1
|
Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform 2021; 22:742-768. [PMID: 33348379 PMCID: PMC7799268 DOI: 10.1093/bib/bbaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Antoine Daina
- Molecular Modeling Group at SIB, Swiss Institute of Bioinformatics
| | | | - Vincent Zoete
- Department of Fundamental Oncology at the University of Lausanne and Group leader at SIB
| | | | | |
Collapse
|
2
|
Bagchi A. Latest trends in structure based drug design with protein targets. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:1-23. [PMID: 32312418 DOI: 10.1016/bs.apcsb.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structure based drug designing is an important endeavor in the field of structural bioinformatics. Previously the entire process was dependent on the wet-lab experiments to build libraries of ligand molecules. And the molecules used to be tested to determine their binding efficacies with protein target. However, the entire process is very lengthy and above all highly expensive. With the advent of supercomputers and increasing computational powers, the search process for finding suitable ligand molecules against target proteins have become more streamlined and cost-effective. Now the entire ligand search process is performed in-silico with the help of the techniques of virtual screening, molecular docking simulations and molecular dynamics studies. In the present chapter, a brief overview of the computational techniques involved in structure based drug designing is presented with a special emphasis on the thermodynamic principles behind the molecular interactions.
Collapse
Affiliation(s)
- Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
3
|
Nandy A, Dey S, Roy P, Basak SC. Epidemics and Peptide Vaccine Response: A Brief Review. Curr Top Med Chem 2019; 18:2202-2208. [PMID: 30417788 DOI: 10.2174/1568026618666181112144745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 02/01/2023]
Abstract
We briefly review the situations arising out of epidemics that erupt rather suddenly, threatening life and livelihoods of humans. Ebola, Zika and the Nipah virus outbreaks are recent examples where the viral epidemics have led to considerably high degree of fatalities or debilitating consequences. The problems are accentuated by a lack of drugs or vaccines effective against the new and emergent viruses, and the inordinate amount of temporal and financial resources that are required to combat the novel pathogens. Progress in computational, biological and informational sciences have made it possible to consider design of synthetic vaccines that can be rapidly developed and deployed to help stem the damages. In this review, we consider the pros and cons of this new paradigm and suggest a new system where the manufacturing process can be decentralized to provide more targeted vaccines to meet the urgent needs of protection in case of a rampaging epidemic.
Collapse
Affiliation(s)
- Ashesh Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Sumanta Dey
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Proyasha Roy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Subhash C Basak
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1802 Stanford Avenue, Duluth, MN 5581, United States
| |
Collapse
|
4
|
Integrated Chemoinformatics Approaches Toward Epigenetic Drug Discovery. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [DOI: 10.1007/978-3-030-05282-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S, Choi S. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Front Pharmacol 2018; 9:128. [PMID: 29593527 PMCID: PMC5854945 DOI: 10.3389/fphar.2018.00128] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/06/2018] [Indexed: 01/14/2023] Open
Abstract
The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the "golden age for GPCR structural biology." Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand- and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
6
|
Antonova E, Glazova O, Gaponova A, Eremyan A, Grebenkina N, Zvereva S, Volkova N, Volchkov P. Evaluation of the potential defensive strategy against Influenza A in cell line models. F1000Res 2018; 7:206. [PMID: 29946435 PMCID: PMC6008855 DOI: 10.12688/f1000research.13496.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Influenza virus can cause both seasonal infections and unpredictable pandemics. Rapidly evolving avian H5N1 and H7N9 viruses have a potential pandemic threat for humans. Since avian Influenza can be transmitted by domestic birds, serving as a key link between wild birds and humans, an effective measure to control the influenza transmission would be eradication of the infection in poultry. It is known that the virus penetrates into the cell through binding with the terminal oligosaccharides - sialic acids (SA) - on the cell surfaces. Removal of SA might be a potential antiviral strategy. An approach to developing chicken lines that are resistant to influenza viruses could be the creation of genetically modified birds. Thus it is necessary to select a gene that provides defense to influenza. Here we have expressed in cells a range of exogenous sialidases and estimated their activity and specificity towards SA residues. Methods: Several bacterial, viral and human sialidases were tested. We adopted bacterial sialidases from Salmonella and Actinomyces for expression on the cell surface by fusing catalytic domains with transmembrane domains. We also selected Influenza A/PuertoRico/8/34/H1N1 neuraminidase and human membrane sialidase ( hNeu3) genes. Lectin binding assay was used for estimation of a α (2,3)-sialylation level by fluorescent microscopy and FACS. Results: We compared sialidases from bacteria, Influenza virus and human. Sialidases from Salmonella and Influenza A neuraminidase effectively cleaved α (2-3)-SA receptors. Viral neuraminidase demonstrated a higher activity. Sialidases from Actinomyces and hNeu3 did not show any activity against α (2-3) SA under physiological conditions. Conclusion: Our results demonstrated that sialidases with different specificity and activity can be selected as genes providing antiviral defence. Combining chosen sialidases with different activity together with tissue-specific promoters would provide an optimal level of desialylation. Tissue specific expression of the sialidases could protect domestic birds from infection.
Collapse
Affiliation(s)
- Ekaterina Antonova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Olga Glazova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Anna Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Aykaz Eremyan
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Grebenkina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Svetlana Zvereva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Volkova
- Ernst Institute of Animal Husbandry, Podolsk Municipal District, Moscow Region, 142132, Russian Federation
| | - Pavel Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
7
|
Antonova E, Glazova O, Gaponova A, Eremyan A, Grebenkina N, Zvereva S, Volkova N, Volchkov P. Evaluation of defense strategy against Influenza A in cell line models. F1000Res 2018; 7:206. [PMID: 29946435 PMCID: PMC6008855 DOI: 10.12688/f1000research.13496.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 09/27/2023] Open
Abstract
Background: Influenza virus can cause both seasonal infections and unpredictable pandemics. Rapidly evolving avian H5N1 virus is getting increasingly infective for humans. Since avian Influenza can be transmitted by domestic birds, serving as a key link between wild aquatic birds and humans, an effective measure to control the influenza transmission would be eradication of the infection in poultry. It is known that the virus penetrates into the cell through binding with the terminal oligosaccharides - sialic acids (SA) - on the cell surfaces. Removal of SA might be a potential antiviral strategy. An approach to developing chicken lines that are resistant to influenza viruses could be the creation of genetically modified birds. Thus it is necessary to select a gene that provides defense to influenza. Here we have expressed in cells a range of exogenous sialidases and estimated their activity and specificity towards SA residues. Methods: Several bacterial, viral and human sialidases were tested. We adopted bacterial sialidases from Salmonella and Actinomyces for expression on the cell surface by fusing catalytic domains with transmembrane domains. We also selected Influenza A/PuertoRico/8/34/H1N1 neuraminidase and human membrane sialidase ( hNeu3) genes. Lectin binding assay was used for estimation of a α (2,3)-sialylation level by fluorescent microscopy and FACS. Results: We compared sialidases from bacteria, Influenza virus and human. Sialidases from Salmonella and Influenza A neuraminidase effectively cleaved α (2-3)-SA receptors. Viral neuraminidase demonstrated a higher activity. Sialidases from Actinomyces and hNeu3 did not show any activity against α (2-3) SA under physiological conditions. Conclusion: Our results demonstrated that sialidases with different specificity and activity can be selected as genes providing antiviral defence. Combining chosen sialidases with different activity together with tissue-specific promoters would provide an optimal level of desialilation to prevent infection. Tissue specific expression of the sialidases could protect domestic birds from infection.
Collapse
Affiliation(s)
- Ekaterina Antonova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Olga Glazova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Anna Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Aykaz Eremyan
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Grebenkina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Svetlana Zvereva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Volkova
- Ernst Institute of Animal Husbandry, Podolsk Municipal District, Moscow Region, 142132, Russian Federation
| | - Pavel Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
8
|
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017; 16:829-842. [PMID: 29075003 PMCID: PMC6882681 DOI: 10.1038/nrd.2017.178] [Citation(s) in RCA: 1639] [Impact Index Per Article: 234.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
Collapse
Affiliation(s)
- Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, 751 05 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Beyerlein KR, Dierksmeyer D, Mariani V, Kuhn M, Sarrou I, Ottaviano A, Awel S, Knoska J, Fuglerud S, Jönsson O, Stern S, Wiedorn MO, Yefanov O, Adriano L, Bean R, Burkhardt A, Fischer P, Heymann M, Horke DA, Jungnickel KEJ, Kovaleva E, Lorbeer O, Metz M, Meyer J, Morgan A, Pande K, Panneerselvam S, Seuring C, Tolstikova A, Lieske J, Aplin S, Roessle M, White TA, Chapman HN, Meents A, Oberthuer D. Mix-and-diffuse serial synchrotron crystallography. IUCRJ 2017; 4:769-777. [PMID: 29123679 PMCID: PMC5668862 DOI: 10.1107/s2052252517013124] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.
Collapse
Affiliation(s)
- Kenneth R. Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Manuela Kuhn
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Angelica Ottaviano
- Department of Physics, California State University, Northridge, California, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Silje Fuglerud
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Stephan Stern
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- European X-ray Free-Electron Laser Facility GmbH (XFEL), Schenefeld, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Luigi Adriano
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Richard Bean
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anja Burkhardt
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | | | - Elena Kovaleva
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Olga Lorbeer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Andrew Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kanupriya Pande
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Carolin Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Aleksandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Julia Lieske
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Prachanronarong KL, Özen A, Thayer KM, Yilmaz LS, Zeldovich KB, Bolon DN, Kowalik TF, Jensen JD, Finberg RW, Wang JP, Kurt-Yilmaz N, Schiffer CA. Molecular Basis for Differential Patterns of Drug Resistance in Influenza N1 and N2 Neuraminidase. J Chem Theory Comput 2016; 12:6098-6108. [PMID: 27951676 DOI: 10.1021/acs.jctc.6b00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuraminidase (NA) inhibitors are used for the prevention and treatment of influenza A virus infections. Two subtypes of NA, N1 and N2, predominate in viruses that infect humans, but differential patterns of drug resistance have emerged in each subtype despite highly homologous active sites. To understand the molecular basis for the selection of these drug resistance mutations, structural and dynamic analyses on complexes of N1 and N2 NA with substrates and inhibitors were performed. Comparison of dynamic substrate and inhibitor envelopes and interactions at the active site revealed how differential patterns of drug resistance have emerged for specific drug resistance mutations, at residues I222, S246, and H274 in N1 and E119 in N2. Our results show that the differences in intermolecular interactions, especially van der Waals contacts, of the inhibitors versus substrates at the NA active site effectively explain the selection of resistance mutations in the two subtypes. Avoiding such contacts that render inhibitors vulnerable to resistance by better mimicking the dynamics and intermolecular interactions of substrates can lead to the development of novel inhibitors that avoid drug resistance in both subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey D Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Powell K, Croker D, Rielly C, Nagy Z. PAT-based design of agrochemical co-crystallization processes: A case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Bassetto M, Massarotti A, Coluccia A, Brancale A. Structural biology in antiviral drug discovery. Curr Opin Pharmacol 2016; 30:116-130. [PMID: 27611878 PMCID: PMC7185576 DOI: 10.1016/j.coph.2016.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 11/29/2022]
Abstract
Structural biology has emerged during the last thirty years as a powerful tool for rational drug discovery. Crystal structures of biological targets alone and in complex with ligands and inhibitors provide essential insights into the mechanisms of actions of enzymes, their conformational changes upon ligand binding, the architectures and interactions of binding pockets. Structure-based methods such as crystallographic fragment screening represent nowadays invaluable instruments for the identification of new biologically active compounds. In this context, three-dimensional protein structures have played essential roles for the understanding of the activity and for the design of novel antiviral agents against several different viruses. In this review, the evolution in the resolution of viral structures is analysed, along with the role of crystal structures in the discovery and optimisation of new antivirals.
Collapse
Affiliation(s)
- Marcella Bassetto
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale A, Avogadro Largo Donegani 2, 28100 Novara, Italy
| | - Antonio Coluccia
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Andrea Brancale
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
13
|
Nandy A, Basak SC. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines. Int J Mol Sci 2016; 17:E666. [PMID: 27153063 PMCID: PMC4881492 DOI: 10.3390/ijms17050666] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development.
Collapse
Affiliation(s)
- Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Jodhpur Park, Kolkata 700068, India.
| | - Subhash C Basak
- Natural Resources Research Institute and Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55811, USA.
| |
Collapse
|
14
|
Abstract
A review of known small molecule inhibitors and substrates of the human neuraminidase enzymes.
Collapse
Affiliation(s)
- Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta
- Canada
| |
Collapse
|
15
|
Lamberth C, Jeanmart S, Luksch T, Plant A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013; 341:742-6. [DOI: 10.1126/science.1237227] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Crop protection chemistry has come a long way from its “alchemic” beginnings in the late 19th century to a high-tech science that supports the sustainable production of food, feed, and fiber for a rapidly growing population. Cutting-edge developments in the design and synthesis of agrochemicals help to tackle today’s challenges of weed and pest resistance, higher regulatory safety margins, and higher cost of goods with the invention of selective, environmentally benign, low use rate, and cost-effective active ingredients.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Stephane Jeanmart
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Torsten Luksch
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Andrew Plant
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
16
|
Narla SN, Sun XL. Immobilized sialyloligo-macroligand and its protein binding specificity. Biomacromolecules 2012; 13:1675-82. [PMID: 22519294 DOI: 10.1021/bm3003896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications. Specifically, O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were synthesized by enzymatic α2,3- and α2,6-sialylation of a lactose-containing glycopolymer that was synthesized by cyanoxyl-mediated free radical polymerization. (1)H NMR showed almost quantitative α2,3- and α2,6-sialylation. The O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were printed onto amine-functionalized glass slides via isourea bond formation for glycoarray formation. Specific protein binding activity of the arrays was confirmed with α2,3- and α2,6-sialyl specific binding lectins together with inhibition assays. Further, immobilizing O-cyanate chain-end functionalized sialyllactose-containing glycopolymers onto amine-modified SPR chip via isourea bond formation afforded SPR-based glyco-biosensor, which showed specific binding activity for lectins and influenza viral hemagglutinins (HA). These sialyloligo-macroligand derived glycoarray and SPR-based glyco-biosensor are closely to mimic 3D nature presentation of sialyloligosaccharides and will provide important high-throughput tools for virus diagnosis and potential antiviral drug candidates screening applications.
Collapse
Affiliation(s)
- Satya Nandana Narla
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | |
Collapse
|
17
|
Kikuchi H, Fujisaki H, Furuta T, Okamoto K, Leimkühler S, Nishino T. Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: insight from molecular dynamics. Sci Rep 2012; 2:331. [PMID: 22448318 PMCID: PMC3311054 DOI: 10.1038/srep00331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/06/2012] [Indexed: 11/09/2022] Open
Abstract
Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits bovine milk XOR with a Ki in the picomolar-order, but we found that it is a much weaker inhibitor of Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR are well-conserved as regards to catalytically important residues and three-dimensional structure, and both permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies. To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues that do not directly interact with the substrate account for the difference in inhibitory potency.
Collapse
Affiliation(s)
- Hiroto Kikuchi
- Department of Physics, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-Ku, Kawasaki 211-0063, Japan
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 2010; 5:e12029. [PMID: 20808434 PMCID: PMC2922327 DOI: 10.1371/journal.pone.0012029] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. METHODOLOGY In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. CONCLUSIONS The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.
Collapse
Affiliation(s)
- Rohan Patil
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Suranjana Das
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Ashley Stanley
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Lumbani Yadav
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Akulapalli Sudhakar
- Cell Signaling and Tumor Angiogenesis Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashok K. Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Ma J, Zhao Y, Ng S, Zhang J, Zeng J, Than A, Chen P, Liu XW. Sugar-Based Synthesis of Tamiflu and Its Inhibitory Effects on Cell Secretion. Chemistry 2010; 16:4533-40. [DOI: 10.1002/chem.200902048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/02/2009] [Indexed: 12/16/2022]
|
21
|
Leifert WR. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009; 552:51-66. [PMID: 19513641 PMCID: PMC7122359 DOI: 10.1007/978-1-60327-317-6_4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the beta2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.
Collapse
|
22
|
Carlescu I, Scutaru D, Popa M, Uglea CV. Synthetic sialic-acid-containing polyvalent antiviral inhibitors. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9139-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AWE, Chen F, Crowther GJ, Doyle MA, Hertz-Fowler C, Hopkins AL, McAllister G, Nwaka S, Overington JP, Pain A, Paolini GV, Pieper U, Ralph SA, Riechers A, Roos DS, Sali A, Shanmugam D, Suzuki T, Voorhis WCV, Verlinde CLMJ. Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 2008; 7:900-7. [PMID: 18927591 PMCID: PMC3184002 DOI: 10.1038/nrd2684] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database (http://tdrtargets.org), which encompasses extensive genetic, biochemical and pharmacological data related to tropical disease pathogens, as well as computationally predicted druggability for potential targets and compound desirability information. By allowing the integration and weighting of this information, this database aims to facilitate the identification and prioritization of candidate drug targets for pathogens.
Collapse
Affiliation(s)
- Fernán Agüero
- Universidad Nacional de General San Martín, Buenos Aires (Argentina)
| | | | | | | | | | - Robert K. Campbell
- Marine Biological Laboratory, Woods Hole MA (USA)
- Pfizer Laboratories, Sandwich (UK)
| | - Santiago Carmona
- Universidad Nacional de General San Martín, Buenos Aires (Argentina)
| | | | | | - Feng Chen
- University of Pennsylvania, Philadelphia PA (USA)
| | | | | | | | | | | | | | | | - Arnab Pain
- Sanger Institute, Hinxton, Cambridgeshire (UK)
| | | | | | | | | | | | - Andrej Sali
- University of California, San Francisco CA (USA)
| | | | | | | | | |
Collapse
|
24
|
Contribution of structural biology to clinically validated target proteins. Drug Discov Today 2008; 13:469-72. [PMID: 18549971 DOI: 10.1016/j.drudis.2008.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 03/13/2008] [Indexed: 11/22/2022]
Abstract
We identified six groups of diseases expected to cause serious future health issues on the basis of a WHO report. Approved drugs for these diseases were associated with 409 target proteins; however, the percentage of selected proteins with full-length structural information deposited in the Protein Data Bank (PDB) was only 9.8%. The reason for the low percentage may be as a result of a disproportionate number of intractable proteins with multiple transmembrane regions and variable, or undefined glycosylation patterns, which impede protein preparation and crystallization, in such druggable proteins. We stress the importance of structural analysis of proteins, especially approved-drug target proteins, and the development of new methods to enable structural analyses of presently intractable proteins. In addition, we present an overview of large structural biology projects.
Collapse
|
25
|
Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH, Gupta A, Bai T, Murphy VJ, Anders RF, Foley M, Nuttall SD. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2008; 15:1452-66. [PMID: 17997971 DOI: 10.1016/j.str.2007.09.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 08/13/2007] [Accepted: 09/10/2007] [Indexed: 11/18/2022]
Abstract
Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.
Collapse
Affiliation(s)
- Kylie A Henderson
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Structure determination has already proven useful for lead optimization and direct drug design. The number of high-resolution structures available in public databases today exceeds 30,000 and will definitely aid in structure-based drug design. Structural genomics approaches covering whole genomes, topologically similar proteins or gene families are great assets for further progress in the development of new drugs. However, membrane proteins representing 70% of current drug targets are poorly characterized structurally. The problems have been related to difficulties in obtaining large amount of recombinant membrane proteins as well as their purification and structure determination. Structural genomics has proven successful in developing new methods in areas from expression to structure determination by studying a large number of target proteins in parallel.
Collapse
Affiliation(s)
- K Lundstrom
- Flamel Technologies, 33 Avenue du Dr. Georges Lévy, 69693 Vénissieux, France.
| |
Collapse
|
27
|
Structural Genomics. CELL ENGINEERING 2007. [PMCID: PMC7122701 DOI: 10.1007/1-4020-5252-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Drug discovery based on structural knowledge has proven useful as several structure-based medicines are already on the market. Structural genomics aims at studying a large number of gene products including whole genomes, topologically similar proteins, protein families and protein subtypes in parallel. Particularly, therapeutically relevant targets have been selected for structural genomics initiatives. In this context, integral membrane proteins, which represent 60–70% of the current drug targets, have been of major interest. Paradoxically, membrane proteins present the last frontier to conquer in structural biology as some 100 high resolution structures among the 30,000 entries in public structural databases are available. The modest success rate on membrane proteins relates to the difficulties in their expression, purification and crystallography. To facilitate technology development large networks providing expertise in molecular biology, protein biochemistry and structural biology have been established. The privately funded MePNet program has studied 100 G protein-coupled receptors, which resulted in high level expression of a large number of receptors at structural biology compatible levels. Currently, selected GPCRs have been purified and subjected to crystallization attempts
Collapse
|
28
|
Abstract
It has long been recognized that knowledge of the 3D structures of proteins has the potential to accelerate drug discovery, but recent developments in genome sequencing, robotics and bioinformatics have radically transformed the opportunities. Many new protein targets have been identified from genome analyses and studied by X-ray analysis or NMR spectroscopy. Structural biology has been instrumental in directing not only lead optimization and target identification, where it has well-established roles, but also lead discovery, now that high-throughput methods of structure determination can provide powerful approaches to screening.
Collapse
Affiliation(s)
- Miles Congreve
- Astex Technology, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | | | | |
Collapse
|
29
|
Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 2006; 361:413-23. [PMID: 16524830 PMCID: PMC1609333 DOI: 10.1098/rstb.2005.1800] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The field of structure-based drug design is a rapidly growing area in which many successes have occurred in recent years. The explosion of genomic, proteomic, and structural information has provided hundreds of new targets and opportunities for future drug lead discovery. This review summarizes the process of structure-based drug design and includes, primarily, the choice of a target, the evaluation of a structure of that target, the pivotal questions to consider in choosing a method for drug lead discovery, and evaluation of the drug leads. Key principles in the field of structure-based drug design will be illustrated through a case study that explores drug design for AmpC beta-lactamase.
Collapse
Affiliation(s)
- Amy C Anderson
- Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755, USA.
| |
Collapse
|
31
|
Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes. J Med Chem 2003; 46:4487-500. [PMID: 14521411 DOI: 10.1021/jm0302593] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One factor that can strongly influence predicted free energy of binding is the ionization state of functional groups on the ligands and at the binding site at which calculations are performed. This analysis is seldom performed except in very detailed computational simulations. In this work, we address the issues of (i) modeling the complexity resulting from the different ionization states of ligand and protein residues involved in binding, (ii) if, and how, computational methods can evaluate the pH dependence of ligand inhibition constants, and (iii) how to score the protonation-dependent models. We developed a new and fairly rapid protocol called "computational titration" that enables parallel modeling of multiple ionization ensembles for each distinct protonation level. Models for possible protonation combinations for site/ligand ionizable groups are built, and the free energy of interaction for each of them is quantified by the HINT (Hydropathic INTeractions) software. We applied this procedure to the evaluation of the binding affinity of nine inhibitors (six derived from 2,3-didehydro-2-deoxy-N-acetylneuraminic acid, DANA) of influenza virus neuraminidase (NA), a surface glycoprotein essential for virus replication and thus a pharmaceutically relevant target for the design of anti-influenza drugs. The three-dimensional structures of the NA enzyme-inhibitor complexes indicate considerable complexity as the ligand-protein recognition site contains several ionizable moieties. Each computational titration experiment reveals a peak HINT score as a function of added protons. This maximum HINT score indicates the optimum pH (or the optimum protonation state of each inhibitor-protein binding site) for binding. The pH at which inhibition is measured and/or crystals were grown and analyzed can vary from this optimum. A protonation model is proposed for each ligand that reconciles the experimental complex structure with measured inhibition and the free energy of binding. Computational titration methods allow us to analyze the effect of pH in silico and may be helpful in improving ligand binding free energy prediction when protonation or deprotonation of the residues or ligand functional groups at the binding site might be significant.
Collapse
Affiliation(s)
- Micaela Fornabaio
- Department of Biochemistry and Molecular Biology, National Institute for the Physics of Matter, University of Parma, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Protein crystallography has traditionally been regarded as a resource-intensive, time-consuming technique that, with some notable exceptions, has not made a significant impact on drug discovery. However, inspired by successes in the genome-sequencing initiatives, recent years have seen major changes in X-ray crystallography methodologies and the concept of high-throughput crystallography has emerged. Advances have been made in all phases of the process, including improved molecular biology, protein expression, crystallization and structure determination. This transformation has allowed X-ray crystallography to impact more broadly in the drug-discovery process, extending its utility from structure-based lead optimisation to novel fragment-based lead generation approaches.
Collapse
Affiliation(s)
- Andrew Sharff
- Astex Technology Ltd, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.
| | | |
Collapse
|
33
|
Wang Q, Dordick JS, Linhardt RJ. Chemoenzymatic synthesis of neuraminic acid containing C-glycoside polymers. Org Lett 2003; 5:1187-9. [PMID: 12688715 DOI: 10.1021/ol027560i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Two neuraminic acid-based, C-glycoside polymers were synthesized. Preliminary studies on one of these polymers showed potent neuraminidase inhibitory activity, suggesting potential utility as an antipathogenic surface coating for the preparation of antimicrobial biomaterials.
Collapse
Affiliation(s)
- Qun Wang
- Division of Medicinal and Natural Products Chemistry and Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
34
|
Barnes DM, McLaughlin MA, Oie T, Rasmussen MW, Stewart KD, Wittenberger SJ. Synthesis of an influenza neuraminidase inhibitor intermediate via a highly diastereoselective coupling reaction. Org Lett 2002; 4:1427-30. [PMID: 11975595 DOI: 10.1021/ol017268v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text]. A highly diastereoselective coupling reaction between TBSOP (3) and trityl sulfenimine 4 was developed which provided influenza neuraminidase inhibitor intermediate 7 in 80% yield and >99% de after crystallization. The reaction was shown to be reversible with the high diastereoselectivity resulting from a favorable H-bonding interaction in the major diastereomer.
Collapse
Affiliation(s)
- David M Barnes
- Global Pharmaceutical R&D, Process Research & Development, Abbott Laboratories, 1401 Sheridan Road, D-R450, Bldg. R8, North Chicago, Illinois 60064-4000, USA
| | | | | | | | | | | |
Collapse
|
35
|
Blundell TL, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov 2002; 1:45-54. [PMID: 12119609 DOI: 10.1038/nrd706] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge of the three-dimensional structures of protein targets now emerging from genomic data has the potential to accelerate drug discovery greatly. X-ray crystallography is the most widely used technique for protein structure determination, but technical challenges and time constraints have traditionally limited its use primarily to lead optimization. Here, we describe how significant advances in process automation and informatics have aided the development of high-throughput X-ray crystallography, and discuss the use of this technique for structure-based lead discovery.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | |
Collapse
|
36
|
Gaudilliere B, Berna P. Section VII. Trends and perspectives. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35031-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|