1
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
2
|
LI ZHE, PAN CHENYI, ZHENG BEIHONG, XIANG LIANG, YANG WANXI. Immunocytochemical studies on the acroframosome during spermiogenesis of the caridean shrimpMacrobrachium nipponense(Crustacea, Natantia). INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Chang YC, Chen YJ, Wu CH, Wu YC, Yen TC, Ouyang P. Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes. J Cell Biochem 2010; 109:1274-85. [PMID: 20186884 DOI: 10.1002/jcb.22517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomal protein 55 (Cep55), located in the centrosome in interphase cells and recruited to the midbody during cytokinesis, is essential for completion of cell abscission. Northern blot previously showed that a high level of Cep55 is predominantly expressed in the testis. In the present study, we examined the spatial and temporal expression patterns of Cep55 during mouse testis maturation. We found that Cep55, together with pericentrin, another centrosomal protein, were localized to the intercellular bridges (IBs) interconnecting spermatogenic cells in a syncytium. The IBs were elaborated as a double ring structure formed by an inner ring decorated by Cep55 or pericentrin and an outer ring of mitotic kinesin-like protein 1 (MKLP1) in the male germ cell in early postnatal stages and adulthood. In addition, Cep55 and pericentrin were also localized to the acrosome region and flagellum neck and middle piece in elongated spermatids, respectively. These results suggest that Cep55 and pericentrin are required for the stable bridge between germ cells during spermatogenesis and spermiogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
4
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
5
|
Kierszenbaum AL. Cell-cycle regulation and mammalian gametogenesis: a lesson from the unexpected. Mol Reprod Dev 2007; 73:939-42. [PMID: 16708369 DOI: 10.1002/mrd.20536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The progression of mammalian gametogenesis requires a precise balance between cell-cycle activities and elimination of defective gametogenic cells to ensure the perpetuation of species. Both spermatogonia and oogonia are stem cell populations committed to meiosis with the aim of generating haploid gametes for fertilization. At puberty, mitotically dividing spermatogonial cell cohorts maintain the ability of cell renewal and occupy niches in the seminiferous tubule. In contrast, mitotically dividing oogonial cell cohorts produced in the fetal ovary, are exclusively committed to meiosis and produce primordial follicles housing a primary oocyte surrounded by somatic follicular cells. A consistent physiological event during mammalian gametogenesis is the disposal of spermatogenic cells by apoptosis and ovarian follicles by atresia. Cyclin-dependent kinases (Cdks) and their cyclin partners coordinate the activities of the cell cycle. An additional cell-cycle regulatory component is the centrosome. The centrosome harbors regulatory proteins controlling the normal progression of the cell cycle. Changes in individual centrosome proteins can lead to cell-cycle arrest and a decrease in the genomic protective function of p53 that promotes apoptosis. Disruption of cyclin A1, Cdk2, and Cdk4 expression in transgenic mice results in infertility and gonadal atrophy. Cdk-cyclin complexes interact with regulatory proteins, which may fine-tune the activities of the complex. One of the many regulatory proteins is p12, a 115 amino acid growth suppressor polypeptide designated p12(CDK2AP1), partner of Cdk2 and with binding affinity to DNA polymerase alpha/primase. Overexpression of p12 is associated with testicular and ovarian atrophy without affecting fertility. Ectopic expression of p12 was driven by the keratin 14 promoter. Keratin 14 is the pairing partner of keratin 5 and both keratins are expressed in testis. The efficiency of keratin promoters in driving ectopic gonadal gene expression, the association of gonadal atrophy with the ectopic expression of a Cdk2 regulatory protein and the centrosome, as a reservoir of cell-cycle regulatory proteins, open new experimental opportunities to address still lingering questions concerning cell differentiation and division during mammalian gametogenesis.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031, USA.
| |
Collapse
|
6
|
Greenbaum MP, Ma L, Matzuk MM. Conversion of midbodies into germ cell intercellular bridges. Dev Biol 2007; 305:389-96. [PMID: 17383626 PMCID: PMC2717030 DOI: 10.1016/j.ydbio.2007.02.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.
Collapse
Affiliation(s)
- Michael P. Greenbaum
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Lang Ma
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Martin M. Matzuk
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Corresponding author: Martin M. Matzuk, MD. PhD., The Stuart A. Wallace Chair and Professor, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, , Tel: 713-798-6451, FAX: 713-798-5833
| |
Collapse
|
7
|
Greenbaum MP, Yan W, Wu MH, Lin YN, Agno JE, Sharma M, Braun RE, Rajkovic A, Matzuk MM. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A 2006; 103:4982-7. [PMID: 16549803 PMCID: PMC1458781 DOI: 10.1073/pnas.0505123103] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis in somatic cells concludes with the formation of a midbody, which is abscised to form individual daughter cells. In contrast, germ cell cytokinesis results in a permanent intercellular bridge connecting the daughter cells through a large cytoplasmic channel. During spermatogenesis, proposed roles for the intercellular bridge include germ cell communication, synchronization, and chromosome dosage compensation in haploid cells. Although several essential components of the midbody have recently been identified, essential components of the vertebrate germ cell intercellular bridge have until now not been described. Herein, we show that testis-expressed gene 14 (TEX14) is a novel protein that localizes to germ cell intercellular bridges. In the absence of TEX14, intercellular bridges are not observed by using electron microscopy and other markers. Spermatogenesis in Tex14(-/-) mice progresses through the transit amplification of diploid spermatogonia and the expression of early meiotic markers but halts before the completion of the first meiotic division. Thus, TEX14 is required for intercellular bridges in vertebrate germ cells, and these studies provide evidence that the intercellular bridge is essential for spermatogenesis and fertility.
Collapse
Affiliation(s)
| | - Wei Yan
- Departments of *Pathology
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; and
| | | | - Yi-Nan Lin
- Departments of *Pathology
- Molecular and Cellular Biology, and
| | | | - Manju Sharma
- **Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Robert E. Braun
- **Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195
| | - Aleksandar Rajkovic
- Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Martin M. Matzuk
- Departments of *Pathology
- Molecular and Human Genetics
- Molecular and Cellular Biology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Kierszenbaum AL, Rosselot C, Rivkin E, Tres LL. Role of integrins, tetraspanins, and ADAM proteins during the development of apoptotic bodies by spermatogenic cells. Mol Reprod Dev 2006; 73:906-17. [PMID: 16557522 DOI: 10.1002/mrd.20470] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously reported that Sertoli cell geometric changes induced by a Fas (CD95) agonist or by restricting Sertoli cell spreading can trigger spermatogenic cell detachment from Sertoli cell surfaces and initiate a programmed cell death sequence. Here, we have focused on ADAM proteins, tetraspanins CD9 and CD81, and the integrin beta1 subunit, which is co-expressed in testis with integrin alpha3 and integrin alpha6 subunits, to understand how these molecules may stabilize spermatogenic cell attachment to Sertoli cell surfaces. Like ADAM proteins, integrin beta1, alpha3, and alpha6 subunits, and CD9 and CD81 transcripts are expressed in the fetal testis and throughout testicular maturation, as well as, in Sertoli-spermatogenic cell co-cultures. Prespermatogonia (gonocytes) display CD9 and CD81 immunoreactive sites. Integrin alpha6 subunit transcripts have unusual developmental characteristics: fetal testis expresses the integrin alpha6B isoform exclusively. In contrast, the integrin alpha6B isoform co-exists with the integrin alpha6A isoform in prepubertal testes and Sertoli-spermatogenic cell co-cultures. A blocking anti body targeting the extracellular domain (N-terminal) of the integrin beta1 subunit causes rapid contraction of Sertoli cells leading to the gradual detachment of associated spermatogenic cells. In contrast, predicted active site peptides targeting the disintegrin domain of ADAM 1, ADAM 2, ADAM 3 (cyritestin), ADAM 4, ADAM 5, ADAM 6, and ADAM 15 (metragidin) do not disturb significantly the attachment of spermatogenic cells to Sertoli cell surfaces. Spermatogenic cells dislodged from their attachment sites by the integrin beta1 subunit blocking antibody display annexin V immunoreactivity, a sign of early apoptosis. Time-lapse videomicroscopy demonstrates that the removal by apoptosis of a single member of a spermatogenic cell cohort inter-connected by cytoplasmic bridges does not affect the remaining members of the cohort. During spermatogenic cell apoptosis, integrin beta1, alpha3, and alpha6 subunits, and tetraspanins CD9 and C81 become displaced away from the developing apoptotic bodies. In contrast, the intermediate filament protein Sak57, a keratin 5 ortholog, concentrates in the developing apoptotic bodies. We propose that the redistribution of integrin-tetraspanin complexes during spermatogenic cell apoptosis may be evidence of a signaling cascade initiated by Sertoli cell geometric changes. As a result, Sertoli cell reduction in surface area may be a limiting factor of spermatogenic cell survival and in the developmental regulation of spermatogenic cell progenies in the intact seminiferous epithelium.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The Sophie Davis School of Biomedical Education/The City University of New York Medical School, New York, NY 10031, USA
| | | | | | | |
Collapse
|
9
|
Kierszenbaum AL, Rivkin E, Tres LL. The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet Genome Res 2004; 103:337-44. [PMID: 15051957 DOI: 10.1159/000076822] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 11/10/2003] [Indexed: 11/19/2022] Open
Abstract
Protein and vesicle cargos can be mobilized during spermiogenesis by intramanchette transport utilizing microtubule-based protein motors (kinesins and dyneins). However, actin-based unconventional myosin motors may also play a significant role in targeting vesicle cargos to subcellular compartments during sperm development. Here we report that myosin Va, an actin-based motor protein, is a component of the acroplaxome of rodent spermatids. The acroplaxome is an F-actin/keratin-containing scaffold plate with a marginal ring fastening the caudal recess of the developing acrosome to the nuclear envelope during spermatid nuclear shaping. In contrast to the acroplaxome, fluorescently labeled phalloidin does not produce an obvious F-actin signal in the manchette. However, immunogold electron microscopy detects moderate but specific beta-actin immunoreactivity along interconnected tube-like bundles of manchette microtubules. We also show that the membrane of vesicles co-fractionated with intact manchettes by sucrose gradient ultracentrifugation display immunogold-labeled myosin Va. Myosin Va vesicle localization is known to correlate with Rab proteins, monomeric GTPases of the Ras superfamily which recruit myosin Va/VIIa motor proteins through intermediate proteins. RT-PCR analysis demonstrates that transcripts for Rab27a and Rab27b and Slac2-c (a protein that links Rab27a/b to myosin Va/VIIa) are expressed in testis. These results indicate that two independent cytoskeletal tracks, F-actin in the acroplaxome and presumably in the manchette, and manchette microtubules, may facilitate short-range (from the Golgi to the acrosome) and long-range (from the manchette to the centrosome and axoneme) mobilization of appropriate cargos during spermiogenesis.
Collapse
Affiliation(s)
- A L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School/ The Sophie Davis School of Biomedical Education, New York, NY 10031, USA.
| | | | | |
Collapse
|
10
|
Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 2003; 14:4628-40. [PMID: 14551252 PMCID: PMC266778 DOI: 10.1091/mbc.e03-04-0226] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The Sophie Davis School of Biomedical Education/The City University of New York Medical School, New York New York 10031, USA.
| | | | | |
Collapse
|
11
|
Ventelä S, Toppari J, Parvinen M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 2003; 14:2768-80. [PMID: 12857863 PMCID: PMC165675 DOI: 10.1091/mbc.e02-10-0647] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stable cytoplasmic bridges (or ring canals) connecting the clone of spermatids are assumed to facilitate the sharing of haploid gene products and synchronous development of the cells. We have visualized these cytoplasmic bridges under phase-contrast optics and recorded the sharing of cytoplasmic material between the spermatids by a digital time-lapse imaging system ex vivo. A multitude of small (ca. 0.5 microm) granules were seen to move continuously over the bridges, but only 28% of those entering the bridge were actually transported into other cell. The average speed of the granules decreased significantly during the passage. Immunocytochemistry revealed that some of the shared granules contained haploid cell-specific gene product TRA54. We also demonstrate the novel function for the Golgi complex in acrosome system formation by showing that TRA54 is processed in Golgi complex and is transported into acrosome system of neighboring spermatid. In addition, we propose an intercellular transport function for the male germ cell-specific organelle chromatoid body. This mRNA containing organelle, ca. 1.8 microm in diameter, was demonstrated to go over the cytoplasmic bridge from one spermatid to another. Microtubule inhibitors prevented all organelle movements through the bridges and caused a disintegration of the chromatoid body. This is the first direct demonstration of an organelle traffic through cytoplasmic bridges in mammalian spermatogenesis. Golgi-derived haploid gene products are shared between spermatids, and an active involvement of the chromatoid body in intercellular material transport between round spermatids is proposed.
Collapse
Affiliation(s)
- Sami Ventelä
- Department of Anatomy, Turku Graduate School of Biomedical Science, University of Turku, FIN-20520 Turku, Finland.
| | | | | |
Collapse
|
12
|
Penttilä TL, Parvinen M, Paranko J. Microtubule-associated epithelial protein E-MAP-115 is localized in the spermatid manchette. INTERNATIONAL JOURNAL OF ANDROLOGY 2003; 26:166-74. [PMID: 12755995 DOI: 10.1046/j.1365-2605.2003.00406.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A microtubule-associated protein E-MAP-115 has been originally isolated and characterized from HeLa cells. Because of its predominant expression in cultured cells of epithelial origin, it has been suggested to be involved in the regulation of cell polarization. The present immunocytochemical, Northern blot and in situ hybridization analysis of E-MAP-115 in the mouse and rat seminiferous epithelium indicates its distinct association with the spermatid manchette, a unique microtubular structure which appears in the cytoplasm of spermatids at step 8 when nuclear polarization and elongation starts. At steps 15-16 when manchette has been disassembled, immunoreactivity for E-MAP-115 disappeared. At immunoelectron microscopical level, E-MAP-15 was associated with the microtubules of the manchette. In the Western and Northern blot analysis, a distinct stage-dependent expression of a single E-MAP-115 polypeptide and two mRNA species (3.4 and 2.4 kb) could be identified. MTEST 60, a spermatid-specific transcript, showed a 100% homology over region of 68-193 bp of E-MAP-115 sequence. The reported specific localization of E-MAP-115 to the spermatid manchette strongly supports its role as a regulator of cell polarization. This, in turn, supports the hypotheses concerning the dynamic function of the manchette during spermiogenesis.
Collapse
|
13
|
Kierszenbaum AL, Tres LL. Bypassing natural sperm selection during fertilization: the azh mutant offspring experience and the alternative of spermiogenesis in vitro. Mol Cell Endocrinol 2002; 187:133-8. [PMID: 11988320 DOI: 10.1016/s0303-7207(01)00692-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular aspects of spermiogenesis can be studied using mouse mutants and spermatids developed in vitro. The azh/azh mutant is an attractive model system because structural abnormalities in the sperm head and the ectopic position of the manchette are associated with tail bending and looping. Spermatids, developing an axoneme in vitro and capable of cell motility, offer the possibility of the dynamic analysis of tail development. Offspring generated by intracytoplasmic injection of azh/azh sperm heads into normal mouse oocytes complement the mouse mutant approach. A central question of sperm tail development is the role of the manchette, a transient microtubular structure assembled soon after the organization of the axoneme. The fractionation of intact manchettes by gradient centrifugation has enabled a biochemical analysis of constitutive tubulin isotypes and transiently associated proteins. For example, keratins Sak57, Odf1, and Odf2 are initially stored in the manchette before being sorted to the outer dense fibers and fibrous sheath of the developing spermatid tail. Additional proteins associated with the manchette include two proteases, the 26S proteasome and N-arginine convertase (both sorted to the developing spermatid tail), a spermatid perinuclear RNA binding protein, Spag4, an Odf1-binding protein, and type 4 cAMP-specific phosphodiesterase D. Keratin 9 and delta-tubulin are two proteins found in the perinuclear ring of the manchette, the insertion site of the microtubular mantle. Available data indicate that the manchette is a highly dynamic structure providing microtubular tracks to structural proteins participating in the sperm tail development.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, 138th Street and Convent Avenue, J-903, New York, NY 10031, USA
| | | |
Collapse
|
14
|
Kierszenbaum AL. Keratins: unraveling the coordinated construction of scaffolds in spermatogenic cells. Mol Reprod Dev 2002; 61:1-2. [PMID: 11774369 DOI: 10.1002/mrd.1124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent work shows that two groups of keratins are expressed during mammalian spermatogenesis. One group, belonging to the classic epidermis-type keratins, is present in spermatogonia, spermatocytes, and spermatids. A member of this group, Sak57, a keratin 5 homologue, has been shown to co-align with microtubules and provide a scaffolding shell while also strengthening intercellular cytoplasmic bridges conjoining members of spermatogonial and spermatocyte cohorts. The other, keratin 9, is a component of the perinuclear ring of the manchette, a microtubular structure developed during the elongation and condensation of the spermatid nucleus. The second group, the outer dense fiber (Odf) proteins, is expressed preferentially during mammalian spermiogenesis. The family of Odf proteins-Odf1, Odf2, and Odf3-includes an expanding group of proteins co-assembled along the axoneme during the development of the sperm tail. Investigations on the assembly of epidermis-type and Odf sperm tail-targeted keratins are now focused on a group of chaperone-like Odf-binding molecules, designated Spags. Spags appear to drive Odfs to a precise destination. A daunting task is to determine how members of the family of keratins get the signal to produce linear scaffolds in specific spermatogenic cell populations and transport keratins to microtubule-containing structures such as the manchette and axoneme.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, New York, New York 10031, USA.
| |
Collapse
|
15
|
Abstract
Spermiogenesis pursues three major objectives: (1) The safeguard of the male genome within the confines of a compact nucleus. (2) The accumulation of enzymes in the acrosome of be released at fertilization. (3) The development of a sperm propelling tail consisting of an axoneme surrounded by a scaffold of keratin-containing outer dense fibers and a fibrous sheath. Recent experimental data indicate that three keratins-Sak57, 0df1 and 0df2-and other proteins (the 26S proteasome and the 0df1-binding protein Spag4) are temporarily stored in the manchette before being sorted to the developing sperm tail. These findings support a general model for the manchette as an ephemeral structure timely developed and strategically positioned to provide a transient storage to both structural and signaling proteins. Some of the proteins are later sorted to the developing tail; others may participate in the reciprocal nuclear-cytoplasmic signaling pathways as the gene activity of the male genome gradually becomes silent. Mol. Reprod. Dev. 59: 347-349, 2001.
Collapse
Affiliation(s)
- A L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, 138th Street and Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|
16
|
Shao X, Tarnasky HA, Lee JP, Oko R, van der Hoorn FA. Spag4, a novel sperm protein, binds outer dense-fiber protein Odf1 and localizes to microtubules of manchette and axoneme. Dev Biol 1999; 211:109-23. [PMID: 10373309 DOI: 10.1006/dbio.1999.9297] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outer dense fibers are structures unique to the sperm tail. No definite function for these fibers has been found, but they may play a role in motility and provide elastic recoil. Their composition had been described before, but only two of the fiber proteins, Odf1 and Odf2, are cloned. We cloned Odf2 by virtue of its functional and specific interaction with Odf1, which, we show, is mediated by a leucine zipper. Further work demonstrated that the 84-kDa Odf2 protein localizes to both the cortex and the medulla of the fibers, whereas the 27-kDa Odf1 protein is present only in the medulla. Here we report the cloning and characterization of a new Odf1-interacting protein, Spag4. Spag4 mRNA is spermatid specific, and the 49-kDa Spag4 protein complexes specifically with Odf1, but not Odf2, mediated by a leucine zipper. It also self-associates. In contrast to Odf1 and Odf2, Spag4 protein localizes to two microtubule-containing spermatid structures. Spag4 is detectable in the transient manchette and it is associated with the axoneme in elongating spermatids and epididymal sperm. Our data suggest a role for Spag4 in protein localization to two major sperm tail structures.
Collapse
Affiliation(s)
- X Shao
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
17
|
Tres LL, Kierszenbaum AL. Cell death patterns of the rat spermatogonial cell progeny induced by sertoli cell geometric changes and Fas (CD95) agonist. Dev Dyn 1999; 214:361-71. [PMID: 10213391 DOI: 10.1002/(sici)1097-0177(199904)214:4<361::aid-aja8>3.0.co;2-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spermatogonial-Sertoli cell co-cultures, prepared from sexually immature rats (7-10 days old) and maintained for experimental purposes for a maximum period of time of eight days, were used to determine whether Sertoli cell geometry can influence spermatogonial cell growth, viability and differentiation. We have found that when Sertoli cells are allowed to stretch, spermatogonial cell cohorts attached to Sertoli cell surfaces remain viable and exhibit typical cell oscillatory movements with a maximal oscillation radial length of 0.8 microm throughout the duration of the experiments. However, spermatogonial cell viability decreased when Sertoli cells were compelled to contract by preventing cell spreading onto a non-adhesive substrate. A video-microscopy analysis of spermatogonial cells progenies cocultured with contracted Sertoli cells revealed that conjoined members of the cohorts displayed a typical apoptotic sequence preceded by vigorous oscillatory cell movements (maximal oscillation radial length: 1.5 microm) followed by the release of apoptotic bodies and cessation of cell movements. This sequence of events occurred in a single cell. Upon completion of this sequence, another member of the cohort initiated the same cell death course until all members completed the cell death sequence. A similar apoptotic sequence was observed following addition of Fas (CD95/APO-1) antibody (ligand agonist) to the cocultures. Fragmentation of the actin-containing cytoskeleton was observed by indirect immunofluorescence in apoptotic spermatogonial cell cohorts, independent from the activating mechanism. We conclude that by forcing Sertoli cells to contract or by adding an apoptosis inducer to the cocultures, individual members of a spermatogonial cell cohort switch on a death (apoptosis) program in a coordinated fashion.
Collapse
Affiliation(s)
- L L Tres
- Department of Cell Biology and Anatomical Sciences, The City University of New York Medical School, New York 10031, USA
| | | |
Collapse
|
18
|
Blottner S, Roelants H. Quantification of somatic and spermatogenic cell proliferation in the testes of ruminants, using a proliferation marker and flow cytometry analysis. Theriogenology 1998; 49:1275-87. [PMID: 10732065 DOI: 10.1016/s0093-691x(98)00075-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We compared 2 methods for the quantification of proliferation in somatic and spermatogenic compartments of post mortem-collected testes in cattle and roe deer. Proliferation was evaluated by estimation of the tissue polypeptid specific antigen (TPS) using an ELISA. This proliferation-specific marker was detected in homogenized cells after selective enrichment of different cell types by density gradient centrifugation. The haploid, diploid and tetraploid cells were monitored by one-parameter flow cytometry and analyzed for mitotic cell cycle. Somatic and spermatogenic cells were discriminated by dual-parameter flow cytometry after DNA staining with propidium iodide and selective labelling of stromatic cells with a vimentin antibody. The TPS was related to the ploidy of cells and their somatic or spermatogenic type. High concentrations of TPS were found in both species. The TPS values varied with different contents of spermatogenic and somatic cells in the fractions of the density gradient. The TPS was positively correlated with spermatogenic cells in the G2/M phase of mitotic cycle (r = 0.474; P < 0.01) and negatively correlated with somatic cells (r = -0.676; P < 0.0001) in roe deer (n = 40). Discrimination of germinative and stromatic cells in the G2-M phase showed their varying proliferation during the annual cycle in roe deer. The quantification of tetraploid spermatogenic cells allowed the calculation of an exact meiotic transformation (ratio haploid:tetraploid cells). In conclusion, TPS indicates proliferation in the germinative compartment of the testes. However, this marker provides only relative values, without information on the number and type of proliferating cells. Dual-parameter flow cytometry using specific staining for vimentin proves to be a better method for studying changing mitotic and meiotic steps during the involution and recrudescence of testes in seasonally breeding ruminants, as it relates proliferative processes directly to both spermatogenic and somatic cells.
Collapse
Affiliation(s)
- S Blottner
- Institute for Zoo Biology and Wildlife Research, Berlin, Germany
| | | |
Collapse
|