1
|
Daftary GS, Tetrault AM, Jorgensen EM, Sarno J, Taylor HS. A novel role for the AAA ATPase spastin as a HOXA10 transcriptional corepressor in Ishikawa endometrial cells. Mol Endocrinol 2011; 25:1539-49. [PMID: 21757506 PMCID: PMC3165913 DOI: 10.1210/me.2011-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023] Open
Abstract
Homeobox A10 (HOXA10), a transcription factor required for uterine development and embryo receptivity, functions downstream of estrogen and progesterone in uterine endometrium. HOXA10 represses endometrial expression of empty spiracles homeobox 2 (EMX2), the human ortholog of Drosophila empty spiracles. The ATPases associated with various cellular activities (AAA) ATPase spastin has a well-characterized role in neurotransmitter trafficking. In this study, we characterize a novel role of spastin in transcriptional regulation. We identified spastin as a novel component of the HOXA10 transcriptional complex in Ishikawa nuclear extracts by immunoprecipitation and mass spectrophotometry. Using EMX2 as a model endometrial HOXA10 target gene, we show that the HOXA10-spastin corepressor complex bound the EMX2 promoter in chromatin immunoprecipitation assays. HOXA10 has been previously shown to repress endometrial EMX2 expression. We further observed that, although cotransfection of HOXA10 and spastin continued to repress endometrial EMX2-luciferase expression, the repression was reversed when spastin small interfering RNA was cotransfected with HOXA10. Mutations in the nuclear localization signal sequences of spastin abrogated not only its nuclear translocation but also its colocalization with HOXA10 as well as reversed EMX2-luciferase repression. Here, we describe a novel role for the AAA ATPase spastin in Ishikawa cells as a HOXA10 corepressor of EMX2. Uterine EMX2 levels are inversely related to embryo implantation rates. HOXA10 acts downstream of progesterone and has been shown to facilitate embryo implantation through regulation of endometrial EMX2 expression. Endometrial spastin, therefore, likely has a novel function downstream of estrogen and progesterone in implantation biology as a cofactor of HOXA10.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota 55902, USA.
| | | | | | | | | |
Collapse
|
2
|
Xiong M, Zhang H, Jin L, Ai J, Huang Z, Zhu G. Association of controlled ovarian hyperstimulation treatment with down-regulation of key regulators involved in embryonic implantation in mice. ACTA ACUST UNITED AC 2011; 31:535. [PMID: 21823018 DOI: 10.1007/s11596-011-0486-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Indexed: 01/18/2023]
Abstract
The debate exists whether or not gonadotropin-releasing hormone (GnRH) analogs used in controlled ovarian hyperstimulation (COH) impair endometrial receptivity. Homeobox A11 (Hoxa11), Meis homeobox 1 (Meis1), cadherin 1 (Cdh1), and catenin beta 1 (Ctnnb1) are well known to be involved in successful implantation. In this study, the endometrial expression of Hoxa11, Meis1, Cdh1, and Ctnnb1 during the peri-implantation period was investigated in an in vitro fertilization (IVF) mouse model by real-time RT-PCR and Western blot to evaluate the relationship between Hoxa11, Meis1, Cdh1, and Ctnnb1 expression and the impact of the COH on endometrial receptivity. The mimic COH protocols included GnRH agonist plus human menopausal gonadotropin (HMG) (GnRH agonist group), GnRH antagonist plus HMG (GnRH antagonist group), and HMG alone (HMG group). The expression levels of Hoxa11, Meis1, Cdh1, and Ctnnb1 mRNA and protein were decreased in all of the COH groups. The expression levels of Hoxa11 and Ctnnb1 were the lowest in the GnRH agonist group, and those of Meis1 and Cdh1 were lower in the GnRH analog groups than the HMG group. There were positive correlations between the expression of Hoxa11 and Ctnnb1, as well as the expression of Meis1 and Cdh1 among all the groups. In conclusion, the COH protocols, particularly with GnRH analogs, suppressed Hoxa11, Meis1, Ctnnb1 and Cdh1 expression, in mouse endometrium during the peri-implantation period. Our data reveal a novel molecular mechanism by which the COH protocols might impair endometrial receptivity.
Collapse
Affiliation(s)
- Min Xiong
- Reproductive Medicine Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Jin
- Reproductive Medicine Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihui Ai
- Reproductive Medicine Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyong Huang
- Department of Surgery, Tongji Hospital, Tongji Mediccal College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guijin Zhu
- Reproductive Medicine Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Lovegrove B, Simões S, Rivas ML, Sotillos S, Johnson K, Knust E, Jacinto A, Hombría JCG. Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila. Curr Biol 2007; 16:2206-16. [PMID: 17113384 DOI: 10.1016/j.cub.2006.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hox genes control animal body plans by directing the morphogenesis of segment-specific structures. As transcription factors, HOX proteins achieve this through the activation of downstream target genes. Much research has been devoted to the search for these targets and the characterization of their roles in organogenesis. This has shown that the direct targets of Hox activation are often transcription factors or signaling molecules, which form hierarchical genetic networks directing the morphogenesis of particular organs. Importantly, very few of the direct Hox targets known are "realizator" genes involved directly in the cellular processes of organogenesis. RESULTS Here, we describe for the first time a complete network linking the Hox gene Abdominal-B to the realizator genes it controls during the organogenesis of the external respiratory organ of the larva. In this process, Abdominal-B induces the expression of four intermediate signaling molecules and transcription factors, and this expression results in the mosaic activation of several realizator genes. The ABD-B spiracle realizators include at least five cell-adhesion proteins, cell-polarity proteins, and GAP and GEF cytoskeleton regulators. Simultaneous ectopic expression of the Abd-B downstream targets can induce spiracle-like structure formation in the absence of ABD-B protein. CONCLUSION Hox realizators include cytoskeletal regulators and molecules required for the apico-basal cell organization. HOX-coordinated activation of these realizators in mosaic patterns confers to the organ primordium its assembling properties. We propose that during animal development, Hox-controlled genetic cascades coordinate the local cell-specific behaviors that result in organogenesis of segment-specific structures.
Collapse
Affiliation(s)
- Bridget Lovegrove
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, Connecticut 06520-8063, USA
| | | |
Collapse
|
5
|
Taylor HS, Fei X. Emx2 regulates mammalian reproduction by altering endometrial cell proliferation. Mol Endocrinol 2005; 19:2839-46. [PMID: 15994197 DOI: 10.1210/me.2005-0130] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms that underlie embryo implantation are poorly understood. Under the control of sex steroids, uterine endometrium undergoes tremendous, yet tightly controlled, proliferation in each estrous cycle to facilitate implantation; disorders of endometrial proliferation underlie several uterine diseases. We have previously identified the Emx2 gene as a transcriptional target of HOXA10 regulation in the reproductive tract. Here we report the function of Emx2 in murine implantation and regulation of endometrial proliferation. We transfected mice on d 2 post coitus with pcDNA3.1/Emx2, Emx2 antisense, or respective controls consisting of empty pcDNA3.1 or a random order oligonucleotide by intrauterine lipofection. Increased expression of Emx2 reduced average implantation rate by approximately 40% (P = 0.00006) resulting in an average number of implanted embryos per litter of 13.7 in the control group to 8.2 in the pcDNA3.1/Emx2-treated group. Neither treatment altered the number of mice attaining pregnancy with at least one embryo. Decreased Emx2 expression did not alter litter size. Neither treatment affected the birth weight of the pups. To elucidate potential mechanisms through which Emx2-regulated reproduction, markers of endometrial differentiation, proliferation, and apoptosis were assessed. Increased Emx2 expression significantly decreased endometrial cell proliferating cell nuclear antigen expression and 5'-bromo-2' deoxyuridine incorporation. Markers of stromal cell differentiation (IGF binding protein-1, prolactin), epithelial differentiation (calcitonin), and apoptosis (activated caspase3) were unchanged. In human endometrial epithelial cells in vitro, Emx2 reduced cell number indicating diminished proliferation. Emx2 controls mammalian reproduction by adjusting endometrial cell proliferation without effecting differentiation. Regulated uterine Emx2 expression is necessary during reproduction for maximal implantation and litter size.
Collapse
Affiliation(s)
- Hugh S Taylor
- Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA.
| | | |
Collapse
|
6
|
Abstract
The endometrium undergoes an ordered process of differentiation leading to receptivity to embryonic implantation. HOX genes direct this development in a fashion similar to that in which they direct embryonic development, including development of the reproductive tract. HOXA10 and HOXA11 expression increases during the menstrual cycle, increasing drastically in the midluteal phase, at the time of implantation. This expression is regulated by sex steroid hormones. This expression is necessary for implantation of the blastocyst as demonstrated by the decreased implantation rates in women with altered HOX expression. HOX genes are markers of endometrial receptivity. The possibility of augmenting HOX gene expression with gene therapy to improve implantation has promise for the future.
Collapse
Affiliation(s)
- Hye Eun Kwon
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 2008063, New Haven, CT 06520, USA
| | | |
Collapse
|
7
|
Akbas GE, Song J, Taylor HS. A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES). J Mol Biol 2004; 340:1013-23. [PMID: 15236964 DOI: 10.1016/j.jmb.2004.05.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/17/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms by which estrogens regulate developmental gene expression are poorly understood. While 17 beta-estradiol is normally present at high concentrations in pregnancy, exposure to the estrogen diethylstilbestrol (DES) in utero induces developmental anomalies of the female reproductive tract. HOX gene expression is altered by DES, leading to abnormal Müllerian duct differentiation. The mechanism of ligand-specific regulation of HOX gene expression by estrogens has not been characterized. To elucidate the molecular mechanism underlying ligand-specific estrogen regulation of HOXA10 expression, we characterized regulatory regions of the human HOXA10 gene. We identified an estrogen response element (ERE) in the human HOXA10 gene that mediated differential ligand-specific estrogen-responsive transcriptional activation. Deletional analysis and reporter expression assays identified two EREs, ERE1 and ERE2, each of which drove estrogen-responsive reporter expression in the Ishikawa human uterine endometrial adenocarcinoma cell line. ERE1 drove reporter expression maximally. This ERE bound ERalpha and ERbeta, and formed a complex that included SRC-1, but not CBP, N-CoR or SMRT. HOXA10 ERE1 drove luciferase reporter activity to eightfold the level driven by the consensus ERE in response to estradiol in Ishikawa cells. While most EREs demonstrate similar transcriptional activity in response to DES or estradiol, here estradiol induced four- to sevenfold greater reporter activity than did DES from HOXA10 ERE1. DES did not alter ER or SRC-1 binding to HOXA10 ERE1. HOXA10 ERE1 therefore demonstrated ligand specificity distinct from the consensus ERE, and unrelated to changes in ER or coactivator/corepressor binding. The ligand specificity of the HOXA10 ERE may explain the molecular mechanism by which DES leads to reproductive anomalies; differential ligand-specific activation of HOX genes may be a molecular mechanism by which DES signaling leads to inappropriate HOX expression and to developmental patterning distinct from that induced by estradiol.
Collapse
Affiliation(s)
- G Eda Akbas
- Yale University School of Medicine, Division of Reproductive Endocrinology, P.O. Box 208063, 333 Cedar Street, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
8
|
LaRonde-LeBlanc NA, Wolberger C. Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 2003; 17:2060-72. [PMID: 12923056 PMCID: PMC196259 DOI: 10.1101/gad.1103303] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/23/2003] [Indexed: 01/30/2023]
Abstract
The HOX/HOM superfamily of homeodomain proteins controls cell fate and segmental embryonic patterning by a mechanism that is conserved in all metazoans. The linear arrangement of the Hox genes on the chromosome correlates with the spatial distribution of HOX protein expression along the anterior-posterior axis of the embryo. Most HOX proteins bind DNA cooperatively with members of the PBC family of TALE-type homeodomain proteins, which includes human Pbx1. Cooperative DNA binding between HOX and PBC proteins requires a residue N-terminal to the HOX homeodomain termed the hexapeptide, which differs significantly in sequence between anterior- and posterior-regulating HOX proteins. We report here the 1.9-A-resolution structure of a posterior HOX protein, HoxA9, complexed with Pbx1 and DNA, which reveals that the posterior Hox hexapeptide adopts an altered conformation as compared with that seen in previously determined anterior HOX/PBC structures. The additional nonspecific interactions and altered DNA conformation in this structure account for the stronger DNA-binding affinity and altered specificity observed for posterior HOX proteins when compared with anterior HOX proteins. DNA-binding studies of wild-type and mutant HoxA9 and HoxB1 show residues in the N-terminal arm of the homeodomains are critical for proper DNA sequence recognition despite lack of direct contact by these residues to the DNA bases. These results help shed light on the mechanism of transcriptional regulation by HOX proteins and show how DNA-binding proteins may use indirect contacts to determine sequence specificity.
Collapse
Affiliation(s)
- Nicole A LaRonde-LeBlanc
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
9
|
Troy PJ, Daftary GS, Bagot CN, Taylor HS. Transcriptional repression of peri-implantation EMX2 expression in mammalian reproduction by HOXA10. Mol Cell Biol 2003; 23:1-13. [PMID: 12482956 PMCID: PMC140663 DOI: 10.1128/mcb.23.1.1-13.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 08/05/2002] [Accepted: 10/04/2002] [Indexed: 11/20/2022] Open
Abstract
HOXA10 is necessary for mammalian reproduction; however, its transcriptional targets are not completely defined. EMX2, a divergent homeobox gene, is necessary for urogenital tract development. In these studies we identify and characterize the regulation of EMX2 by HOXA10. By using Northern analysis and in situ hybridization, we found that EMX2 is expressed in the adult urogenital tract in an inverse temporal pattern from HOXA10, suggestive of a negative regulatory relationship. Constitutive expression of HOXA10 diminished EMX2 mRNA, whereas blocking HOXA10 through the use of antisense resulted in high EMX2 mRNA expression. Deletional analysis of the EMX2 5' regulatory region revealed that a 150-bp element mediated transcriptional repression when cotransfected with pcDNA3.1/HOXA10 in transient-transfection assays. Binding of HOXA10 protein to this element was demonstrated by electrophoretic mobility shift assay and further localized to a consensus HOXA10 binding site within this element by DNase I footprinting. Site-directed mutagenesis abolished binding, as well as the negative transcriptional regulation. Transcriptional activation of empty spiracles, the Drosophila ortholog of EMX2, by Abdominal-B (HOXA10 ortholog) has been previously demonstrated. These findings demonstrate conservation of the transcription factor-target gene relationship, although the direction of regulation is reversed with possible evolutionary implications.
Collapse
Affiliation(s)
- Patrick J Troy
- Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Mouse Emx2 homeobox gene is a very good dorsal marker for the developing cerebral cortex, as it is mainly expressed in this area from the very beginning of corticogenesis. Its cortical expression includes proliferating neuroblasts of the neuroepithelium, or ventricular zone, and the postmitotic Cajal-Retzius cells, known to control neuronal radial migration. Analysis of the phenotype of Emx2 null embryos has shown that this transcription factor plays important roles in neuroblast proliferation, migration and differentiation, as well as in the development of the diencephalon, where it has been shown to cooperate with Otx2. Moreover, the graded distribution of EMX2 homeoprotein along the antero-posterior and medial-lateral cortical axis, is responsible for the patterning of the forebrain, in particular for the specification process that defines cortical territories and area identity during neocortical development. Emx2 participates to this process as Pax6 and COUP-TF1. Finally Emx2 is very interesting from the evolutionary point of view, as it has been shown to share a high degree of homology in its sequence and function with Vax1, another homeobox gene regulating basal forebrain development. This homology traces back to Emx and Vax gene families, which are strongly related, as they are thought to derive from a common ancestor gene.
Collapse
Affiliation(s)
- Chiara Cecchi
- Developmental Biology Unit, DIBIT, Istituto Scientifico H. San Raffaele, v. Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
11
|
Daftary GS, Troy PJ, Bagot CN, Young SL, Taylor HS. Direct regulation of beta3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol 2002; 16:571-9. [PMID: 11875117 DOI: 10.1210/mend.16.3.0792] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen and progesterone regulate HOXA10 expression in the endometrium, where HOXA10 is necessary for implantation. The integrins are also involved in early embryo-endometrial interactions. Here we show that HOXA10 directly regulates beta3-integrin subunit expression in the endometrium, likely mediating the effect of sex steroids on beta3-integrin expression. beta3-Integrin expression was decreased in endometrium shown to have low HOXA10 expression. beta3-Integrin mRNA levels were increased in endometrial adenocarcinoma cells (Ishikawa) transfected with pcDNA3.1/HOXA10, and decreased in cells treated with HOXA10 antisense. Seven consensus HOXA10 binding sites were identified 5' of the beta3-integrin gene. Direct binding of HOXA10 protein to four sites was demonstrated by EMSA. Reporter gene expression increased in BT-20 cells cotransfected with pcDNA3.1/ HOXA10 and pGL3-promoter vector containing region F (encompassing all seven HOXA10 consensus sites). A 41-bp segment (Region A) showed highest affinity binding to HOXA10 protein. Increased reporter expression, equal in magnitude to that obtained with Region F, was obtained with Region A. HOXA10 protein binding within Region A was localized by deoxyribonuclease I footprinting. beta3-Integrin expression was directly up-regulated by HOXA10 through a 41-bp 5'-regulatory element. Sex steroids regulate the expression of endometrial beta3-integrin through a pathway involving HOXA10.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | | | | | |
Collapse
|
12
|
Wang W, Lo P, Frasch M, Lufkin T. Hmx: an evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila. Mech Dev 2000; 99:123-37. [PMID: 11091080 DOI: 10.1016/s0925-4773(00)00488-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.
Collapse
Affiliation(s)
- W Wang
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Mammalian homeogenes of the Emx family, Emx1 and Emx2, are expressed in the developing cerebral cortex and are involved in the patterning of the rostral brain. Although very little is known about the role of Emx1, details of the function of EMX2 are emerging from the observation of cortical phenotypes in normal and mutant mice. Emx2 is expressed in proliferating neuroblasts and in the so-called postmitotic Cajal-Retzius cells, known to control migration of cortical neurons. The graded distribution of EMX2 homeoprotein suggests a potential role for Emx2 in the subdivision of the cortex into territories and possibly areas.
Collapse
Affiliation(s)
- C Cecchi
- Molecular Developmental Biology Unit, DIBIT, Istituto Scientifico H San Raffaele, 20132 Milan, Italy
| | | |
Collapse
|
14
|
Taylor HS, Block K, Bick DP, Sherins RJ, Layman LC, Shering RJ. Mutation analysis of the EMX2 gene in Kallmann's syndrome. Fertil Steril 1999; 72:910-4. [PMID: 10560999 DOI: 10.1016/s0015-0282(99)00376-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the possibility that a mutation in the human EMX2 gene may be involved in Kallmann's syndrome. DESIGN In vitro experiment. SETTING Academic Medical Center. PATIENTS One hundred and twenty patients with Kallman's syndrome or idiopathic hypogonadotrophic hypogonadism (IHH). INTERVENTION Peripheral blood leukocytes were used to obtain DNA. MAIN OUTCOMES MEASURES Single-stranded conformational polymorphism (SSCP) analysis was used to identify possible mutations of the EMX2 gene. RESULTS One hundred and twenty patients with Kallmann's syndrome or IHH, had no mutations noted in this gene. CONCLUSION It is unlikely that EMX2 mutations are a clinically significant cause of IHH or Kallman's syndrome.
Collapse
Affiliation(s)
- H S Taylor
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Availability of complete bacterial genomes opens the way to the comparative approach to the recognition of transcription regulatory sites. Assumption of regulon conservation in conjunction with profile analysis provides two lines of independent evidence making it possible to make highly specific predictions. Recently this approach was used to analyze several regulons in eubacteria and archaebacteria. The present review covers recent advances in the comparative analysis of transcriptional regulation in prokaryotes and phylogenetic fingerprinting techniques in eukaryotes, and describes the emerging patterns of the evolution of regulatory systems.
Collapse
Affiliation(s)
- M S Gelfand
- State Scientific Center for Biotechnology 'NIIGenetika', Moscow, Russia.
| |
Collapse
|