1
|
Jiménez-Lamana J, Szpunar J. Analytical approaches for the characterization of nickel proteome. Metallomics 2017; 9:1014-1027. [DOI: 10.1039/c7mt00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analytical strategies to study the nickel proteome and their advantages and limitations.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| | - Joanna Szpunar
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE)
- UMR 5254-IPREM
- CNRS-UPPA
- Hélioparc
- France
| |
Collapse
|
2
|
Kurowska E, Bonna A, Goch G, Bal W. Salivary histatin-5, a physiologically relevant ligand for Ni(II) ions. J Inorg Biochem 2011; 105:1220-5. [DOI: 10.1016/j.jinorgbio.2011.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
|
3
|
Marteil G, D'Inca R, Pascal A, Guitton N, Midtun T, Goksøyr A, Richard-Parpaillon L, Kubiak JZ. EP45 accumulates in growing Xenopus laevis oocytes and has oocyte-maturation-enhancing activity involved in oocyte quality. J Cell Sci 2010; 123:1805-13. [DOI: 10.1242/jcs.063305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of oocytes to fully support meiotic maturation develops gradually during oocyte growth. Growing oocytes accumulate proteins and mRNAs required for this process. However, little is known about the identity of these factors. We performed a differential proteomic screen comparing the proteomes of growing stage-IV oocytes, which do not undergo meiotic maturation in response to progesterone, with fully grown stage-VI ones, which do. In 2D gels of stage-VI oocytes, we identified a group of four protein spots as EP45 (estrogen-regulated protein 45 kDa), which belongs to the family of serine protease inhibitors and is also known as Seryp or pNiXa. Western blot analysis after mono- and bi-dimensional electrophoreses confirmed the accumulation of certain forms of this protein in oocytes between stages IV and VI. EP45 mRNA was not detectable in oocytes or ovaries, but was expressed in the liver. A low-mobility isoform of EP45 was detected in liver and blood, whereas two (occasionally three or four) higher-mobility isoforms were found exclusively in oocytes, suggesting that liver-synthesized protein is taken up by oocytes from the blood and rapidly modified. Alone, overexpression of RNA encoding either full-length or N-terminally truncated protein had no effect on meiotic resumption in stage-IV or -VI oocytes. However, in oocytes moderately reacting to low doses of progesterone, it significantly enhanced germinal-vesicle breakdown, showing a novel and unsuspected activity of this protein. Thus, EP45 accumulates in growing oocytes through uptake from the blood and has the capacity to act as an ‘oocyte-maturation enhancer’ (‘Omen’).
Collapse
Affiliation(s)
- Gaëlle Marteil
- CNRS UMR 6061, Institute of Genetics and Development of Rennes, Mitosis and Meiosis Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
| | - Romain D'Inca
- CNRS UMR 6061, Institute of Genetics and Development of Rennes, Mitosis and Meiosis Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
| | - Aude Pascal
- CNRS UMR 6061, Institute of Genetics and Development of Rennes, Mitosis and Meiosis Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
| | - Nathalie Guitton
- Proteomics Core Facility Biogenouest, Inserm U625, Campus de Beaulieu, 35 042, Rennes, France
| | - Torbjørn Midtun
- Department of Molecular Biology, University of Bergen, Bergen, N-5020, Norway
| | - Anders Goksøyr
- Department of Molecular Biology, University of Bergen, Bergen, N-5020, Norway
| | - Laurent Richard-Parpaillon
- CNRS UMR 6061, Institute of Genetics and Development of Rennes, Mitosis and Meiosis Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
| | - Jacek Z. Kubiak
- CNRS UMR 6061, Institute of Genetics and Development of Rennes, Mitosis and Meiosis Group, University of Rennes 1, IFR 140 GFAS, Faculty of Medicine, 35 043, Rennes, France
| |
Collapse
|
4
|
Jorgensen P, Steen JAJ, Steen H, Kirschner MW. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development 2009; 136:1539-48. [PMID: 19363155 DOI: 10.1242/dev.032425] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about how metabolism changes during development. For most animal embryos, yolk protein is a principal source of nutrition, particularly of essential amino acids. Within eggs, yolk is stored inside large organelles called yolk platelets (YPs). We have gained insight into embryonic nutrition in the African clawed frog Xenopus laevis by studying YPs. Amphibians follow the ancestral pattern in which all embryonic cells inherit YPs from the egg cytoplasm. These YPs are consumed intracellularly at some point during embryogenesis, but it was not known when, where or how yolk consumption occurs. We have identified the novel yolk protein Seryp by biochemical and mass spectrometric analyses of purified YPs. Within individual YPs, Seryp is degraded to completion earlier than the major yolk proteins, thereby providing a molecular marker for YPs engaged in yolk proteolysis. We demonstrate that yolk proteolysis is a quantal process in which a subset of dormant YPs within embryonic cells are reincorporated into the endocytic system and become terminal degradative compartments. Yolk consumption is amongst the earliest aspects of differentiation. The rate of yolk consumption is also highly tissue specific, suggesting that nutrition in early amphibian embryos is tissue autonomous. But yolk consumption does not appear to be triggered by embryonic cells declining to a critically small size. Frog embryos offer a promising platform for the in vivo analysis of metabolism.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
5
|
Wojtczak M, Całka J, Glogowski J, Ciereszko A. Isolation and characterization of alpha1-proteinase inhibitor from common carp (Cyprinus carpio) seminal plasma. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:264-76. [PMID: 17681818 DOI: 10.1016/j.cbpb.2007.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 01/22/2023]
Abstract
Using a three-step procedure, we purified (79 and 51.6-fold to homogeneity) and characterized the two isoforms (a and b) of alpha1-proteinase inhibitor-like protein from carp seminal plasma. The isoforms have molecular masses of 55.5 and 54.0 kDa, respectively. These inhibitors formed SDS-stable complexes with cod and bovine trypsin, chymotrypsin and elastase. The thirty-three amino acids within the reactive loop SLPDTVILNRPFLVLIVEDTTKSILFMGKITNP were identified for isoform b. The same first ten amino acids were obtained for isoform a, and this sequence revealed 100% homology to carp alpha1-proteinase inhibitor (alpha1-PI) from perimeningeal fluid. Both isoforms of alpha1-PI are glycoproteins and their carbohydrate content was determined to be 12.6 and 12.1% for a and b, respectively. Our results indicated that alpha1-PI is one of the main proteins of carp seminal plasma. Using polyclonal anti-alpha1-PI antibodies, alpha1-PI was for the first time localized to the carp testis. The presence of alpha1-PI in testis lobules and in the area surrounding spermatides suggests that this inhibitor may be involved in the maintenance of testis connective tissue integrity, control of spermatogenesis or protection of tissue and spermatozoa against unwanted proteolysis. Since similar alpha1-PI has been identified in rainbow trout semen it can be suggested that the presence of alpha1-PI in seminal plasma is a common feature of cyprinid and salmonid fish.
Collapse
Affiliation(s)
- M Wojtczak
- Department of Semen Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Tuwima 10, Poland.
| | | | | | | |
Collapse
|
6
|
Jezowska-Bojczuk M, Kaczmarek P, Bal W, Kasprzak KS. Coordination mode and oxidation susceptibility of nickel(II) complexes with 2'-deoxyguanosine 5'-monophosphate and l-histidine. J Inorg Biochem 2005; 98:1770-7. [PMID: 15522404 DOI: 10.1016/j.jinorgbio.2004.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/16/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
The formation of binary and ternary complexes of Ni(II) with two biologically relevant molecules, 2'-deoxyguanosine 5'-monophosphate (dGMP) and l-histidine (histidine or His) was characterized by potentiometry and UV-visible spectroscopy. For dGMP, the mononuclear complexes with stoichiometries NiH(2)L(+), NiHL and NiL(-) were found. In the mixed system the ternary complexes NiH(2)LA, NiHLA(-) and NiLA(2-) were detected. In binary systems, the Ni(II) ion coordinates to dGMP through the N-7 atom of its purine ring and indirectly through a water molecule bonded to the phosphate group, while in ternary complexes Ni(II) is bonded to all three histidine donors and directly to the phosphate group of dGMP. Both binary and ternary complexes are susceptible to oxidation by H(2)O(2), with the increased formation of 8-oxo-dGMP in the ternary system. The toxicological relevance of these findings stems from possible disturbance by the major biological Ni(II)-His complex of the nucleotide pools homeostasis through the formation of ternary species and oxidation promotion, as well as from 8-oxo-dGMP capacity to inhibit enzymatic elimination of promutagenic oxidized nucleotides from such pools.
Collapse
|
7
|
Knispel T, Ruhnau C, Lassen S, Griesel S, Prange A, Denkhaus E. Nickel species analysis of human colonic tissue using liquid chromatography, gel electrophoresis and mass spectrometry. Anal Bioanal Chem 2005; 383:404-13. [PMID: 16151593 DOI: 10.1007/s00216-005-0053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Studies to specify metal-binding species, such as metalloproteins that are present in trace amounts in colonic cell cytosol, using chromatographic separation methods in combination with inductively coupled plasma mass spectrometry (ICP-MS) as element-specific detection require an optimised sample preparation regarding the solubilisation of the proteins. Focus should be taken to avoid metal contamination, enzymatic digestion by different proteases and oxidation. In this article different sample preparation methods are studied to find a suitable method for the isolation and characterisation of Ni species previously found in cytosols from normal and malignant tissues of the human colon. The total Ni concentrations of the cytosols were determined as well as the total protein content. Thus, a Ni-containing protein could be isolated from cytosols of malignant human colonic tissues using size-exclusion chromatography with ICP-MS for element-specific detection. Ni-containing species in the molecular mass range from 10,000 to 20,000 Da were found and pre-concentrated. The determination of the molecular mass of the species was performed through online coupling of reversed-phase chromatography with electrospray ionisation quadrupole time-of-flight MS. Using identical chromatographic conditions and ICP-MS the detected protein was shown to contain Ni.
Collapse
Affiliation(s)
- Tina Knispel
- Department of Marine Bioanalytical Chemistry, Institute for Coastal Research, GKSS-Research Center, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Morgunkova AA. The p53 Gene Family: Control of Cell Proliferation and Developmental Programs. BIOCHEMISTRY (MOSCOW) 2005; 70:955-71. [PMID: 16266265 DOI: 10.1007/s10541-005-0210-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
For a quarter of a century the gene p53 has attracted close attention of scientists who deal with problems of carcinogenesis and maintenance of genetic stability. Multicellular organisms on our planet owe their rich evolution in many respects to the ability of this gene to protect cells from oncogenic transformation and harmful changes in DNA. A relatively recent discovery of structural p53 homologs, the genes p63 and p73, which seem to have more ancient roots, has roused keen interest in their function. Do they carry out oncosuppressor functions in partnership with p53 or do they possess their own specific functions? This review analyzes data on p53, p63, and p73 functional activity at the levels of the molecule, cell, and whole organism with the accent on examination of specific p63/p73 targets indicating a unique role of these genes in control of developmental processes.
Collapse
Affiliation(s)
- A A Morgunkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Monetti C, Bernardini G, Vigetti D, Prati M, Fortaner S, Sabbioni E, Gornati R. Platinum toxicity and gene expression in Xenopus embryos: analysis by FETAX and differential display. Altern Lab Anim 2005; 31:401-8. [PMID: 15601245 DOI: 10.1177/026119290303100406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the level of platinum in the environment is destined to increase, because of its use in vehicle catalytic converters, the toxicity of platinum needs further investigation. In this study, the frog embryo teratogenesis assay-Xenopus (FETAX) was used to compare the embryotoxicity and teratogenicity of two common platinum species, (NH4)2PtCl4 and (NH4)2PtCl6. The uptake rates of the two platinum species were studied, and also their effects on the expression of genes encoding metallothionein and heat-shock protein 70, which are known to be induced by several stress factors. In addition, the differential display technique was used to search for genes that were specifically induced by platinum. A gene for the type I collagen alpha-chain and a novel gene were identified.
Collapse
Affiliation(s)
- Claudio Monetti
- Department of Structural and Functional Biology, Università dell'Insubria, 3 Via Dunant, 21100 Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao J, Yan Y, Salnikow K, Kluz T, Costa M. Nickel-induced down-regulation of serpin by hypoxic signaling. Toxicol Appl Pharmacol 2004; 194:60-8. [PMID: 14728980 DOI: 10.1016/j.taap.2003.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nickel (Ni) carcinogenesis is thought to involve gene chip silencing by epigenetic mechanisms. Serpina3g, a member of the mouse serpin family, was among the most down-regulated genes (32-fold) in response to Ni exposure of mouse cells based on the Affymetrix gene chip. Serpina3g down-regulation was controlled by a hypoxia inducible factor (HIF) mechanism. The exposure of cells to cobalt (Co), hypoxia, the iron chelator deferoxamine, and the proline hydroxylase inhibitor dimethyloxalylglycine (DMOG) also down-regulated serpina3g transcription to similar extents as soluble Ni exposure. These results support the mounting experimental evidence that water-soluble Ni compounds have a predominant effect on hypoxia signaling because of their ability to interfere with Fe homeostasis in the cell. Trichostatin A (TSA) and 5-azacytidine (5-AzaC) reactivated the Ni-silenced serpina3g gene, indicating that its silencing by Ni involved either a direct or indirect epigenetic mechanism. Analysis of the chromatin state of the serpina3g promoter by the ChIP assay revealed that exposure of mouse fibroblast cells to Ni resulted in the methylation of H3 lysine 9 within its promoter, as well as a decrease in the phosphorylation of serine 10 of H3 and a marked decrease in the acetylation of H3 and H4. Serpina3g gene expression returned to basal levels following Ni removal, suggesting that the observed silencing was a dynamic and reversible process.
Collapse
Affiliation(s)
- Jianhua Zhao
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
11
|
Mak M, Mak P, Olczak M, Szalewicz A, Glogowski J, Dubin A, Watorek W, Ciereszko A. Isolation, characterization, and cDNA sequencing of α-1-antiproteinase-like protein from rainbow trout seminal plasma. Biochim Biophys Acta Gen Subj 2004; 1671:93-105. [PMID: 15026150 DOI: 10.1016/j.bbagen.2004.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 02/03/2004] [Indexed: 01/02/2023]
Abstract
Seminal plasma of teleost fish contains serine proteinase inhibitors related to those present in blood. These inhibitors can be bound to Q-Sepharose and sequentially eluted with a NaCl gradient. In the present study, using a two-step procedure, we purified (73-fold to homogeneity) and characterized the inhibitor eluted as the second fraction of antitrypsin activity (inhibitor II) from Q-Sepharose. The molecular weight of this inhibitor was estimated to be 56 kDa with an isoelectric point of 5.4. It effectively inhibited trypsin and chymotrypsin but was less effective against elastase. It formed SDS-stable complexes with cod and bovine trypsin. Inhibitor II appeared to be a glycoprotein. Carbohydrate content was determined to be 16%. N-terminal Edman sequencing allowed identification of the first 30 N-terminal amino acids HDGDHAGHTEDHHHHLHHIAGEAHPQHSHG and 25 amino acids within the reactive loop IMPMSLPDTIMLNRPFLLFILEDST. The N-terminal sequence did not match any known sequence, however, the sequence within the reactive loop was significantly similar to carp and mammalian alpha1-antiproteinases. Both sequences were used to construct primers and obtain a cDNA sequence from liver. The mRNA coding the protein is 1675 nt in length including a single open reading frame of 1281 nt that encodes 426 amino acid residues. Analysis of this sequence indicated the presence of putative conserved serpin domains and confirmed the similarity to carp alpha1-antiproteinase and mammalian alpha1-antiproteinase. Our results indicate that inhibitor II belongs to the serpin superfamily and is similar to alpha1-antiproteinase.
Collapse
Affiliation(s)
- Monika Mak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The increasing utilization of heavy metals in modern industries leads to an increase in the environmental burden. Nickel represents a good example of a metal whose use is widening in modern technologies. As the result of accelerated consumption of nickel-containing products nickel compounds are released to the environment at all stages of production and utilization. Their accumulation in the environment may represent a serious hazard to human health. Among the known health related effects of nickel are skin allergies, lung fibrosis, variable degrees of kidney and cardiovascular system poisoning and stimulation of neoplastic transformation. The mechanism of the latter effect is not known and is the subject of detailed investigation. This review provides an analysis of the current state in the field.
Collapse
Affiliation(s)
- E Denkhaus
- Department of Instrumental Analytical Chemistry, Gerhard-Mercator University of Duisburg, Lotharstrasse 1, 47057 Duisburg, Germany
| | | |
Collapse
|
13
|
Abstract
Nickel compounds are known human carcinogens, but the exact molecular mechanisms of nickel carcinogenesis are not known. Due to their abundance, histones are likely targets for Ni(II) ions among nuclear macromolecules. This paper reviews our recent studies of peptide and protein models of Ni(II) binding to histones. The results allowed us to propose several mechanisms of Ni(II)-inflicted damage, including nucleobase oxidation and sequence-specific histone hydrolysis. Quantitative estimations of Ni(II) speciation, based on these studies, support the likelihood of Ni(II) binding to histones in vivo, and the protective role of high levels of glutathione. These calculations indicate the importance of histidine in the intracellular Ni(II) speciation.
Collapse
Affiliation(s)
- W Bal
- Faculty of Chemistry, University of Wrocław, Poland.
| | | | | |
Collapse
|
14
|
|
15
|
Kotyza J, Varghese AH, Korza G, Sunderman FW. Interactions of serine proteinases with pNiXa, a serpin of Xenopus oocytes and embryos. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:266-76. [PMID: 9540798 DOI: 10.1016/s0167-4838(97)00165-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a previous study, kinetic assays showed that pNiXa, an Ni(II)-binding serpin of Xenopus oocytes and embryos, strongly inhibits bovine chymotrypsin, weakly inhibits porcine elastase, and does not inhibit bovine trypsin. In this study, analyses by SDS-PAGE and gelatin zymography showed that an SDS-resistant complex is formed upon the interaction of pNiXa with bovine chymotrypsin. No such pNiXa-enzyme complex was detected after pNiXa interactions with porcine elastase, bovine trypsin, or human cathepsin G. The major products of pNiXa cleavage by the four proteinases were partially sequenced by Edman degradation. The cleavage products were also tested by immunoblotting with an antibody to the His-cluster of pNiXa, and by radio-blotting with 63Ni(II). These assays showed that chymotrypsin and elastase cleave pNiXa at the P1-P1 (Thr-Lys) peptide bond near the C-terminus, while trypsin and cathepsin G cleave pNiXa at specific peptide bonds near the N-terminus, within an interesting 26-residue segment, rich in Lys and Gln, that separates the His-cluster of pNiXa from the rest of the molecule. The segment lacks homology to other serpins, but resembles a domain of Xenopus POU3 transcription factor. This study identifies the specific sites for interactions of four serine proteinases with pNiXa, indicates that pNiXa inhibition of chymotrypsin involves a serpin-like mechanism, and shows that 63Ni(II)-binds to the His-cluster of pNiXa.
Collapse
Affiliation(s)
- J Kotyza
- Department of Laboratory Medicine, School of Medicine, University of Connecticut, Farmington 06030, USA
| | | | | | | |
Collapse
|