1
|
Alaverdashvili M, Hackett MJ, Caine S, Paterson PG. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. Neuroimage 2017; 149:275-284. [PMID: 28179168 DOI: 10.1016/j.neuroimage.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| | - Mark J Hackett
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Geological Sciences, Canada
| | - Sally Caine
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G Paterson
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
2
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
3
|
Cardoso A, Castro JP, Pereira PA, Andrade JP. Prolonged protein deprivation, but not food restriction, affects parvalbumin-containing interneurons in the dentate gyrus of adult rats. Brain Res 2013; 1522:22-30. [DOI: 10.1016/j.brainres.2013.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
4
|
Cabral FR, Priel MR, Silva Araujo BH, Brito Torres L, de Lima E, Gurgel do Vale T, Pereira F, Alves de Amorim H, Abrão Cavalheiro E, Amado Scerni D, Naffah-Mazzacoratti MDG. Malnutrition in infancy as a susceptibility factor for temporal lobe epilepsy in adulthood induced by the pilocarpine experimental model. Dev Neurosci 2011; 33:469-78. [PMID: 21912094 DOI: 10.1159/000330707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Malnutrition during the earliest stages of life may result in innumerable brain problems. Moreover, this condition could increase the chances of developing neurological diseases, such as epilepsy. We analyzed the effects of early-life malnutrition on susceptibility to epileptic seizures induced by the pilocarpine model of epilepsy. Wistar rat pups were kept on a starvation regimen from day 1 to day 21 after birth. At day 60, 16 animals (8 = well-nourished; 8 = malnourished) were exposed to the pilocarpine experimental model of epilepsy. Age-matched well-nourished (n = 8) and malnourished (n = 8) rats were used as controls. Animals were video-monitored over 9 weeks. The following behavioral parameters were evaluated: first seizure threshold (acute period of the pilocarpine model); status epilepticus (SE) latency; first spontaneous seizure latency (silent period), and spontaneous seizure frequency during the chronic phase. The cell and mossy fiber sprouting (MFS) density were evaluated in the hippocampal formation. Our results showed that the malnourished animals required a lower pilocarpine dose in order to develop SE (200 mg/kg), lower latency to reach SE, less time for the first spontaneous seizure and higher seizure frequency, when compared to well-nourished pilocarpine rats. Histopathological findings revealed a significant cell density reduction in the CA1 region and intense MFS among the malnourished animals. Our data indicate that early malnutrition greatly influences susceptibility to seizures and behavioral manifestations in adult life. These findings suggest that malnutrition in infancy reduces the threshold for epilepsy and promotes alterations in the brain that persist into adult life.
Collapse
Affiliation(s)
- Francisco Romero Cabral
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Díaz-Cintra S, González-Maciel A, Morales MA, Aguilar A, Cintra L, Prado-Alcalá RA. Protein malnutrition differentially alters the number of glutamic acid decarboxylase-67 interneurons in dentate gyrus and CA1–3 subfields of the dorsal hippocampus. Exp Neurol 2007; 208:47-53. [PMID: 17706195 DOI: 10.1016/j.expneurol.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
In 30- and 90-day-old rats, using immunohistochemistry for glutamic acid decarboxylase 67 (GAD-67), we have tested whether malnutrition during different periods of hippocampal development produces deleterious effects on the population of GABA neurons in the dentate gyrus (DG) and cornu Ammonis (CA1-3) of the dorsal hippocampus. Animals were under one of four nutritional conditions: well-nourished controls (Con), prenatal protein malnourished (PreM), postnatal protein malnourished (PostM), and chronic protein malnourished (ChroM). We found that the number of GAD-67-positive (GAD-67+) interneurons was higher in the DG than in the CA1-3 areas of both Con and malnourished groups. Regarding the DG, the number of GAD-67+ interneurons was increased in PreM and PostM and decreased in ChroM at 30 days. At 90 days of age the number of GAD-67+ interneurons was increased in PostM and ChroM and remained unchanged in PreM. With respect to CA1-3, the number of labeled interneurons was decreased in PostM and ChroM at 30 days of age, but no change was found in PreM. At 90 days no changes in the number of these interneurons were found in any of the groups. These observations suggest that 1) the cell death program starting point is delayed in DG GAD-67+ interneurons, and 2) protein malnutrition differentially affects GAD-67+ interneuron development throughout the dorsal hippocampus. Thus, these changes in the number of GAD-67+ interneurons may partly explain the alterations in modulation of dentate granule cell excitability, as well as in the emotional, motivational, and memory disturbances commonly observed in malnourished rats.
Collapse
Affiliation(s)
- Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Nakagawasai O, Yamadera F, Sato S, Taniguchi R, Hiraga H, Arai Y, Murakami H, Mawatari K, Niijima F, Tan-No K, Tadano T. Alterations in cognitive function in prepubertal mice with protein malnutrition: Relationship to changes in choline acetyltransferase. Behav Brain Res 2006; 167:111-7. [PMID: 16242790 DOI: 10.1016/j.bbr.2005.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 08/22/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
We have found that protein malnutrition (PM) causes a significant impairment of memory-related behavior on the 15th and 20th day after the start of PM (5% casein) feeding in prepubertal mice but not in postpubertal mice, as measured by a passive-avoidance task. This impairment was almost completely reversed by merely switching to a standard protein (20% casein) diet on the 10th day after the start of PM. However, the reversal was not observed when the switching to a standard protein regimen was done on the 15th day of the PM diet. Interestingly, the impairment of memory-related behavior on the 20th day was improved by the chronic administration of physostigmine (0.1 mg/kg/day x last 10 days, i.p.), a cholinesterase inhibitor. To correlate brain cholinergic neuron function with the memory-related behavior impairment induced by PM, microphotometry was used to determine the histological distribution of the imunofluorescence intensity for choline acetyltransferase (ChAT), a functional marker of presynapse in cholinergic neurons. The change in the intensity of fluorescence indicated that ChAT protein was decreased in the hippocampus (CA1, CA3 and dentate gyrus) on the 20th day after PM feeding in comparison with controls. These results suggest the possibility that the memory-related behavior deficits observed in prepubertal mice with PM are caused by a dysfunction of the cholinergic neurons in the hippocampus.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lister JP, Blatt GJ, DeBassio WA, Kemper TL, Tonkiss J, Galler JR, Rosene DL. Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation. Hippocampus 2005; 15:393-403. [PMID: 15669101 DOI: 10.1002/hipo.20065] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Malnutrition has been associated with a variety of functional and anatomical impairments of the hippocampal formation. One of the more striking of these is widespread loss of hippocampal neurons in postnatally malnourished rats. In the present study we have investigated the effect of prenatal malnutrition on these same neuronal populations, neurons that are all generated during the period of the dietary restriction. In prenatally protein deprived rats, using design-based stereology, we have measured the regional volume and number of neurons in the hilus of the dentate gyrus and the pyramidal cell layers of CA3, CA2, CA1, and the subiculum of 90-day-old animals. These results demonstrated a statistically significant reduction of 20% in neuron numbers in the CA1 subfield, while numbers in the other subfields were unchanged. There was a corresponding significant reduction of 22% in the volume of the CA1 subfield and a significant 14% decrease in the volume of the pyramidal layer of the subiculum. The change in volume of the pyramidal layer of the subiculum without neuron loss may reflect loss of CA1 afferent input to the pyramidal layer. Although the effect of nutritional deprivation on the neuronal population appears to be different in pre- and postnatal malnutrition, both dietary paradigms highlight the vulnerability of key components of the hippocampal trisynaptic circuit (consisting of the dentate granule cell mossy fibers projection to CA3 pyramids and the CA3 projection to the CA1 pyramids), which is an essential circuit for memory and learning.
Collapse
Affiliation(s)
- James P Lister
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Dieni S, Rees S. Dendritic morphology is altered in hippocampal neurons following prenatal compromise. JOURNAL OF NEUROBIOLOGY 2003; 55:41-52. [PMID: 12605458 DOI: 10.1002/neu.10194] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic placental insufficiency (CPI), a known cause of intrauterine growth restriction, can lead to structural alterations in the developing brain that might underlie postnatal neurological deficits. We have previously demonstrated significant reductions in the volumes of hippocampal neuropil layers in fetal guinea pig brains following experimentally induced growth restriction. To determine the components of the neuropil affected in the brains of growth restricted (GR) fetuses, the dendritic morphology of CA1 pyramidal neurons and dentate granule cells was examined. CPI was induced by unilateral uterine artery ligation in pregnant guinea pigs at midgestation (term approximately 67 days). Hippocampi from control and GR fetuses were stained using the Rapid Golgi technique and the growth and branching of the dendritic arbors were quantified using the Sholl method. In addition, the density of dendritic spines was determined on the apical arbors of each population. In GR brains (n = 7) compared to controls (n = 7), there was a reduction in dendritic elongation (p < 0.005) and an alteration in the branch point distribution in CA1 basal arbors, and a reduction both in the outgrowth (p < 0.05) and branch point number (p < 0.05) of CA1 apical arbors. Dentate granule cells from GR brains also demonstrated reduced dendritic outgrowth (p < 0.05). There was an increase in dendritic spine density in both neuronal populations; this might be due either to altered synaptic pruning or as a compensatory mechanism for reduced dendritic length. These findings demonstrate that a chronic prenatal insult causes selective changes in the morphology of hippocampal cell dendrites and may lead to alterations in hippocampal function in the postnatal period.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | | |
Collapse
|
9
|
Andrade JP, Lukoyanov NV, Paula-Barbosa MM. Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus 2002; 12:149-64. [PMID: 12000115 DOI: 10.1002/hipo.1102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hippocampal formation undergoes significant morphological and functional changes after prolonged feeding with low-protein diets. In this study we tested whether prolonged food restriction causes deleterious alterations in this brain region as well. It was found that the total number of dentate granule cells and hippocampal CA3 and CA1 pyramidal neurons did not differ between controls and rats submitted to food restriction (40%) for 36 weeks. Likewise, no effects of this dietary regimen have been detected on the morphology of the dendritic trees of hippocampal pyramids, and on the total number of the mossy fiber-CA3 synapses. By contrast, the dendritic arborizations of granule cells were found to have a reduced number of segments in food-restricted rats. However, the spine density on the distal segments of their dendritic trees and the total number of axospinous synapses in the outer molecular layer of the dentate gyrus were increased in these animals. In addition, the total dendritic length of the granule cells and the overall surface area of the active zones of the synapses in the outer molecular layer were preserved, indicating that the capacity of dentate granule cells to process afferent stimuli is likely to be unaffected by this dietary treatment. Supporting this view are the results obtained in the water maze experiment which show that food-restricted rats exhibit unimpaired spatial abilities, which are known to be dependent on the entorhinal drive towards the hippocampal formation. These results show that, among hippocampal neurons, dentate granule cells are selectively vulnerable to food restriction. Nonetheless, the reorganization which takes place in their dendrites and synapses is capable of minimizing the functional impairments that were expected to occur following changes in the hippocampal neuronal circuitry induced by this type of dietary restriction.
Collapse
|
10
|
Mesquita RM, Pereira PA, Andrade JP. Low levels of brain-derived neurotrophic factor and tyrosine kinase receptor B are related to loss of dentate granule cells after prolonged low-protein feeding in the rat. Neurosci Lett 2002; 330:155-8. [PMID: 12231435 DOI: 10.1016/s0304-3940(02)00743-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein deprivation leads to neuronal and synaptic loss in the hippocampal formation, and to behavioral changes. We suggested that these effects could result from alterations in the levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). To investigate this issue, adult rats were submitted to protein deprivation for 6 months and compared with controls. The number of neurons of the dentate gyrus granular layer containing BDNF and TrkB was estimated from immunostained sections and the mRNA levels of BDNF and TrkB evaluated using in situ hybridization. After treatment, there was a loss of BDNF- and TrkB-immunoreactive cells and a reduction of the mRNA levels. Thus, it is likely that the decreased neurotrophic activity in the dentate gyrus of malnourished animals underpins neuronal degeneration and the ensuing behavioral alterations.
Collapse
Affiliation(s)
- Rui M Mesquita
- Department of Anatomy, Porto Medical School, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
11
|
Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:29-54. [PMID: 12086707 DOI: 10.1016/s0165-0173(02)00158-3] [Citation(s) in RCA: 618] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and abnormal loci of spine origin on the neuron. Pathologies of spine ultrastructure involve distortion of subcellular organelles within dendritic spines. Spine distributions are altered on mature neurons following traumatic lesions, and in progressive neurodegeneration involving substantial neuronal loss such as in Alzheimer's disease and in Creutzfeldt-Jakob disease. Similarly, spine distributions are altered in the developing brain following malnutrition, alcohol or toxin exposure, infection, and in a large number of genetic disorders that result in mental retardation, such as Down's and fragile-X syndromes. An important question is whether altered dendritic spines are the intrinsic cause of the accompanying neurological disturbances. The data suggest that many categories of spine pathology may result not from intrinsic pathologies of the spiny neurons, but from a compensatory response of these neurons to the loss of excitatory input to dendritic spines. More detailed studies are needed to determine the cause of spine pathology in most disorders and relationship between spine pathology and cognitive deficits.
Collapse
Affiliation(s)
- John C Fiala
- Department of Biology, Boston University, 5 Cummington Street, MA 02215, USA.
| | | | | |
Collapse
|
12
|
Andrade JP, Madeira MD, Paula-Barbosa MM. Sexual dimorphism in the subiculum of the rat hippocampal formation. Brain Res 2000; 875:125-37. [PMID: 10967306 DOI: 10.1016/s0006-8993(00)02605-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Data accumulated over the last years demonstrate that the hippocampal formation of rodents is sexually dimorphic with respect to its functional attributes. Neuroanatomical substrates that might contribute to explain these gender-related differences have been described in the dentate gyrus, and in the CA3 and CA1 hippocampal fields. However, the subiculum, the source of the major efferent projection of the hippocampal formation, has not been searched for the presence of sex-related differences. To address this issue, we have used stereological methods applied to adult rats of both sexes to estimate the volume of the subiculum, the total number of subicular neurons, and the total number and size of the synapses established by subicular neurons. The apical dendritic trees of Golgi-impregnated subicular neurons were also quantitatively analyzed. We have found that the volume of the subiculum and of its neuronal layer, and the total number of subicular neurons were greater in males than in females. Conversely, the total dendritic length of the apical arborization of the subicular neurons, and the number of dendritic spines and axospinous synapses were higher in females than in males. However, the size of the postsynaptic densities of the individual synapses was smaller in female than in male rats and, as a result, the surface area of the total active synaptic zones did not differ between the sexes. These findings provide an additional morphological clue for the comprehension of the sex dimorphisms within the hippocampal circuitries and, consequently, for a better understanding of the functional sex differences ascribed to the hippocampal formation.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, 4200-319 Porto, Portugal.
| | | | | |
Collapse
|
13
|
Lukoyanov NV, Andrade JP. Behavioral effects of protein deprivation and rehabilitation in adult rats: relevance to morphological alterations in the hippocampal formation. Behav Brain Res 2000; 112:85-97. [PMID: 10862939 DOI: 10.1016/s0166-4328(00)00164-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present study we have analyzed the behavioral and neuroanatomical effects of protein deprivation in adult rats. Starting at 2 months of age, animals were maintained on 8%-casein diet either for 8 months (malnourished group), or for 6 months followed by a 2-month period of nutritional rehabilitation (17%-protein diet, rehabilitated group). Malnourished rats exhibited reduced emotional reactivity and impaired habituation in the open field. In a water maze, these animals did not differ from controls during training, but showed retention deficits on the probe trial. However, working memory, sensorimotor abilities and passive avoidance behavior were not significantly impaired in malnourished rats. The performance of rehabilitated group was similar to that of the control group throughout behavioral testing. Postmortem morphological analysis revealed that the total number of neurons in the granular layer of the dentate gyrus, and in CA3 and CA1 hippocampal fields was reduced in protein-deprived and rehabilitated rats relative to controls. In addition, it was found that protein deprivation caused a 30% loss of synapses established between mossy fibers and dendrites of CA3 pyramidal cells, whereas nutritional rehabilitation resulted in a reversal of this effect. These results show that prolonged malnutrition in adult rats produces marked loss of hippocampal neurons and synapses accompanied by substantial impairments of hippocampal-dependent behaviors. The fact that nutritional rehabilitation results in restoration of the total number of hippocampal synapses and parallel amelioration of the behavioral impairments suggests that the mature CNS possesses a remarkable potential for structural and functional recovery from the damage induced by this type of dietary insult.
Collapse
Affiliation(s)
- N V Lukoyanov
- Department of Anatomy, Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | | |
Collapse
|