1
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Yu J, Wang CG. Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol 2023; 13:1047336. [PMID: 36761956 PMCID: PMC9903134 DOI: 10.3389/fonc.2023.1047336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Genetic variability in DNA double-strand break repair genes such as RAD51 gene and its paralogs XRCC2、XRCC3 may contribute to the occurrence and progression of breast cancer. To obtain a complete evaluation of the above association, we performed a meta-analysis of published studies. Methods Electronic databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, were comprehensively searched from inception to September 2022. The Newcastle-Ottawa Scale (NOS) checklist was used to assess all included non-randomized studies. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by STATA 16.0 to assess the strength of the association between single nucleotide polymorphisms (SNPs) in these genes and breast cancer risk. Subsequently, the heterogeneity between studies, sensitivity, and publication bias were performed. We downloaded data from The Cancer Genome Atlas (TCGA) and used univariate and multivariate Cox proportional hazard regression (CPH) models to validate the prognostic value of these related genes in the R software. Results The combined results showed that there was a significant correlation between the G172T polymorphism and the susceptibility to breast cancer in the homozygote model (OR= 1.841, 95% CI=1.06-3.21, P=0.03). Furthermore, ethnic analysis showed that SNP was associated with the risk of breast cancer in Arab populations in homozygous models (OR=3.52, 95% CI=1.13-11.0, P= 0.003). For the XRCC2 R188H polymorphism, no significant association was observed. Regarding polymorphism in XRCC3 T241M, a significantly increased cancer risk was only observed in the allelic genetic model (OR=1.05, 95% CI= 1.00-1.11, P=0.04). Conclusions In conclusion, this meta-analysis suggests that Rad51 G172T polymorphism is likely associated with an increased risk of breast cancer, significantly in the Arab population. The relationship between the XRCC2 R188H polymorphism and breast cancer was not obvious. And T241M in XRCC3 may be associated with breast cancer risk, especially in the Asian population.
Collapse
|
3
|
Meimand SE, Pour-Rashidi A, Shahrbabak MM, Mohammadi E, Meimand FE, Rezaei N. The Prognostication Potential of BRCA Genes Expression in Gliomas: A Genetic Survival Analysis Study. World Neurosurg 2021; 157:e123-e128. [PMID: 34607064 DOI: 10.1016/j.wneu.2021.09.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gliomas are the most common type of central nervous system tumor in adults, and they have an extremely poor prognosis. Gliomas are classified into 4 grades, with low-grade gliomas (LGGs) constituting grades I and II and glioblastoma multiforme (GBM) constituting grade IV. Breast cancer susceptibility genes BRCA1 and BRCA2 play a role in DNA repair and are required for genome stability. METHODS We analyzed the LGG and GBM cohorts from The Cancer Genome Atlas. We used Kaplan-Meier and log-rank analysis to determine the relationship between BRCA1 and BRCA2 expression and survival. RESULTS Correlation of BRCA1 and BRCA2 expression with survival in patients with LGG was significant (P = 0.00 and P = 0.00). The higher the levels of expression were, the lower survival rates were in both LGG and GBM cohorts, but the correlation was not significant in patients with GBM (P < 0.01). CONCLUSIONS Our findings suggest that BRCA1 and BRCA2 can be regarded as poor prognostic factors in patients with glioma, with greater significance in patients with LGG. In the future, more in-depth experiments will enable us to elucidate the mechanism of gliomagenesis and identify potential gene therapy targets.
Collapse
Affiliation(s)
- Sepideh Ebrahimi Meimand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Esmaeil Mohammadi
- Department of Pediatric Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran.
| |
Collapse
|
4
|
Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. BIOLOGY 2021; 10:biology10020163. [PMID: 33669593 PMCID: PMC7922961 DOI: 10.3390/biology10020163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Constant exposure to endogenous and environmental factors induces oxidative stress and DNA damage. Rare brain disorders caused by defects in DNA repair and DNA damage response (DDR) signaling establish that failure to process DNA damage may lead to neurodegeneration. In this review, we present mechanisms that link DDR with neurodegeneration in these disorders and discuss their relevance for common age-related neurodegenerative diseases (NDDs). Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. Abstract Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.
Collapse
|
5
|
Almutairi M, Rouabhia M, Sahab Almutairi M, Al-Zahrani M, Al-Numair NS, Mohammad Alhadeq A, Reddy Parine N, Semlali A. Correlation between genetic variation in thymine DNA glycosylase and smoking behavior. Gene 2020; 766:145092. [PMID: 32916247 DOI: 10.1016/j.gene.2020.145092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Cigarette smoking is a major lifestyle factor leading to different human diseases. The DNA repair gene, thymine DNA glycosylase, is important to cell survival because it stops cells from becoming cancerous protecting/preventing DNA. Exposure to CS may induce genetic changes such as single nucleotide polymorphisms in DNA repair genes. Therefore, the purpose of this study was to investigate the genotype and allele distributions of four TDG SNPs with only smoking behavior in normal patients. Four TDG SNPs-rs4135066 (C/T), rs3751209 (A/G), rs1866074 (C/T), and rs1882018 (C/T) were analyzed by genotyping 235 and 239 blood samples collected from cigarette smokers and non-smokers, among the Saudi population. The results showed that TDG rs4135066 has a significant susceptibility effect observed in long-term smokers (>5 years; OR = 4.53; P = 0.0347) but not in short-term smokers (≤5 years) in contrast with non-smokers. Also, in smokers aged less than 29 years, the "CT," "TT," and "CT + TT" alleles of rs1882018 increased the risk of developing all diseases related to smoking by approximately 6, 4, and 5 times, respectively, in contrast with the ancestral "CC" homozygous allele. A comparison of the allele distributions of TDG SNPs in a Saudi population with those in other populations represented in the HapMap project showed that the genetic makeup of the Saudi Arabian population appears to differ from that of other ethnicities. Exceptions include the Yoruba people in Ibadan, Nigeria; those of Mexican ancestry in Los Angeles, California; the Luhya population in Webuye, Kenya; Gujarati Indians in Houston, Texas; and the Tuscan population in Italy, which showed similar allelic frequencies for rs3751209 compared to our Saudi population. In this ethnic, we have found a high variation in the distribution of the alleles and genotype frequencies on TDG gene. This variation on TDG SNP's with smoking could lead to increase the susceptibility to many diseases related to smoking habits in this population.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| | | | - Mohammed Al-Zahrani
- Al Imam Mohammad IBN Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
6
|
Genetic variants of DNA repair pathway genes on lung cancer risk. Pathol Res Pract 2019; 215:152548. [PMID: 31337555 DOI: 10.1016/j.prp.2019.152548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022]
Abstract
As is commonly perceived, polymorphisms in genes of deoxyribonucleic acid (DNA) repair pathway plays a fundamental role in defective DNA repair and mutagenesis prevention and serves to contribute to the individual susceptibility to the development of a variety of cancers. Recently, an increasing number of studies have been dedicated to the contentious and ambiguous links between polymorphisms in genes of DNA repair pathway and lung cancer (LC) risk. In response, a comprehensive updated meta-analysis has been proposed herein to assess the correlation between polymorphisms of DNA repair pathway genes and susceptibility to LC. This paper has identified and retrieved eligible articles from PubMed, Google Scholar, Web of Science, and CNKI databases till February 20, 2019. Finally, 295 case-control studies as to the fourteen polymorphisms of DNA repair pathway genes were enrolled. When the results have been pooled, we have brought to light the conclusion that ERCC2-rs13181 polymorphism has an elevated association with LC risk under allele, heterozygote, and dominant comparisons. In the subgroup analysis by ethnicity, we have found that the Caucasian individuals with "B" variant possess risk of LC which was more than twice as much as allele, homozygote, and recessive models. In comparison, Asian carriers of rs13181 polymorphism in ERCC2 gene are more susceptible to LC in heterozygote, dominant models. To sum up, ERCC2-rs13181 polymorphism could be a critical factor in stimulating LC evolvement. Future studies with a larger sample size and multivariate factors are needed to vindicate these findings.
Collapse
|
7
|
Almutairi M, Mohammad Alhadeq A, Almeer R, Almutairi M, Alzahrani M, Semlali A. Effect of the thymine-DNA glycosylase rs4135050 variant on Saudi smoker population. Mol Genet Genomic Med 2019; 7:e00590. [PMID: 30779328 PMCID: PMC6465727 DOI: 10.1002/mgg3.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Thymine‐DNA glycosylase (TDG) is an essential DNA‐repair enzyme which works in both epigenetic regulation and genome maintenance. It is also responsible for efficient correction of multiple endogenous DNA lesions which occur commonly in mammalian genomes. Research of genetic variants such as SNPs, resulting in disease, is predicted to yield clinical advancements through the identification of sensitive genetic markers and the development of disease prevention and therapy. To that end, the main objective of the present study is to identify the possible interactions between cigarette smoking and the rs4135050 variant of the TDG gene, situated in the intron position, among Saudi individuals. Methods TDG rs4135050 (A/T) was investigated by genotyping 239, and 235 blood specimens were obtained from nonsmokers and smokers of cigarette respectively. Results T allele frequency was found which showed a significant protective effect on Saudi male smokers (OR = 0.64, p = 0.0187) compared to nonsmoking subjects, but not in female smokers. Furthermore, smokers aged less than 29 years, the AT and AT+TT genotypes decreased more than four times the risk of initiation of smoking related‐diseases compare to the ancestral AA homozygous genotype. Paradoxically, the AT (OR = 3.88, p = 0.0169) and AT+TT (OR = 2.86, p = 0.0420) genotypes were present at a higher frequency in smoking patients aged more than 29 years as compared to nonsmokers at the same ages. Conclusion Depending on the gender and age of patients, TDG rs4135050 may provide a novel biomarker for the early diagnosis and prevention of several diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Rafa Almeer
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Alzahrani
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Université Laval, Québec, Québec, Canada.,Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia, Riyadh
| |
Collapse
|
8
|
DNA Repair Gene XRCC1 and XPD Polymorphisms and Gastric Cancer Risk: A Case-Control Study Outcome from Kashmir, India. Anal Cell Pathol (Amst) 2018; 2018:3806514. [PMID: 30225185 PMCID: PMC6129361 DOI: 10.1155/2018/3806514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023] Open
Abstract
Coding polymorphisms in several DNA repair genes have been reported to affect the DNA repair capacity and are associated with genetic susceptibility to many human cancers, including gastric cancer. An understanding of these DNA repair gene polymorphisms might assess not only the risk of humans exposed to environmental carcinogens but also their responses to different therapeutical approaches, which target the DNA repair pathway. In the present study, polymorphic variants of two DNA repair genes, XRCC1 Arg399Gln and XPD Lys751Gln, were chosen to be studied in association with gastric cancer susceptibility in the Kashmiri population. A total of 180 confirmed cases of gastric cancer (GC) and 200 hospital-based controls from Government Shri Maharaja Hari Singh Hospital, Srinagar, were included in the study. The genotyping for XRCC1 and XPD genes was carried out by polymerase chain reaction-restriction fragment length polymorphism. We found that tobacco smoking is strongly associated with GC risk (OR = 25.65; 95% CI: 5.49–119.7). However, we did not find any association of polymorphism of XRCC1 Arg399Gln (OR = 1.56; 95% CI: 0.32–7.82) and XPD Lys751Gln (OR = 0.46; CI: 0.10–2.19) with GC risk in the study population. The combination of genotypes and gender stratification of XRCC1 and XPD genotypic frequency did not change the results. Consumption of large volumes of salt tea was also not associated with gastric cancer risk. Polymorphic variants of XRCC1 Arg399Gln and XPD Lys751Gln are not associated with the risk of gastric cancer in the Kashmiri population. However, replicative studies with larger sample size are needed to substantiate the findings.
Collapse
|
9
|
XRCC1 Arg194Trp polymorphism is no risk factor for skin cancer development in Kashmiri population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Liu X, Liu S, Lei J, Zou L, Xiao L, Zhang G. Methylation and expression of mismatch repair gene human mutS homolog 2 in myelodysplastic syndromes. Exp Ther Med 2018; 15:500-505. [PMID: 29387203 DOI: 10.3892/etm.2017.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
As a highly heterogeneous disease, the pathogenesis of myelodysplastic syndrome (MDS) has not been well defined. In the present study, human mutS homolog 2 (hMSH2) promoter methylation was detected with methylation-specific polymerase chain reaction (PCR). The function of hMSH2 was analyzed by microsatellite instability (MSI) detection of BAT-26, and hMSH2 expression was evaluated using reverse transcription-quantitative PCR in 60 patients with MDS. The results revealed methylation of the hMSH2 promoter in 18 patients with MDS who have an overall prevalence of 30% (95% confidence interval, 18.4-41.6%). Among the patients with hMSH2 methylation, 2 patients exhibited MSI. It was demonstrated that hMSH2 promoter methylation was increased in MDS with an increase in Revised International Prognostic Scoring System (IPSS-R) risk, and patients with higher hMSH2 promoter methylation had shorter overall survival by Kaplan-Meier analysis (P=0.011). In addition, it was also observed that decreased hMSH2 mRNA expression was associated with high IPSS-R risk group (high/very high vs. intermediate, P=0.003), and hMSH2 mRNA expression in CD34 positive bone marrow cells was lower compared with that in CD34 negative cells of patients with MDS (P=0.029). Methylation of hMSH2 may be valuable for prognostic evaluation and progression prediction of MDS. Furthermore, hMSH2 may serve a key function in the pathogenesis and prognosis of MDS.
Collapse
Affiliation(s)
- Xiaoliu Liu
- Department of Hematology, The Affiliated Changsha Hospital, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Lei
- Department of Pathology, The Affiliated Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lixin Zou
- Department of Hematology, The Affiliated Changsha Hospital, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Le Xiao
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guangsen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated With Preoperative Radiochemotherapy. Am J Clin Oncol 2017; 40:535-542. [PMID: 25811296 DOI: 10.1097/coc.0000000000000182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To investigate the association between polymorphisms of DNA repair genes and xenobiotic with acute adverse effects in locally advanced rectal cancer patients treated with neoadjuvant radiochemotherapy. METHODS Sixty-seven patients were analyzed for the current study. Genotypes in DNA repair genes XRCC1 (G28152A), XRCC3 (A4541G), XRCC3 (C18067T), RAD51 (G315C), and GSTP1 (A313G) were determined by pyrosequencing technology. RESULTS The observed grade ≥3 acute toxicity rates were 23.8%. Chemotherapy and radiotherapy were interrupted for 46 and 14 days, respectively, due to critical complications. Four patients were hospitalized, 6 patients had been admitted to the ER, and 5 patients received invasive procedures (2 bladder catheters, 2 blood transfusions, and 1 growth factor therapy).RAD51 correlated with acute severe gastrointestinal toxicity in heterozygosity (Aa) and homozygosity (AA) (P=0.036). Grade ≥3 abdominal/pelvis pain toxicity was higher in the Aa group (P=0.017) and in the Aa+AA group (P=0.027) compared with homozygous (aa) patients. Acute skin toxicity of any grade occurred in 55.6% of the mutated patients versus 22.8% in the wild-type group (P=0.04) for RAD51. XRCC1 correlated with skin toxicity of any grade in the Aa+AA group (P=0.03) and in the Aa group alone (P=0.044). Grade ≥3 urinary frequency/urgency was significantly higher in patients with AA (P=0.01), Aa (P=0.022), and Aa+AA (P=0.031) for XRCC3 compared with aa group. CONCLUSIONS Our study suggested that RAD51, XRCC1, and XRCC3 polymorphisms may be predictive factors for radiation-induced acute toxicity in rectal cancer patients treated with preoperative combined therapy.
Collapse
|
12
|
Wu X, Cao N, Fenech M, Wang X. Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA Cell Biol 2016; 35:542-575. [DOI: 10.1089/dna.2016.3280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organization Food and Nutrition, Adelaide, South Australia, Australia
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Karam RA, Al Jiffry BO, Al Saeed M, Abd El Rahman TM, Hatem M, Amer MG. DNA repair genes polymorphisms and risk of colorectal cancer in Saudi patients. Arab J Gastroenterol 2016; 17:117-120. [DOI: 10.1016/j.ajg.2016.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/22/2015] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
|
14
|
Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer 2016; 24:229-237. [PMID: 27068824 DOI: 10.1007/s12282-016-0692-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Breast cancer is considered as the most frequent female malignancy. Altered gene expressions due to genetic polymorphisms in the BRCA1, BRCA2, RAD51, and HER2 contribute toward the development of breast cancer, and yet, no such type of study has been conducted in the Bangladeshi population. This study was designed to evaluate the role of BRCA1rs80357713, BRCA1rs80357906, BRCA2rs11571653, RAD51rs1801320, and HER2rs1136201 polymorphisms as risk factors in the development of breast cancer in the Bangladeshi population. METHODS A total 310 patients with invasive breast cancers were recruited as cases from different public and private hospitals of Bangladesh, and 250 Bangladeshi healthy women matching age with the patients were recruited as controls. Polymerase chain reaction-restriction fragment length polymorphism method was used to analyze the genetic polymorphisms. RESULTS Patients carrying BRCA1/2 mutations, GC and GC plus CC genotypes of RAD51rs1801320, and AG plus GG genotype of HER2rs1136201 polymorphisms were found to be associated with breast cancer. In subgroup analysis, AG plus GG genotype of HER2rs1136201 was found to be associated with the breast cancer risk in the patients younger than 45 years of age compared with the older patients having more than 45 years of age, and RAD51rs1801320 was related to the tumor size and tumor aggressiveness (higher graded tumor). CONCLUSION Our results indicate that BRCA1/BRCA2, RAD51rs1801320 and HER2rs1136201 polymorphisms were associated with breast cancer in the studied population.
Collapse
|
15
|
Zhong JH, Zhao Z, Liu J, Yu HL, Zhou JY, Shi R. Association between APE1 Asp148Glu polymorphism and the risk of urinary cancers: a meta-analysis of 18 case-control studies. Onco Targets Ther 2016; 9:1499-510. [PMID: 27042118 PMCID: PMC4801150 DOI: 10.2147/ott.s101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Several observational studies suggested that APE1 Asp148Glu was significantly associated with urinary cancers; however, the results of published studies are inconsistent. Materials and methods The PubMed and EMBASE were searched for case–control studies regarding the association between Asp148Glu and the risk of urinary cancers with a time limit of September 12, 2015. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association between Asp148Glu and the risk of developing prostate cancer, kidney cancer, bladder cancer, as well as all urinary cancers combined. Results A total of 18 case–control studies were included in the analysis. Our meta-analysis revealed that the inheritance of at least one APE1 148Glu among Asian men was associated with a 1.26-fold increase in the risk of developing urinary cancers. Meanwhile, APE1 Asp148Glu was significantly associated with the risk of prostate cancer. However, there were no significant relationships between the APE1 SNP (single nucleotide polymorphism) and all urinary cancers combined and bladder cancer and kidney cancer among the men of Caucasian/Asian/African descent or all racial/ethnic groups combined. When stratified by the quality score, no significant association was found in high-quality studies (score ≥7), but a significant increased risk of urinary cancers was observed in lower quality studies (score <7) (dominant model: OR=1.27, 95% CI=1.11–1.45). Conclusion Our meta-analysis suggests that APE1 Asp148Glu was not associated with the risk of urinary cancers but might increase the risk of urinary cancers among Asians. Stratification by cancer type identified a significant association of Asp148Glu with prostate cancer.
Collapse
Affiliation(s)
- Jie-Hui Zhong
- Department of Clinical Medicine, The First Clinical Medical College, Southern Medical University, Guangzhou, People's Republic of China; Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhao
- Department of Urinary Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hai-Lang Yu
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Rong Shi
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Guo CX, Yang GP, Pei Q, Yin JY, Tan HY, Yuan H. DNA repair gene polymorphisms do not predict response to radiotherapy-based multimodality treatment of patients with rectal cancer: a meta-analysis. Asian Pac J Cancer Prev 2015; 16:713-8. [PMID: 25684513 DOI: 10.7314/apjcp.2015.16.2.713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND : A number of association studies have been carried out to investigate the relationship between genetic polymorphisms in DNA repair genes and response to radiotherapy-based multimodality treatment of patients with rectal cancer. However, their conclusions were inconsistent. The objective of the present study was to assess the role of DNA repair gene genetic polymorphisms in predicting genetic biomarkers of the response in rectal cancer patients treated with neoadjuvant chemoradiation. MATERIALS AND METHODS Studies were retrieved by searching the PubMed database, Cochrane Library, Embase, and ISI Web of Knowledge. We conducted a meta-analysis to evaluate the association between genetic polymorphisms and the response in rectal cancer treated with neoadjuvant chemoradiation by checking odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Data were extracted from 5 clinical studies for this meta-analysis. The results showed that XRCC1 RS25487, XRCC1 RS179978, XRCC3 RS861539, ERCC1 RS11615 and ERCC2 RS13181 were not associated with the response in the radiotherapy-based multimodality treatment of patients with rectal cancer (p>0.05). CONCLUSIONS This study shows that DNA repair gene common genetic polymorphisms are not significantly correlated with the radiotherapy-based multimodality treatment in rectal cancer patients.
Collapse
Affiliation(s)
- Cheng-Xian Guo
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China E-mail :
| | | | | | | | | | | |
Collapse
|
17
|
Nissar S, Sameer AS, Rasool R, Chowdri NA, Rashid F. Polymorphism of the DNA Repair Gene XRCC1 (Arg194Trp) and its role in Colorectal Cancer in Kashmiri Population: a Case Control Study. Asian Pac J Cancer Prev 2015; 16:6385-90. [DOI: 10.7314/apjcp.2015.16.15.6385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Li YY, Wu H, Dong YG, Lin BO, Xu G, Ma YB. Application of eupatilin in the treatment of osteosarcoma. Oncol Lett 2015; 10:2505-2510. [PMID: 26622880 DOI: 10.3892/ol.2015.3563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/22/2015] [Indexed: 02/01/2023] Open
Abstract
5,7-dihydroxy-3',4',6-trimethoxyflavone, commonly known as eupatilin, is a traditional Asian medicinal plant, which is mainly used for the treatment of gastritis, as well as its use as an anti-inflammatory agent. Eupatilin is a bioactive compound; however, its effects on osteosarcoma (OS) have remained to be elucidated. Therefore, the present study aimed to investigate the effects of eupatilin on this malignant bone tumor, using the U-2 OS cell line. The experimental results revealed that eupatilin inhibited U-2 OS cell growth in a concentration-dependent manner and induced G2/M phase cell cycle arrest and apoptosis. Additionally, western blot analysis indicated that eupatilin was able to trigger the mitochondrial apoptotic pathway, demonstrated by the enhanced Bax/B cell lymphoma-2 ratio, decrease in mitochondrial membrane potential, release of cytochrome c, caspase-3 and -9 activation and poly(ADP-ribose)polymerase cleavage detected in the U-2 OS cells. These results indicated that eupatilin was able to inhibit U-2 OS cancer cell proliferation by the induction of apoptosis via the mitochondrial intrinsic pathway. Eupatilin may therefore represent a novel anticancer drug for use in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Neurology, The Second People's Hospital of Mudanjiang, Mudanjiang, Heilongjiang 157013, P.R. China
| | - Hao Wu
- Department of Orthopedics, Sengong Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yi-Guo Dong
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - B O Lin
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gang Xu
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yu-Bo Ma
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
19
|
Michalska MM, Samulak D, Romanowicz H, Bieńkiewicz J, Sobkowski M, Ciesielski K, Smolarz B. Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women. Tumour Biol 2015; 36:9457-63. [PMID: 26124010 DOI: 10.1007/s13277-015-3707-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to determine single nucleotide polymorphisms in hOGG1 (Ser326Cys (rs13181)) and XRCC1 (Arg194Trp (rs1799782)) genes, respectively, and to identify the correlation between them and the overall risk, grading and staging of ovarian cancer in Polish women. Our study comprised 720 patients diagnosed with ovarian cancer and 720 healthy controls. The genotype analysis of hOGG1 and XRCC1 polymorphisms was performed using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (PCR-RFLP). Odds ratios (OR) and 95 % confidence intervals (CI) for each genotype and allele were calculated. Results revealed an association between hOGG1 Ser326Cys polymorphism and the incidence of ovarian cancer. Variant Cys allele of hOGG1 increased the overall cancer risk (OR 2.89; 95 % CI 2.47-3.38; p < .0001). Moreover, ovarian cancer grading remained in a relationship with both analysed polymorphisms; G1 tumours presented increased frequencies of hOGG1 Cys/Cys homozygotes (OR 18.33; 95 % CI 9.38-35.81; p < .0001) and XRCC1 Trp/Trp homozygotes (OR 20.50; 95 % CI 10.17-41.32; p < .0001). Furthermore, G1 ovarian cancers displayed an overrepresentation of Cys and Trp allele. In conclusion, hOGG1 Ser326Cys and XRCC1 Arg194Trp polymorphisms may be regarded as risk factors of ovarian cancer.
Collapse
Affiliation(s)
- Magdalena M Michalska
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
| | - Dariusz Samulak
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
- Cathedral of Mother's and Child's Health, Poznan University of Medical Sciences, Poznań, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Jan Bieńkiewicz
- Department of Surgical, Endoscopic and Oncologic Gynaecology, Institute of Polish Mother's Memorial Hospital, Lodz, Poland
| | - Maciej Sobkowski
- Department of Obstetrics and Gynaecology, University Hospital, Polna 33, Poznań, Poland
| | | | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland.
| |
Collapse
|
20
|
Jin G, Wang M, Chen W, Shi W, Yin J, Gang W. Single nucleotide polymorphisms of nucleotide excision repair and homologous recombination repair pathways and their role in the risk of osteosarcoma. Pak J Med Sci 2015; 31:269-73. [PMID: 26101473 PMCID: PMC4476324 DOI: 10.12669/pjms.312.6569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/06/2015] [Accepted: 01/18/2015] [Indexed: 12/16/2022] Open
Abstract
Objective: To evaluate the influence of polymorphisms in nucleotide excision repair (NER) and homologous recombination repair (HRR) pathways on the development of osteosarcoma patients. Methods: Genotypes of ERCC1 rs11615 and rs3212986, ERCC2 rs1799793 and rs13181, NBN rs709816 and rs1805794, RAD51 rs1801320, rs1801321 and rs12593359, and XRCC3 rs861539 were conducted by Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP) assay. Results: Total 148 osteosarcoma patients and 296 control subjects were collected from Taizhou First People’s Hospital. Conditional logistic regression analyses found that individuals carrying with GA+AA genotype of ERCC2 rs1799793 and GC+CC genotype of NBN rs1805794 were significantly associated with increased risk of osteosarcoma, and the ORs(95%CI) were 1.58(1.03-2.41) and 2.66(1.73-4.08), respectively. We found that GA+AA genotype of ERCC2 rs1799793 or GC+CC genotype of NBN rs1805794 were associated with an increased risk of osteosarcoma in females, with ORs(95%CI) of 2.42(1.20-4.87) and 2.01(1.07-4.23), respectively. Conclusion: Our results suggest that ERCC2 rs1799793 and NBN rs1805794 polymorphisms were associated with an increased risk for osteosarcoma, which suggests that NER and HRR pathways modulate the risk of developing osteosarcoma.
Collapse
Affiliation(s)
- Guojun Jin
- Guojun Jin, Department of Hand and foot Surgery, Taizhou First People's Hospital, Taizhou, China
| | - Min Wang
- Min Wang, Department of Orthopedics, Taizhou First People's Hospital, Taizhou, China
| | - Weida Chen
- Weida Chen, Department of Hand and foot Surgery, Taizhou First People's Hospital, Taizhou, China
| | - Wei Shi
- Wei Shi, Department of Hand and foot Surgery, Taizhou First People's Hospital, Taizhou, China
| | - Jiapeng Yin
- Jiapeng Yin, Department of Burns and Plastic Surgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wang Gang
- Wang Gang, Department of Hand and foot Surgery, Taizhou First People's Hospital, Taizhou, China
| |
Collapse
|
21
|
Zhu H, Jiu T, Wang D. Impact of polymorphisms of the DNA repair gene XRCC1 and their role in the risk of prostate cancer. Pak J Med Sci 2015; 31:290-4. [PMID: 26101477 PMCID: PMC4476328 DOI: 10.12669/pjms.312.6653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/04/2015] [Accepted: 01/18/2015] [Indexed: 12/11/2022] Open
Abstract
Objective: We conducted a case-control study to examine the role of XRCC1 codons 194 (Arg>Trp), 280 (Arg>His) and 399 (Arg>Gln) polymorphisms in the risk of prostate cancer. Methods: This study included 572 consecutive primary prostate cancer patients and 572 controls between January 2011 and January 2014. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to detect XRCC1 codons 194 (Arg>Trp), 280 (Arg>His) and 399 (Arg>Gln) polymorphisms. Results: Compared with the control subjects, the prostate cancer cases had a habit of cigarette smoking (χ2=18.13, P<0.001) and a family history of cancer (χ2=25.23, P<0.001). Conditional logistic regression analysis showed that the subjects carrying Trp/Trp genotype were more likely to greatly increase the prostate cancer when compared with Arg/Arg genotype, and the adjusted OR was 2.04(1.24-3.41). We did not find significant association between XRCC1 194 (Arg>Trp) polymorphism and clinical stage and Gleason score of prostate cancer (P>0.05). Conclusion: Our results show an increased risk for prostate cancer in individuals with XRCC1 194 (Arg>Trp) polymorphism, and a significant interaction between XRCC1 194 (Arg>Trp) polymorphism and tobacco smoking, alcohol drinking and family history of cancer.
Collapse
Affiliation(s)
- Haipeng Zhu
- Haipeng Zhu, Department of Urology Surgery, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tao Jiu
- Tao Jiu, Department of Urology Surgery, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dong Wang
- Dong Wang, Department of Urology Surgery, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
22
|
Usman MW, Luo F, Cheng H, Zhao JJ, Liu P. Chemopreventive effects of aspirin at a glance. Biochim Biophys Acta Rev Cancer 2015; 1855:254-63. [PMID: 25842298 DOI: 10.1016/j.bbcan.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2015] [Accepted: 03/21/2015] [Indexed: 12/15/2022]
Abstract
Experimental, epidemiological, and clinical data from the last two decades have each supported the hypothesis that aspirin possesses anticancer properties, and that its use may also reduce the lifetime probability of developing or dying from a number of cancers. Aspirin's ability to act on multiple key metabolic and signaling pathways via inhibition of the cyclooxygenase (COX) enzyme, as well as through COX-independent mechanisms, makes it particularly relevant in the fight against cancer. A growing body of evidence indicates that aspirin may not only reduce cancer risk, but also prevent metastasis and angiogenesis while slowing the rate of mutation-inducing DNA damage. These emerging benefits of aspirin are offset to some extent by the known risks of treatment, such as cardiovascular events and gastrointestinal bleeding. However, it has been shown that pre-treatment risk assessment of individual patients and the use of proton pump inhibitors or Helicobacter pylori eradication therapy concomitantly with aspirin treatment can reduce these potential risks. Thus, the significant benefits of aspirin treatment, coupled with recent data concerning its risks, may prove to tip the balance in favor of aspirin use in cancer prevention.
Collapse
Affiliation(s)
- Muhammad Waqas Usman
- Cancer Institute, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Fuwen Luo
- Department of Acute Abdomen Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hailing Cheng
- Cancer Institute, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Department of Cancer Biology, Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA; Department of Surgery, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA.
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA; Department of Surgery, Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Pixu Liu
- Cancer Institute, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; Department of Cancer Biology, Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
DNA repair gene XRCC3 Thr241Met polymorphisms and lung cancer risk: a meta-analysis. Bull Cancer 2015; 102:332-9. [PMID: 25794597 DOI: 10.1016/j.bulcan.2015.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The X-ray repair cross-complementing group 3 (XRCC3) is a highly suspected candidate gene for cancer susceptibility, and a large amount studies have examined the association of the rs861539 in XRCC3 (Thr241Met) with lung cancer risk in various populations. However, the results remain inconclusive. METHODS The electronic database of PubMed, Medline, Embase and CNKI (China National Knowledge Infrastructure) were searched for case-control studies published up to December 05, 2013. A systematic review and meta-analysis was performed to evaluate the relationship between XRCC3 Thr241Met polymorphism and lung cancer risk. Data were extracted and pooled odds ratio (OR) with its 95% confidence intervals (CI) were calculated. RESULTS Total 21 studies, including 6880 lung cancer cases and 8329 controls, were available for meta-analysis. Overall, our results showed that the XRCC3 Thr241Met polymorphism was not associated with risk of lung cancer in all genetic contrast models (P>0.05). Stratified analyses by ethnicity (Asians, Caucasians and mixed population) showed similar results. Additionally, no evidence of publication bias was observed by using the funnel plot. CONCLUSIONS There is no clear evidence showing a significant correlation between XRCC3 Thr241Met polymorphism and lung cancer risk in total population and stratified analysis by ethnicity. However, studies assessing the gene-gene interactions should be considered to further estimate this gene variant in lung cancer risk.
Collapse
|
24
|
Liu JC, Shen WC, Shih TC, Tsai CW, Chang WS, Cho DY, Tsai CH, Bau DT. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 2015; 5:2. [PMID: 25705582 PMCID: PMC4328115 DOI: 10.7603/s40681-015-0002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
During the last twenty years, mounting studies have supported the hypothesis that there is a genetic component that plays an important role in clinically observed variability in individual tissue/organ toxicity after radiotherapy. We propose the term “Personalized Radiogenomics” for the translational study of individual genetic variations that may associate with or contribute to the responses of tissues to radiation therapy used in the treatment of all types of cancer. The missions of personalized radiogenomic research are 1) to reveal the related genes, proteins, and biological pathways responsible for non-tumor or tumor tissue toxicity resulting from radiotherapy that could be targeted with radio-sensitizing and/or radio-protective agents, and 2) to identify specific genetic markers that can be used in risk prediction and evaluation models before and after clinical cancer surgery. For the members of the Terry Fox Cancer Research Lab in China Medical University and Hospital, the long-term goal is to develop SNP-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. Worldwide, the field has evolved over the last two decades in parallel with rapid advances in genetic and genomic technology, moving step by step from narrowly focused candidate gene studies to large-scale, collaborative genome-wide association studies. This article will summarize the candidate gene association studies published so far from the Terry Fox Cancer Research Lab as well as worldwide on the risk of radiation-related cancers and highlight some wholegenome association studies showing feasibility in fulfilling the dream of personalized radiogenomic cancer therapy.
Collapse
Affiliation(s)
- Juhn-Cherng Liu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| | - Wu-Chung Shen
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Tzu-Ching Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Der-Yang Cho
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Chang-Hai Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| |
Collapse
|
25
|
Henríquez-Hernández LA, Valenciano A, Foro-Arnalot P, Álvarez-Cubero MJ, Cozar JM, Suárez-Novo JF, Castells-Esteve M, Fernández-Gonzalo P, De-Paula-Carranza B, Ferrer M, Guedea F, Sancho-Pardo G, Craven-Bartle J, Ortiz-Gordillo MJ, Cabrera-Roldán P, Herrera-Ramos E, Rodríguez-Gallego C, Rodríguez-Melcón JI, Lara PC. Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC MEDICAL GENETICS 2014; 15:143. [PMID: 25540025 PMCID: PMC4316399 DOI: 10.1186/s12881-014-0143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022]
Abstract
Background Besides serum levels of PSA, there is a lack of prostate cancer specific biomarkers. It is need to develop new biological markers associated with the tumor behavior which would be valuable to better individualize treatment. The aim of this study was to elucidate the relationship between single nucleotide polymorphisms (SNPs) in genes involved in DNA repair and prostate cancer progression. Methods A total of 494 prostate cancer patients from a Spanish multicenter study were genotyped for 10 SNPs in XRCC1, ERCC2, ERCC1, LIG4, ATM and TP53 genes. The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. Clinical tumor stage, diagnostic PSA serum levels, and Gleason score at diagnosis were obtained for all participants. Genotypic and allelic frequencies were determined using the web-based environment SNPator. Results SNPs rs11615 (ERCC1) and rs17503908 (ATM) appeared as risk factors for prostate cancer aggressiveness. Patients wild homozygous for these SNPs (AA and TT, respectively) were at higher risk for developing cT2b – cT4 (OR = 2.21 (confidence interval (CI) 95% 1.47 – 3.31), p < 0.001) and Gleason scores ≥ 7 (OR = 2.22 (CI 95% 1.38 – 3.57), p < 0.001), respectively. Moreover, those patients wild homozygous for both SNPs had the greatest risk of presenting D’Amico high-risk tumors (OR = 2.57 (CI 95% 1.28 – 5.16)). Conclusions Genetic variants at DNA repair genes are associated with prostate cancer progression, and would be taken into account when assessing the malignancy of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0143-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Uppal V, Mehndiratta M, Mohapatra D, Grover RK, Puri D. XRCC-1 Gene Polymorphism (Arg399Gln) and Susceptibility to Development of Lung Cancer in Cohort of North Indian Population: A Pilot Study. J Clin Diagn Res 2014; 8:CC17-20. [PMID: 25584213 DOI: 10.7860/jcdr/2014/10061.5132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Smoking has been considered to be the major cause of lung cancer. However, only a fraction of cigarette smokers develop this disease. This suggests the importance of genetic constitution in predicting the individual's susceptibility towards lung cancer. This genetic susceptibility may result from inherited polymorphisms in genes controlling carcinogen metabolism and repair of damaged deoxyribonucleic acid (DNA). These repair systems are fundamental to the maintenance of genomic integrity. X-ray repair cross complimenting group I (XRCC1), a major DNA repair gene in the base excision repair (BER) pathway. It is involved in repair by interacting with components of DNA at the site of damage. Inconsistent results have been reported regarding the associations between the Arg399Gln polymorphism of XRCC1. This study demonstrates the importance of recognition of this relationship of lung carcinoma and genetic constitution of the person which will help guide clinicians on the optimal screening of this disease. AIM To assess the role of XRCC1 gene polymorphism (Arg399Gln) directly on the variation in susceptibility to development of lung cancer in North Indian subjects. MATERIALS AND METHODS One hundred males with diagnosed cases of lung cancer were recruited from Delhi State Cancer Institute (DSCI). Hundred healthy volunteers were taken as controls. DNA isolation was done and Polymerase chain reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) procedure undertaken to amplify the region containing Arg/Gln substitution at codon 399 (in exon 10). RESULTS XRCC1 gene polymorphism is associated with increased risk of lung cancer when the Arg/Arg genotype was used as the reference group. The Arg/Gln and Gln/Gln was associated with statistically increased risk for cancer. CONCLUSION Arg399Gln polymorphism in XRCC1 gene polymorphism is associated with lung cancer in North Indian subjects and screening for this polymorphism will help in targeting predisposed individuals and its prevention.
Collapse
Affiliation(s)
- Vibha Uppal
- Assistant Professor, Department of Biochemistry, LHMC & Smt Sucheta Kriplani Hospital , New Delhi, India
| | - Mohit Mehndiratta
- Assistant Professor, Department of Biochemistry, University College of Medical Sciences , New Delhi, India
| | | | - Rajesh K Grover
- Director & CEO, Delhi State Cancer Institute , New Delhi, India
| | - Dinesh Puri
- Professor and Head, Department of Biochemistry, University College of Medical Sciences , New Delhi, India
| |
Collapse
|
27
|
He LW, Shi R, Jiang L, Zeng Y, Ma WL, Zhou JY. XRCC1 gene polymorphisms and glioma risk in Chinese population: a meta-analysis. PLoS One 2014; 9:e111981. [PMID: 25375625 PMCID: PMC4222958 DOI: 10.1371/journal.pone.0111981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/03/2014] [Indexed: 01/18/2023] Open
Abstract
Background Three extensively investigated polymorphisms (Arg399Gln, Arg194Trp, and Arg280His) in the X-ray repair cross-complementing group 1 (XRCC1) gene have been implicated in risk for glioma. However, the results from different studies remain inconsistent. To clarify these conflicts, we performed a quantitative synthesis of the evidence to elucidate these associations in the Chinese population. Methods Data were extracted from PubMed and EMBASE, with the last search up to August 21, 2014. Meta-analysis was performed by critically reviewing 8 studies for Arg399Gln (3062 cases and 3362 controls), 8 studies for Arg194Trp (3419 cases and 3680 controls), and 5 studies for Arg280His (2234 cases and 2380 controls). All of the statistical analyses were performed using the software program, STATA (version 11.0). Results Our analysis suggested that both Arg399Gln and Arg194Trp polymorphisms were significantly associated with increased risk of glioma (for Arg399Gln polymorphism: Gln/Gln vs. Arg/Arg, OR = 1.82, 95% CI = 1.46–2.27, P = 0.000; Arg/Gln vs. Arg/Arg, OR = 1.25, 95% CI = 1.10–1.42, P = 0.001 and for Arg194Trp polymorphism: recessive model, OR = 1.78, 95% CI = 1.44–2.19, P = 0.000), whereas the Arg280His polymorphism had no influence on the susceptibility to glioma in a Chinese population. Conclusions This meta-analysis suggests that there may be no association between the Arg280His polymorphism and glioma risk, whereas the Arg399Gln/Arg194Trp polymorphisms may contribute to genetic susceptibility to glioma in the Chinese population. Nevertheless, large-scale, well-designed and population-based studies are needed to further evaluate gene-gene and gene–environment interactions, as well as to measure the combined effects of these XRCC1 variants on glioma risk.
Collapse
Affiliation(s)
- Li-Wen He
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Shi
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ye Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Li Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Zhu HL, Bao JM, Lin PX, Li WX, Zou ZN, Huang YE, Chen Q, Shen H. XPD Lys751Gln and Asp312Asn Polymorphisms and Susceptibility to Skin Cancer: A Meta-Analysis of 17 Case-control Studies. Asian Pac J Cancer Prev 2014; 15:6619-25. [DOI: 10.7314/apjcp.2014.15.16.6619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Appelqvist F, Yhr M, Erlandson A, Martinsson T, Enerbäck C. Deletion of the MGMT gene in familial melanoma. Genes Chromosomes Cancer 2014; 53:703-11. [PMID: 24801985 DOI: 10.1002/gcc.22180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.
Collapse
Affiliation(s)
- Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, SE-413 45, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
30
|
Feng YZ, Liu YL, He XF, Wei W, Shen XL, Xie DL. Association between the XRCC1 Arg194Trp polymorphism and risk of cancer: evidence from 201 case-control studies. Tumour Biol 2014; 35:10677-97. [PMID: 25064613 DOI: 10.1007/s13277-014-2326-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
The Arg194Trp polymorphism in the X-ray cross-complementing group 1 (XRCC1) had been implicated in cancer susceptibility. The previous published data on the association between XRCC1 Arg194Trp polymorphism and cancer risk remained controversial. Hence, we performed a meta-analysis to investigate the association between cancer susceptibility and XRCC1 Arg194Trp (59,227 cases and 81,587 controls from 201 studies) polymorphism in different inheritance models. We used odds ratios with 95 % confidence intervals to assess the strength of the association. Overall, significantly increased cancer risk was found (recessive model: (odds ration [OR] = 1.18, 95% confidence interval [CI] = 1.09-1.27; homozygous model: OR = 1.21, 95% CI = 1.10-1.33; additive model: OR = 1.05, 95% CI = 1.01-1.09) when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, significantly increased glioma risk was found among Asians, significantly decreased lung cancer risk was found among Caucasians, and significant increased breast cancer risk was found among hospital-based studies. In summary, this meta-analysis suggests that Arg194Trp polymorphism may be associated with increased breast cancer risk, Arg194Trp polymorphism is associated with increased glioma risk among Asians, and Arg194Trp polymorphism is associated with decreased lung cancer risk among Caucasians. In addition, our work also points out the importance of new studies for Arg194Trp association in some cancer types, such as gastric, pancreatic, prostate, and nasopharyngeal cancers, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the XRCC1 Arg194Trp polymorphism in cancer development (I (2) > 75%).
Collapse
Affiliation(s)
- Yan-Zhong Feng
- Department of maternity, Peace Hospital of Changzhi Medical College, Changzhi, 046000, China
| | | | | | | | | | | |
Collapse
|
31
|
Natukula K, Jamil K, Pingali UR, Attili VSS, Madireddy URN. The codon 399 Arg/Gln XRCC1 polymorphism is associated with lung cancer in Indians. Asian Pac J Cancer Prev 2014; 14:5275-9. [PMID: 24175813 DOI: 10.7314/apjcp.2013.14.9.5275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The XRCC1 (X-ray repair cross complimenting group-I) gene in BER (base excision repair) pathway is essential for DNA repair process. Polymorphisms in this gene are associated with variations in the repair efficiency which might predispose individuals to development of various cancers. Two variants of XRCC1gene (at codon 399), Gln/Gln and Arg/Gln, have been shown to be related to lowered DNA repair capacity and increased genomic instability in multiple studies. Hence our investigation focused on genotyping these variants to correlate with other multiple risk factors in lung cancer (NSCLC) patients since we hypothesized that these variants of the XRCC1 gene might influence disease susceptibility. MATERIALS AND METHODS We examined the frequency of the polymorphism in one hundred cases and an almost equal number of controls after recording their demographics with a structured questionnaire. Genomic DNA from blood samples was extracted for PCR studies, followed by RFLP to determine the variants. The significance of the data was statistically analyzed. RESULTS The three genotypes in cases and controls were Arg/Arg (40% and 54.45%); Gln/Gln (19% and 9.90%), and Arg/Gln (41.0% and 35.64%) respectively. Among these 3 genotypes, we found Gln/Gln and Arg/Gln to show association with lung cancer. Correlating these genotypes with several parameters, we also found that these two variants were associated with risk in males (p<0.05) and with smoking habits (p<0.05). In females Arg/Gln genotype showed association with stage of the disease (p=0.04). This is the first report in South Indian scenario where Arg399Gln genotypes were found to be associated with stage of the disease in females. CONCLUSIONS It is concluded that XRCC1 genotypes Gln/Gln and Arg/Gln may influence cancer susceptibility in patients with smoking habits and these functional SNPs in XRCC1 gene may act as attractive candidate biomarkers in lung cancer for diagnosis and prognosis.
Collapse
Affiliation(s)
- Kirmani Natukula
- Genetics Department, Bhagwan Mahavir Medical Research Centre, Masab tank, India E-mail :
| | | | | | | | | |
Collapse
|
32
|
Nissar S, Sameer AS, Rasool R, Rashid F. DNA repair gene--XRCC1 in relation to genome instability and role in colorectal carcinogenesis. Oncol Res Treat 2014; 37:418-22. [PMID: 25138303 DOI: 10.1159/000364898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/05/2014] [Indexed: 11/19/2022]
Abstract
Colorectal carcinogenesis is a multifactorial and multi-gene process, involving 3 major genetic instability pathways: chromosomal instability, microsatellite instability and CpG island methylator phenotype. Inefficient DNA repair is one of the causes of genetic instability leading to tumorigenesis. Defects in DNA repair genes are associated with cancer development. The XRCC1 gene is an important DNA repair genes and forms the component of several different damage recovery pathways, including base excision repair and single-strand breaks repair - the processes frequently involved in cancer transformation. In this review we have shed light on the structure and functioning of the XRCC1 gene and its protein, and the role played by XRCC1 in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Saniya Nissar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | | | | | | |
Collapse
|
33
|
Comprehensive assessment of the association between XPD rs13181 polymorphism and lung cancer risk. Tumour Biol 2014; 35:8125-32. [PMID: 24845027 DOI: 10.1007/s13277-014-1948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022] Open
Abstract
Xeroderma pigmentosum group D (XPD) rs13181 may reduce DNA repair capacity (DRC) through modifying XPD protein product. Reduced DRC is reportedly related to an increase in the risk of lung cancer. To precisely estimate the association between XPD rs13181 and lung cancer risk, we carried out the current meta-analysis. We searched multiple databases (up to 31 October 2013) for studies investigating the association of XPD rs13181 and lung cancer. Odds ratio (OR) was estimated with the fixed effect model to assess the association. Heterogeneity between studies was measured using Q test. Subgroup analyses were conducted by ethnicity, histological type, and sample size. Meta-analysis of 30 studies suggested that individuals carrying Gln/Gln genotype were more likely than the individuals with Lys/Lys or Lys/Gln + Lys/Lys genotypes (homozygous model, OR 1.18, 95 % confidence interval (CI) 1.07-1.31; recessive model, OR 1.17, 95 % CI 1.06-1.29) to develop lung cancer, without any substantial heterogeneity. This significantly increased risk was also revealed in the individuals harboring Gln/Gln + Lys/Gln genotypes (dominant model, OR 1.07, 95 % CI 1.01-1.12). Further stratification by histological type, ethnicity, and sample size yielded statistically significant estimates in subgroup of Caucasian subjects, non-small cell lung cancer, and relatively large studies, but borderline association in Asians. Our analyses demonstrate that XPD rs13181 may be associated with an increase in the risk of lung cancer among Caucasian populations.
Collapse
|
34
|
Liang Y, Deng J, Xiong Y, Wang S, Xiong W. Genetic association between ERCC5 rs17655 polymorphism and lung cancer risk: evidence based on a meta-analysis. Tumour Biol 2014; 35:5613-8. [PMID: 24596032 DOI: 10.1007/s13277-014-1742-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/10/2014] [Indexed: 12/14/2022] Open
Abstract
The relationship between excision repair cross-complementing group 5 (ERCC5) rs17655 polymorphism and lung cancer risk remains controversial. To clarify the association, we conducted a comprehensive meta-analysis of all published case-control studies. PubMed, Web of Science, and CNKI were searched to identify the possibly eligible publications. Pooled odds ratio (OR) was estimated using the fixed effect model. Q test and I (2) index were used to evaluate heterogeneity between studies, and Egger's and Begg's tests were utilized to assess publication bias. Meta-analysis of nine case-control studies including 4,044 cases and 5,100 controls indicated that there was no global association between rs17655 polymorphism and lung cancer risk. Subgroup analyses according to ethnicity and histologic type revealed similar results. In summary, our meta-analysis suggests that ERCC5 rs17655 polymorphism may not contribute to genetic susceptibility for lung cancer.
Collapse
Affiliation(s)
- Yujia Liang
- Department of Respiratory Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, Sichuan Province, People's Republic of China,
| | | | | | | | | |
Collapse
|
35
|
Mhawech-Fauceglia P, Wang D, Kim G, Sharifian M, Chen X, Liu Q, Lin YG, Liu S, Pejovic T. Expression of DNA repair proteins in endometrial cancer predicts disease outcome. Gynecol Oncol 2014; 132:593-8. [PMID: 24508840 DOI: 10.1016/j.ygyno.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The consequences of defective homologous recombination and other DNA repair pathways are important in disease outcomes of numerous tumor types. The objective of this study was to explore BRCA1, PARP, FANCD2, PTEN, H2AX, and ATM protein expression in endometrial cancer (EC). METHODS PARP1, γH2AX, ATM, FANCD2, PTEN, BRCA1, and p53 proteins were evaluated in EC tissue microarray (TMA) and their expressions were correlated with clinical and pathological parameters in 357 patients. RESULTS In type I EC, PARP1(+), ATM(+), and FANCD2(+) were associated with high tumor grade (p 0.031, p 0.0045, p 0.0062 respectively); γH2AX(+) and FANCD2(+) with advanced tumor stage (p 0.0004, p 0.0085 respectively); γH2AX(+), FANCD2(+) and p53(+) with the presence of lympho-vascular invasion (p 0.0004, p 0.0042, p 0.0098 respectively); and γH2AX(+) and ATM(+) with tumor recurrence (p 0.0203, p 0.0465) respectively. In type II EC, only PARP1(+) was associated with tumor stage (p 0.0499). EC patients with p53(+) or FANCD2(+) were more likely to recur with 5year recurrence free survival (RFS) probability of 71.4% in comparison to 85.5% for the other patients and they were more likely to have shorter 5year overall survival (OS) of 66.46% in comparison to 78.5% of those other patients Finally, patients with ATM(+) and p53(+) or FANCD2(+) were more likely to recur with 5year RFS probability of 68% versus 80.3% for the other patients. CONCLUSION DNA repair proteins seemed to play an important role in EC, and their expressions can forecast for poor outcomes.
Collapse
Affiliation(s)
| | - Dan Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Grace Kim
- Department of Pathology at University of Southern California, Los Angeles, CA, USA
| | - Maryam Sharifian
- Department of Pathology at University of Southern California, Los Angeles, CA, USA
| | - Xiwie Chen
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qian Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yvonne G Lin
- Department of Gynecologic Oncology at University of Southern California, Los Angeles, CA, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Tanja Pejovic
- Department of Gynecologic Oncology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
36
|
Zhao M, Chen P, Dong Y, Zhu X, Zhang X. Relationship between Rad51 G135C and G172T variants and the susceptibility to cancer: a meta-analysis involving 54 case-control studies. PLoS One 2014; 9:e87259. [PMID: 24475258 PMCID: PMC3903631 DOI: 10.1371/journal.pone.0087259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background The associations between Rad51 gene polymorphisms (G135C and G172T) and risk of cancer have been investigated, but the results were inconclusive. To get a comprehensive evaluation of the association above, we performed a meta-analysis of published studies. Methods A computerized search of PubMed, Embase and Web of Knowledge databases for all relevant studies was performed and the data were analyzed in a meta-analysis. The overall odds ratio (OR) with the 95% confidence interval (95% CI) was calculated to assess the strength of the association between Rad51 polymorphisms and cancer risk. Data were analyzed using fixed- or random-effects model when appropriate. Sensitivity analysis and publication bias test were also estimated. Results Overall, a total of 54 case-control studies were included in the current meta-analysis, among which 42 studies with 19,142 cases and 20,363 controls for RAD51 G135C polymorphism and 12 studies with 6,646 cases and 6,783 controls for G172T polymorphism. For G135C polymorphism, the pooled results indicated that significantly increased risk was found in overall cancers (homozygote model: OR = 1.776, 95% CI = 1.288–2.449; allelic genetic model: OR = 1.169, 95% CI = 1.016–1.345; recessive model: OR = 1.946, 95% CI = 1.336–2.835), especially in breast cancer (homozygote model: OR = 1.498, 95% CI = 1.026–2.189; recessive model: OR = 1.732, 95% CI = 1.170–2.562). For G172T polymorphism, a decreased cancer risk was observed in head and neck cancer (homozygote model: OR = 0.621, 95% CI = 0.460–0.837; allelic genetic model: OR = 0.824, 95% CI = 0.716–0.948; recessive model: OR = 0.639, 95% CI = 0.488–0.837). Conclusions Our results suggested that the Rad51 G135C polymorphism is a candidate for susceptibility to overall cancers, especially to breast cancer, and that the Rad51 G172T might play a protective role in the development of head and neck cancer.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbin Dong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianji Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
37
|
Chen X, Wang Z, Yan Y, Li P, Yang Z, Qin L, Mo W. XRCC3 C18067T polymorphism contributes a decreased risk to both basal cell carcinoma and squamous cell carcinoma: evidence from a meta-analysis. PLoS One 2014; 9:e84195. [PMID: 24454720 PMCID: PMC3893120 DOI: 10.1371/journal.pone.0084195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022] Open
Abstract
Background The X-ray repair cross-complementing group 3 (XRCC3) in homologous recombination repair (HRR) pathway plays a very important role in DNA double-strand break repair (DSBR). Variations in the XRCC3 gene might lead to altered protein structure or function which may change DSBR efficiency and result in cancer. The XRCC3 C18067T polymorphism has been reported to be associated with skin cancer susceptibility, yet the results of these previous results have been inconsistent or controversial. To derive a more precise estimation of the association, we conducted a meta-analysis. Methods The quality of the studies was assessed according to a predefined scale. The association between the XRCC3 C18067T polymorphism and skin cancer risk was assessed by odds ratios (ORs) together with their 95% confidence intervals (CIs). Results Overall, no significant association was observed between XRCC3 C18067T polymorphism and skin cancer risk in any genetic model. Stratified analyses according to tumor type, significant association was found in the relationship between XRCC3 C18067T polymorphism and nonmelanoma skin cancer risk (homozygote comparison TT versus CC: OR = 0.74, 95%CI = 0.61–0.90, P = 0.003; recessive model TT versus TC/CC: OR = 0.81, 95%CI = 0.68–0.95, P = 0.01). Furthermore, significant association was also observed in XRCC3 C18067T polymorphism with both basal cell carcinoma risk (homozygote comparison TT versus CC: OR = 0.70, 95%CI = 0.53–0.92, P = 0.011; recessive model TT versus. TC/CC: OR = 0.74, 95%CI = 0.60–0.92, P = 0.007) and squamous cell carcinoma risk (heterozygote comparison TT versus .CC: OR = 0.81, 95%CI = 0.67–0.99, P = 0.04; dominant model TT/TC versus .CC: OR = 0.81, 95%CI = 0.68–0.98, P = 0.029). Conclusion The present meta-analysis demonstrates that XRCC3 C18067T polymorphism was not associated with risk of cutaneous melanoma but contributed a decreased risk to both basal cell carcinoma and squamous cell carcinoma.
Collapse
Affiliation(s)
- Xu Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhe Wang
- Division of Spine and Osteopathy surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yulan Yan
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ping Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lingyan Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Yi L, Xiao-feng H, Yun-tao L, Hao L, Ye S, Song-tao Q. Association between the XRCC1 Arg399Gln polymorphism and risk of cancer: evidence from 297 case-control studies. PLoS One 2013; 8:e78071. [PMID: 24205095 PMCID: PMC3812151 DOI: 10.1371/journal.pone.0078071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Arg399Gln polymorphism in the X-ray cross-complementing group 1 (XRCC1) had been implicated in cancer susceptibility. The previous published data on the association between XRCC1 Arg399Gln polymorphism and cancer risk remained controversial. METHODOLOGY/PRINCIPAL FINDINGS To derive a more precise estimation of the association between the XRCC1 Arg399Gln polymorphism and overall cancer risk, we performed a meta-analysis of 297 case-control studies, in which a total of 93,941 cases and 121,480 controls were included. Overall, significantly increased cancer risk was observed in any genetic model (dominant model: odds ration [OR] = 1.04, 95% confidence interval [CI] = 1.01-1.07; recessive model: OR = 1.08, 95% CI = 1.03-1.13; additive model: OR = 1.09, 95% CI = 1.04-1.14) when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, significantly elevated hepatocellular and breast cancers risk were observed in Asians (dominant model: OR = 1.39, 95% CI = 1.06-1.84) and in Indians (dominant model: OR = 1.64, 95% CI = 1.31-2.04; recessive model: OR = 1.94, 95% CI = 1.09-3.47; additive model: OR = 2.06, 95% CI = 1.50-2.84), respectively. CONCLUSIONS/SIGNIFICANCE This meta-analysis suggests the participation of XRCC1 Arg399Gln is a genetic susceptibility for hepatocellular cancer in Asians and breast cancer in Indians. Moreover, our work also points out the importance of new studies for Arg399Gln association in some cancer types, such as glioma, gastric cancer, and oral cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the XRCC1 Arg399Gln polymorphism in cancer development.
Collapse
Affiliation(s)
- Liu Yi
- Neurosurgery Department, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - He Xiao-feng
- Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, PR China
| | - Lu Yun-tao
- Neurosurgery Department, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Long Hao
- Neurosurgery Department, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Song Ye
- Neurosurgery Department, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Qi Song-tao
- Neurosurgery Department, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
39
|
Huang G, Cai S, Wang W, Zhang Q, Liu A. Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One 2013; 8:e68457. [PMID: 23990873 PMCID: PMC3753326 DOI: 10.1371/journal.pone.0068457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
Many studies have reported the association of X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln, Arg194Trp, Arg280His, −77T>C, and X-ray repair cross-complementing group 3 (XRCC3) T241M polymorphisms with lung cancer risk, but the results remained controversial. Hence, we performed a meta-analysis to investigate the association between lung cancer risk and XRCC1 Arg399Gln (14,156 cases and 16,667 controls from 41 studies), Arg194Trp (7,426 cases and 9,603 controls from 23 studies), Arg280His (6,211 cases and 6,763 controls from 16 studies), −77T>C (2,487 cases and 2,576 controls from 5 studies), and XRCC3 T241M (8,560 cases and 11,557 controls from 19 studies) in different inheritance models. We found that −77T>C polymorphism was associated with increased lung cancer risk (dominant model: odds ration [OR] = 1.45, 95% confidence interval [CI] = 1.27–1.66, recessive model: OR = 1.73, 95% CI = 1.14–2.62, additive model: OR = 1.91, 95% CI = 1.24–1.94) when all the eligible studies were pooled into the meta-analysis. In the stratified and sensitive analyses, significantly decreased lung cancer risk was observed in overall analysis (dominant model: OR = 0.83, 95% CI = 0.78–0.89; recessive model: OR = 0.90, 95% CI = 0.81–1.00; additive model: OR = 0.82, 95% CI = 0.74–0.92), Caucasians (dominant model: OR = 0.82, 95% CI = 0.76–0.87; recessive model: OR = 0.89, 95% CI = 0.80–0.99; additive model: OR = 0.81, 95% CI = 0.73–0.91), and hospital-based controls (dominant model: OR = 0.81, 95% CI = 0.76–0.88; recessive model: OR = 0.89, 95% CI = 0.79–1.00; additive model: OR = 0.80, 95% CI = 0.71–0.90) for XRCC3 T241M. In conclusion, this meta-analysis indicates that XRCC1 −77T>C shows an increased lung cancer risk and XRCC3 T241M polymorphism is associated with decreased lung cancer risk, especially in Caucasians.
Collapse
Affiliation(s)
- Guohua Huang
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (GH); (AL)
| | - Shaoxi Cai
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Wang
- Gastroenterology Department, The Second People's Hospital of Zhuhai, Zhuhai, China
- Beijing Zhendong Guangming Pharmaceutical Research Institute Co. Ltd., Beijing, China
- Shanxi Zhendong Pharmaceutical Co. Ltd., Changzhi, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Aihua Liu
- Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (GH); (AL)
| |
Collapse
|
40
|
He XF, Wei W, Li JL, Shen XL, Ding DP, Wang SL, Liu ZZ, Qin JB, Wu LX, Xie DL. Association between the XRCC3 T241M polymorphism and risk of cancer: evidence from 157 case-control studies. Gene 2013; 523:10-9. [PMID: 23562721 DOI: 10.1016/j.gene.2013.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 12/16/2022]
Abstract
The T241M polymorphism in the X-ray cross-complementing group 3 (XRCC3) had been implicated in cancer susceptibility. The previous published data on the association between XRCC3 T241M polymorphism and cancer risk remained controversial. Hence, we performed a meta-analysis to investigate the association between cancer susceptibility and XRCC3 T241M (61,861 cases and 84,584 controls from 157 studies) polymorphism in different inheritance models. We used odds ratios with 95% confidence intervals to assess the strength of the association. Overall, significantly increased cancer risk was observed in any genetic model (dominant model: odds ration [OR]=1.07, 95% confidence interval [CI]=1.00-1.13; recessive model: OR=1.15, 95% CI=1.08-1.23; additive model: OR=1.17, 95% CI=1.08-1.28) when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, the elevated risk remained for subgroups of bladder cancer and breast cancer, especially in Caucasians. In addition, significantly decreased lung cancer risk was also observed. In summary, this meta-analysis suggests the participation of XRCC3 T241M in the susceptibility for bladder cancer and breast cancer, especially in Caucasians, and XRCC3 T241M polymorphism is associated with decreased lung cancer risk. Moreover, our work also points out the importance of new studies for T241M association in some cancer types, such as gastric cancer, colorectal cancer, and melanoma skin cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the XRCC3 polymorphism in cancer development.
Collapse
Affiliation(s)
- Xiao-Feng He
- Department of Research, Peace Hospital of Changzhi Medical College, Changzhi, 046000, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lack of association between XRCC3 rs861539 (C > T) polymorphism and lung cancer risks: an update meta-analysis. Tumour Biol 2013; 34:1819-24. [PMID: 23526128 DOI: 10.1007/s13277-013-0722-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022] Open
Abstract
X-ray repair cross-complementing protein 3 (XRCC3) belongs to DNA double-strand break repair pathway and XRCC3 rs861539 (C > T) polymorphism has been suspected with lung cancer risk. However, results from previous studies are inconclusive and affected by bias. Electronic databases of PubMed, EMBASE, China National Knowledge Infrastructure, and SinoMed were searched. References of relative reviews were also screened. Pooled odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated to estimate the association strength. A number of 18 eligible studies with 6 studies of Asians, 11 of Caucasians, and 1 of African were extracted and analyzed, including 4,896 lung cancer cases and 6,360 controls. No significant correlation between XRCC3 polymorphism and lung cancer risk was observed in homozygote comparison (CC vs. TT; OR=0.877; 95 % CI, 0.659, 1.168), heterozygote comparison (CT vs. TT; OR=0.857; 95 % CI, 0.675, 1.089), dominant model (CC/CT vs. TT; OR=0.862; 95 % CI, 0.663, 1.123), or recessive model (CC vs. CT/TT; OR=1.047; 95 % CI, 0.956, 1.145). Subgroup analyses of ethnicity and controls did not reveal any significant association with lung cancer risk. No publication bias was detected. In this update meta-analysis of 18 studies and 11,256 participants, we find that XRCC3 rs861539 polymorphism does not contribute to lung cancer risk and there is no difference between Asians and Caucasians.
Collapse
|
42
|
Sameer AS. Colorectal cancer: a researcher’s perspective of the molecular angel’s gone eccentric in the Vale of Kashmir. Tumour Biol 2013; 34:1301-15. [DOI: 10.1007/s13277-013-0692-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/03/2013] [Indexed: 02/06/2023] Open
|
43
|
Nissar S, Lone TA, Banday MZ, Rasool R, Chowdri NA, Parray FQ, Abdullah S, Sameer AS. Arg399Gln polymorphism of XRCC1 gene and risk of colorectal cancer in Kashmir: A case control study. Oncol Lett 2013; 5:959-963. [PMID: 23426866 PMCID: PMC3576209 DOI: 10.3892/ol.2013.1104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/12/2012] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to investigate the role of the XRCC1 Arg399Gln polymorphism in the susceptibility of a Kashmiri population to colorectal cancer (CRC). We investigated the genotype distribution of the XRCC1 gene in 130 CRC cases in comparison with that of 150 healthy subjects. There was no direct significant association between the XRCC1 genotypes and CRC; however, the Arg/Gln genotype was associated with an elevated risk of CRC (OR>1.47) and the Gln/Gln variant genotype was associated with an increased risk of CRC in various clinicopathological parameters. This study suggests that the XRCC1 polymorphism is associated with an increased risk of CRC.
Collapse
Affiliation(s)
- Saniya Nissar
- Departments of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Bemina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Targeting apoptosis in the hormone- and drug-resistant prostate cancer cell line, DU-145, by gossypol/zoledronic acid combination. Cell Biol Int 2013; 33:1165-72. [DOI: 10.1016/j.cellbi.2009.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/11/2009] [Accepted: 08/17/2009] [Indexed: 12/25/2022]
|
45
|
Osawa K, Nakarai C, Uchino K, Yoshimura M, Tsubota N, Takahashi J, Kido Y. XRCC3 gene polymorphism is associated with survival in Japanese lung cancer patients. Int J Mol Sci 2012; 13:16658-67. [PMID: 23443124 PMCID: PMC3546713 DOI: 10.3390/ijms131216658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/07/2012] [Accepted: 11/28/2012] [Indexed: 11/16/2022] Open
Abstract
We focused on OGG1 Ser326Cys, MUTYH Gln324His, APEX1 Asp148Glu, XRCC1 Arg399Gln, and XRCC3 Thr241Met and examined the relationship between the different genotypes and survival of Japanese lung cancer patients. A total of 99 Japanese lung cancer patients were recruited into our study. Clinical data were collected, and genotypes of the target genes were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Survival analysis to verify the impact of these gene polymorphisms on the clinical outcome of lung cancer showed that lung squamous cell carcinoma patients with the Thr/Met genotype at XRCC3 had a significantly shorter survival time than those with the Thr/Thr genotype (13 months versus 48 months; log-rank test, p < 0.0001). Cox regression analysis showed that the carriers of XRCC3 genotypes were at a significantly higher risk [adjusted hazard ratio (HR) = 9.35, 95% confidence interval (CI) = 2.52-34.68, p = 0.001; adjusted HR = 9.05, 95% CI = 1.89-44.39, p = 0.006]. Our results suggest that XRCC3 Thr241Met may act as a favorable prognostic indicator for lung squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Kayo Osawa
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; E-Mails: (C.N.); (J.T.); (Y.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-78-796-4581; Fax: +81-78-796-4509
| | - Chiaki Nakarai
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; E-Mails: (C.N.); (J.T.); (Y.K.)
| | - Kazuya Uchino
- Department of General Thoracic Surgery, Hyogo Cancer Center, Akashi 673-0021, Japan; E-Mails: (K.U.); (M.Y.)
| | - Masahiro Yoshimura
- Department of General Thoracic Surgery, Hyogo Cancer Center, Akashi 673-0021, Japan; E-Mails: (K.U.); (M.Y.)
| | - Noriaki Tsubota
- Department of Thoracic Oncology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; E-Mail:
| | - Juro Takahashi
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; E-Mails: (C.N.); (J.T.); (Y.K.)
| | - Yoshiaki Kido
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; E-Mails: (C.N.); (J.T.); (Y.K.)
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
46
|
Zhou LP, Luan H, Dong XH, Jin GJ, Ma DL, Shang H. Association of Functional Polymorphisms of the XRCC4 Gene with the Risk of Breast Cancer: A Meta-analysis. Asian Pac J Cancer Prev 2012; 13:3431-6. [DOI: 10.7314/apjcp.2012.13.7.3431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Wang W, Pan X, Huo X, Yan F, Wang M, Wang D, Gao Y, Cao Q, Luo D, Qin C, Yin C, Zhang Z. A functional polymorphism C-1310G in the promoter region of Ku70/XRCC6 is associated with risk of renal cell carcinoma. Mol Carcinog 2012; 51 Suppl 1:E183-90. [PMID: 22593040 DOI: 10.1002/mc.21914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 11/11/2022]
Abstract
The DNA repair gene Ku70 plays a key role in the DNA double strand break (DSB) repair system. Defects in DSB repair capacity can lead to genomic instability. We hypothesized that the Ku70 C-1310G polymorphism (rs2267437) was associated with risk of renal cell carcinoma (RCC). We genotyped the Ku70 C-1310G polymorphism in a case-control study of 620 patients and 623 controls in a Chinese population and assessed the effects of C-1310G polymorphism on RCC susceptibility and survival. We then examined the functionality of this polymorphism. Compared with the Ku70-1310CC genotype, the CG and CG/GG genotypes had a significantly increased risk of RCC [adjusted odds ratio (OR) = 1.47, 95% confidence interval (CI) = 1.16-1.87 for CG and OR = 1.47, 95% CI = 1.16-1.86 for CG/GG]. However, the C-1310G polymorphism did not influence the survival of RCC. The in vivo experiments with normal renal tissues revealed statistically significantly lower Ku70 mRNA expression in samples with CG/GG genotypes relative to those with the CC genotype (P < 0.05). In vitro luciferase assays in various cell lines showed lower luciferase activity for the -1310G allele than for the -1310C allele. These results suggest that the Ku70 C-1310G polymorphism is involved in the etiology of RCC and thus may be a marker for genetic susceptibility to RCC in Chinese populations. Larger studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanjing Medical University, Yizheng, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang W, Gao Y, Yan F, Wang M, Hu F, Wang D, Cao Q, Qin C, Yin C, Zhang Z, Pan X. Association of Ku70 A-31G polymorphism and risk of renal cell carcinoma in a Chinese population. DNA Cell Biol 2012; 31:1314-20. [PMID: 22455395 DOI: 10.1089/dna.2011.1540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The DNA repair gene Ku70 plays a key role in the DNA double-strand breaks (DSBs) repair system. Defects in DSBs repair capacity can lead to genomic instability. We hypothesized that the Ku70 A-31G polymorphism (rs132770) was associated with the risk of renal cell carcinoma (RCC). In a hospital-based case-control study of 620 RCC patients and 623 cancer-free controls frequency matched by age and sex, we genotyped the functional polymorphism Ku70 A-31G (rs132770). Thirty-eight normal renal tissue samples with different genotypes were tested to estimate the Ku70 mRNA expression by real-time quantitative reverse transcription. Compared with the GG genotype, the GA and GA/AA genotypes had a significantly decreased risk of RCC [adjusted odds ratio (OR) = 0.62, 95% confidence interval (CI) = 0.44-0.87 for GA, and OR = 0.62, 95% CI = 0.45-0.86 for GA/AA]. The in vivo experiments with normal renal tissues revealed that a statistically significantly higher Ku70 mRNA expression was identified in samples with GA/AA genotypes compared with those with GG genotypes (p = 0.001). These results suggested that the Ku70 A-31G polymorphism is involved in the etiology of RCC and, thus, may be a marker for genetic susceptibility to RCC in the Chinese populations.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Luo YF, Wang BB, Zhou Z, Ding XC, Hu SS, Zhou GK, Ma X, Qi YH. Polymorphisms of the DNA Repair GenesXPDandXRCC1and the Risk of Age-Related Cataract Development in Han Chinese. Curr Eye Res 2011; 36:632-6. [DOI: 10.3109/02713683.2011.571358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Yang MD, Wang HC, Chang WS, Tsai CW, Bau DT. Genetic polymorphisms of DNA double strand break gene Ku70 and gastric cancer in Taiwan. BMC Cancer 2011; 11:174. [PMID: 21575261 PMCID: PMC3111404 DOI: 10.1186/1471-2407-11-174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 05/17/2011] [Indexed: 11/23/2022] Open
Abstract
Background and aim The DNA repair gene Ku70, an important member of non-homologous end-joining repair system, is thought to play an important role in the repairing of DNA double strand breaks. It is known that defects in double strand break repair capacity can lead to irreversible genomic instability. However, the polymorphic variants of Ku70, have never been reported about their association with gastric cancer susceptibility. Methods In this hospital-based case-control study, the associations of Ku70 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped. Results As for Ku70 promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI = 1.53-3.88) and 3.21 (95% CI = 0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The P for trend was significant (P < 0.0001). In the dominant model (TC plus CC versus TT), the association between Ku70 promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR = 2.48, 95% CI = 1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or elder of age (TC vs TT: adjusted OR = 2.52, 95% CI = 1.37-4.68, P = 0.0139) and male (TC vs TT: adjusted OR = 2.58, 95% CI = 1.33-4.47, P = 0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies. Conclusion In conclusion, the Ku70 promoter T-991C (rs5751129), but not the Ku70 promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.
Collapse
Affiliation(s)
- Mei-Due Yang
- Terry Fox Cancer Research Lab, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|