz F, Sarasin A. A new XPC gene splicing mutation has lead to the highest worldwide prevalence of xeroderma pigmentosum in black Mahori patients. DNA Repair (Amst) 2011; 10:577-85. [DOI: 10.1016/j.dnarep.2011.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/03/2011] [Accepted: 03/08/2011] [Indexed: 11/16/2022]
|
43
|
Ellis JR, Heinrich B, Mautner VF, Kluwe L. Effects of splicing mutations on NF2-transcripts: transcript analysis and information theoretic predictions. Genes Chromosomes Cancer 2011; 50:571-84. [PMID: 21563229 DOI: 10.1002/gcc.20876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/07/2022] Open
Abstract
This study examined the effects of 22 putative splicing mutations in the NF2 gene by means of transcript analysis and information theory based prediction. Fourteen mutations were within the dinucleotide acceptor and donor regions, often referred to as (AG/GT) sequences. Six were outside these dinucleotide regions but within the more broadly defined splicing regions used in the information theory based model. Two others were in introns and outside the broadly defined regions. Transcript analysis revealed exon skipping or activation of one or more cryptic splicing sites for 17 mutations. No alterations were found for the two intronic mutations and for three mutations in the broadly defined splicing regions. Concordance and partial concordance between the calculated predictions and the results of transcript analysis were found for 14 and 6 mutations, respectively. For two mutations, the predicted alteration was not found in the transcripts. Our results demonstrate that the effects of splicing mutations in NF2 are often complex and that information theory based analysis is helpful in elucidating the consequences of these mutations.
Collapse
Affiliation(s)
- James R Ellis
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892-5766, USA.
| | | | | | | |
Collapse
|
44
|
Mucaki EJ, Ainsworth P, Rogan PK. Comprehensive prediction of mRNA splicing effects of BRCA1 and BRCA2 variants. Hum Mutat 2011; 32:735-42. [DOI: 10.1002/humu.21513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/08/2011] [Indexed: 12/17/2022]
|
45
|
Slavotinek AM, Baranzini SE, Schanze D, Labelle-Dumais C, Short KM, Chao R, Yahyavi M, Bijlsma EK, Chu C, Musone S, Wheatley A, Kwok PY, Marles S, Fryns JP, Maga AM, Hassan MG, Gould DB, Madireddy L, Li C, Cox TC, Smyth I, Chudley AE, Zenker M. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet 2011; 48:375-82. [PMID: 21507892 DOI: 10.1136/jmg.2011.089631] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare condition defined by eyelid colobomas, cryptophthalmos and anophthalmia/microphthalmia, an aberrant hairline, a bifid or broad nasal tip, and gastrointestinal anomalies such as omphalocele and anal stenosis. Autosomal recessive inheritance had been assumed because of consanguinity in the Oji-Cre population of Manitoba and reports of affected siblings, but no locus or cytogenetic aberration had previously been described. METHODS AND RESULTS This study shows that MOTA syndrome is caused by mutations in FREM1, a gene previously mutated in bifid nose, renal agenesis, and anorectal malformations (BNAR) syndrome. MOTA syndrome and BNAR syndrome can therefore be considered as part of a phenotypic spectrum that is similar to, but distinct from and less severe than, Fraser syndrome. Re-examination of Frem1(bat/bat) mutant mice found new evidence that Frem1 is involved in anal and craniofacial development, with anal prolapse, eyelid colobomas, telecanthus, a shortened snout and reduced philtral height present in the mutant mice, similar to the human phenotype in MOTA syndrome. CONCLUSIONS The milder phenotypes associated with FREM1 deficiency in humans (MOTA syndrome and BNAR syndrome) compared to that resulting from FRAS1 and FREM2 loss of function (Fraser syndrome) are also consistent with the less severe phenotypes resulting from Frem1 loss of function in mice. Together, Fraser, BNAR and MOTA syndromes constitute a clinically overlapping group of FRAS-FREM complex diseases.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, 533 Parnassus Street, Room U585P, San Francisco, CA 94143-0748, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kang DH, Lee DH, Hong YH, Lee ST, Jeon BR, Lee YK, Ki CS, Lee YW. Identification of a novel splicing mutation in the ARSA gene in a patient with late-infantile form of metachromatic leukodystrophy. Korean J Lab Med 2011; 30:516-20. [PMID: 20890085 DOI: 10.3343/kjlm.2010.30.5.516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Metachromatic leukodystrophy (MLD; MIM 250100), a severe neurodegenerative disorder inherited as an autosomal recessive trait, is caused by mutations in the arylsulfatase A (ARSA) gene. Although several germ line ARSA mutations have been identified in patients with MLD of various ethnic backgrounds elsewhere in the world, no genetically confirmed cases of MLD have been reported in Korea. Recently, we identified a mutation in the ARSA gene of a Korean male with MLD. A male infant with late-infantile form of MLD had been admitted to our hospital for further examination. His neuromuscular symptoms, which included inability to walk at the age of 12 months, gradually worsened, even after allograft bone marrow transplantation; he died at the age of 9 yr. His elder brother had also been diagnosed with MLD. To confirm the presence of a genetic abnormality, all the coding exons of the ARSA gene and the flanking introns were amplified by PCR. A molecular analysis of the ARSA gene revealed both a novel heterozygous splicing mutation (c.1101+1G>T) in intron 6 and a heterozygous missense mutation in exon 2 (c.296G>A; Gly99Asp). The patient's elder brother who had MLD is believed to have had the same mutation, which may be correlated with a rapidly deteriorating clinical course. This study identified a novel mutation in the ARSA gene, related to a late-infantile form of MLD with a lethal clinical course and suggested that molecular diagnosis of patients may be useful in early diagnosis and for deciding intervention measures for their family members.
Collapse
Affiliation(s)
- Dong-Hee Kang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The idea that we could build molecular communications systems can be advanced by investigating how actual molecules from living organisms function. Information theory provides tools for such an investigation. This review describes how we can compute the average information in the DNA binding sites of any genetic control protein and how this can be extended to analyze its individual sites. A formula equivalent to Claude Shannon's channel capacity can be applied to molecular systems and used to compute the efficiency of protein binding. This efficiency is often 70% and a brief explanation for that is given. The results imply that biological systems have evolved to function at channel capacity, which means that we should be able to build molecular communications that are just as robust as our macroscopic ones.
Collapse
Affiliation(s)
- Thomas D. Schneider
- National Institutes of Health, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, United States
| |
Collapse
|
48
|
Kahn AB, Zeeberg BR, Ryan MC, Jamison DC, Rockoff DM, Pommier Y, Weinstein JN. Ontogenomic study of the relationship between number of gene splice variants and GO categorization. Bioinformatics 2010; 26:1945-9. [PMID: 20616384 DOI: 10.1093/bioinformatics/btq335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Splice variation plays important roles in evolution and cancer. Different splice variants of a gene may be characteristic of particular cellular processes, subcellular locations or organs. Although several genomic projects have identified splice variants, there have been no large-scale computational studies of the relationship between number of splice variants and biological function. The Gene Ontology (GO) and tools for leveraging GO, such as GoMiner, now make such a study feasible. RESULTS We partitioned genes into two groups: those with numbers of splice variants <or=b and >b (b=1,..., 10). Then we used GoMiner to determine whether any GO categories are enriched in genes with particular numbers of splice variants. Since there was no a priori 'appropriate' partition boundary, we studied those 'robust' categories whose enrichment did not depend on the selection of a particular partition boundary. Furthermore, because the distribution of splice variant number was a snapshot taken at a particular point in time, we confirmed that those observations were stable across successive builds of GenBank. A small number of categories were found for genes in the lower partitions. A larger number of categories were found for genes in the higher partitions. Those categories were largely associated with cell death and signal transduction. Apoptotic genes tended to have a large repertoire of splice variants, and genes with splice variants exhibited a distinctive 'apoptotic island' in clustered image maps (CIMs). AVAILABILITY Supplementary tables and figures are available at URL http://discover.nci.nih.gov/OG/supplementaryMaterials.html. The Safari browser appears to perform better than Firefox for these particular items.
Collapse
Affiliation(s)
- Ari B Kahn
- Department of Bioinformatics, George Mason University, Fairfax, VA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Homozygous Mutations in the 5′ Region of the JUP Gene Result in Cutaneous Disease but Normal Heart Development in Children. J Invest Dermatol 2010; 130:1543-50. [DOI: 10.1038/jid.2010.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Gaweda-Walerych K, Safranow K, Maruszak A, Bialecka M, Klodowska-Duda G, Czyzewski K, Slawek J, Rudzinska M, Styczynska M, Opala G, Drozdzik M, Kurzawski M, Szczudlik A, Canter JA, Barcikowska M, Zekanowski C. Mitochondrial transcription factor A variants and the risk of Parkinson's disease. Neurosci Lett 2010; 469:24-9. [DOI: 10.1016/j.neulet.2009.11.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|