1
|
Xu X, Jiang X, Song K, Zhang J, Tian Y, Chen Y, Weng J, Liang Y, Ma W. Stable expression and multi-site location of Odf2 in mouse oocytes, sperm and early embryos. Ann Anat 2023; 250:152126. [PMID: 37364712 DOI: 10.1016/j.aanat.2023.152126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
In mammals, centriole is degenerated during early oogenesis, but it is still not known about the expression and function of centriolar structural components in oocyte meiosis. Here we found that Odf2 (outer dense fiber of sperm tails 2), a key centriolar appendage protein, was stably expressed in mouse oocytes during meiotic progression. Distinct from its single location at centrosomes in somatic mitosis, Odf2 was multiply located at microtubule organizing centers (MTOCs), chromosome centromeres and vesicles in oocyte meiosis. In addition, the vesicle-associated Odf2 disappeared in oocytes treated with the vesicle inhibitor Brefeldin A. Odf2 was mainly co-localized with the mitochondrial sheath in the sperm tail and presented as double spots, similar to γ-tubulin, in the sperm neck region. After fertilization, Odf2 remained on vesicles in embryos from 1-cell to 4-cell stage but was only detected on centrosomes at blastocyst stage. Taken together, Odf2 is expressed precisely in mouse oocytes even in the absence of intact centriole structure, and may regulate oocyte spindle assembly and positioning, additionally, the sperm motility and early embryo development.
Collapse
Affiliation(s)
- Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Leung MR, Zeng J, Wang X, Roelofs MC, Huang W, Zenezini Chiozzi R, Hevler JF, Heck AJR, Dutcher SK, Brown A, Zhang R, Zeev-Ben-Mordehai T. Structural specializations of the sperm tail. Cell 2023; 186:2880-2896.e17. [PMID: 37327785 PMCID: PMC10948200 DOI: 10.1016/j.cell.2023.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Sperm motility is crucial to reproductive success in sexually reproducing organisms. Impaired sperm movement causes male infertility, which is increasing globally. Sperm are powered by a microtubule-based molecular machine-the axoneme-but it is unclear how axonemal microtubules are ornamented to support motility in diverse fertilization environments. Here, we present high-resolution structures of native axonemal doublet microtubules (DMTs) from sea urchin and bovine sperm, representing external and internal fertilizers. We identify >60 proteins decorating sperm DMTs; at least 15 are sperm associated and 16 are linked to infertility. By comparing DMTs across species and cell types, we define core microtubule inner proteins (MIPs) and analyze evolution of the tektin bundle. We identify conserved axonemal microtubule-associated proteins (MAPs) with unique tubulin-binding modes. Additionally, we identify a testis-specific serine/threonine kinase that links DMTs to outer dense fibers in mammalian sperm. Our study provides structural foundations for understanding sperm evolution, motility, and dysfunction at a molecular level.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Jianwei Zeng
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Marc C Roelofs
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Tzviya Zeev-Ben-Mordehai
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
3
|
Cao H, Xu H, Zhou Y, Xu W, Lu Q, Jiang L, Rong Y, Zhang Q, Yu C. BBOF1 is required for sperm motility and male fertility by stabilizing the flagellar axoneme in mice. Cell Mol Life Sci 2023; 80:152. [PMID: 37198331 PMCID: PMC11072524 DOI: 10.1007/s00018-023-04800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The sperm flagellum is a specialized type of motile cilium composed of a typical "9 + 2" axonemal structure with peri-axonemal structures, such as outer dense fibers (ODFs). This flagellar arrangement is crucial for sperm movement and fertilization. However, the association of axonemal integrity with ODFs remains poorly understood. Here, we demonstrate that mouse BBOF1 could interact with both MNS1, an axonemal component, and ODF2, an ODF protein, and is required for sperm flagellar axoneme maintenance and male fertility. BBOF1 is expressed exclusively in male germ cells from the pachytene stage onwards and is detected in sperm axoneme fraction. Spermatozoa derived from Bbof1-knockout mice exhibit a normal morphology, however, reduced motility due to the absence of certain microtubule doublets, resulting in the failure to fertilize mature oocytes. Furthermore, BBOF1 is found to interact with ODF2 and MNS1 and is also required for their stability. Our findings in mice suggest that Bbof1 could also be essential for human sperm motility and male fertility, thus is a novel potential candidate gene for asthenozoospermia diagnosis.
Collapse
Affiliation(s)
- Huiwen Cao
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Haomang Xu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yiqing Zhou
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Xu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qinglin Lu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Lingying Jiang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan Rong
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Chao Yu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Paukszto Ł, Wiśniewska J, Liszewska E, Majewska M, Jastrzębski J, Jankowski J, Ciereszko A, Słowińska M. Specific expression of alternatively spliced genes in the turkey (Meleagris gallopavo) reproductive tract revealed their function in spermatogenesis and post-testicular sperm maturation. Poult Sci 2023; 102:102484. [PMID: 36709584 PMCID: PMC9922982 DOI: 10.1016/j.psj.2023.102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
The tissue-specific profile of alternatively spliced genes (ASGs) and their involvement in reproduction processes characteristic of turkey testis, epididymis, and ductus deferens were investigated for the first time in birds. Deep sequencing of male turkey reproductive tissue RNA samples (n = 6) was performed using Illumina RNA-Seq with 2 independent methods, rMATs and SUPPA2, for differential alternative splicing (DAS) event prediction. The expression of selected ASGs was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. The testis was found to be the site of the highest number of posttranscriptional splicing events within the reproductive tract, and skipping exons were the most frequently occurring class of alternative splicing (AS) among the reproductive tract. Statistical analysis revealed 86, 229, and 6 DAS events in the testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparison, respectively. Alternative splicing was found to be a mechanism of gene expression regulation within the turkey reproduction tract. In testis, modification was observed for spermatogenesis specific genes; the changes in 5' UTR could act as regulator of MEIG1 expression (a player during spermatocytes meiosis), and modification of 3' UTR led to diversification of CREM mRNA (modulator of gene expression related to the structuring of mature spermatozoa). Sperm tail formation can be regulated by changes in the 5' UTR of testicular SLC9A3R1 and gene silencing by producing dysfunctional variants of ODF2 in the testis and ATP1B3 in the epididymis. Predicted differentially ASGs in the turkey reproductive tract seem to be involved in the regulation of spermatogenesis, including acrosome formation and sperm tail formation and binding of sperm to the zona pellucida. Several ASGs were classified as cilia by actin and microtubule cytoskeleton organization. Such genes may play a role in the organization of sperm flagellum and post-testicular motility development. To our knowledge, this is the first functional investigation of alternatively spliced genes associated with tissue-specific processes in the turkey reproductive tract.
Collapse
Affiliation(s)
- Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum; University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland.
| |
Collapse
|
5
|
Bo D, Jiang X, Liu G, Xu F, Hu R, Wassie T, Chong Y, Ahmed S, Liu C, Girmay S. Multipathway synergy promotes testicular transition from growth to spermatogenesis in early-puberty goats. BMC Genomics 2020; 21:372. [PMID: 32450814 PMCID: PMC7249689 DOI: 10.1186/s12864-020-6767-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The microscopic process of postnatal testicular development in early-puberty animals is poorly understood. Therefore, in this study, 21 male Yiling goats with average ages of 0, 30, 60, 90, 120, 150 and 180 days old (each age group comprised three goats) were used to study the changes in organs, tissues and transcriptomes during postnatal testicle development to obtain a broad and deep insight into the dynamic process of testicular transition from growth to spermatogenesis in early-puberty animals. RESULTS The inflection point of testicular weight was at 119 days postpartum (dpp), and the testicular weight increased rapidly from 119 dpp to 150 dpp. Spermatozoa were observed in the testis at 90 dpp by using haematoxylin-eosin staining. We found from the transcriptome analysis of testes that the testicular development of Yiling goat from birth to 180 dpp experienced three stages, namely, growth, transition and spermatogenesis stages. The goats in the testicular growth stage (0-60 dpp) showed a high expression of growth-related genes in neurogenesis, angiogenesis and cell junction, and a low expression of spermatogenesis-related genes. The goats aged 60-120 dpp were in the transitional stage which had a gradually decreased growth-related gene transcription levels and increased spermatogenesis-related gene transcription levels. The goats aged 120-180 dpp were in the spermatogenesis stage. At this stage, highly expressed spermatogenesis-related genes, downregulated testicular growth- and immune-related genes and a shift in the focus of testicular development into spermatogenesis were observed. Additionally, we found several novel hub genes, which may play key roles in spermatogenesis, androgen synthesis and secretion, angiogenesis, cell junction and neurogenesis. Moreover, the results of this study were compared with previous studies on goat or other species, and some gene expression patterns shared in early-puberty mammals were discovered. CONCLUSIONS The postnatal development of the testis undergoes a process of transition from organ growth to spermatogenesis. During this process, spermatogenesis-related genes are upregulated, whereas neurogenesis-, angiogenesis-, cell junction-, muscle- and immune-related genes are downregulated. In conclusion, the multipathway synergy promotes testicular transition from growth to spermatogenesis in early-puberty goats and may be a common rule shared by mammals.
Collapse
Affiliation(s)
- Dongdong Bo
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China.
| | - Feng Xu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruixue Hu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Teketay Wassie
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sohail Ahmed
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chenhui Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shishay Girmay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
6
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
7
|
Cabrillana ME, Bocanegra V, Monclus MA, Lancellotti TS, Simón L, Funes AK, Colombo R, Ruiz Estrabón M, Vincenti AE, Oliva R, Fornés MW. ODF1, sperm flagelar protein is expressed in kidney collecting ducts of rats. Heliyon 2019; 5:e02932. [PMID: 31867458 PMCID: PMC6906709 DOI: 10.1016/j.heliyon.2019.e02932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Abstract
ODF1 has been described as an exclusively expressed testicular protein and is located in the outer dense fibers along the sperm tail. ODF1 has been involved in the sperm motility and in the development of the flagellum, but the function of ODF1 is not already clear. Other ODF proteins, such as ODF2 have been characterized in other tissues like the basal body of the kidney primary cilium, but so far only the mRNA of ODF1 has been described in other tissues. These observations let us to hypothesize that the expression of the protein ODF1 could not be limited to the testis. Therefore, in the present work we proposed to evaluate if the ODF1 protein could also be present in tissues other than the testis. Here we demonstrated through western blot, immunofluorescence, and RT-PCR techniques that the protein and mRNA of ODF1 have been identified in the rat kidney. Finally, the presence of ODF1 in kidney has also been confirmed through proteomic analysis using mass spectrometry. The results derived from these different complementary approaches indicate that, to our knowledge and for the first time, ODF1 is demonstrated to be present in an additional organ different to testis. This results raise new questions about potential other functions and locations of the ODF1 protein.
Collapse
Affiliation(s)
- M E Cabrillana
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - V Bocanegra
- IMBECU-CONICET, UNCuyo (National University of Cuyo), 5500, Mendoza, Argentina
| | - M A Monclus
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - Te Saez Lancellotti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - L Simón
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - A K Funes
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Colombo
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - M Ruiz Estrabón
- Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - A E Vincenti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Oliva
- Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, And Hospital Clinic, Molecular Biology of Reproduction and Development Research Group, 08036, Barcelona, Spain
| | - M W Fornés
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| |
Collapse
|
8
|
Ito C, Akutsu H, Yao R, Yoshida K, Yamatoya K, Mutoh T, Makino T, Aoyama K, Ishikawa H, Kunimoto K, Tsukita S, Noda T, Kikkawa M, Toshimori K. Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice. Sci Rep 2019; 9:14249. [PMID: 31582806 PMCID: PMC6776547 DOI: 10.1038/s41598-019-50516-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hidenori Akutsu
- Department of Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Keiichi Yoshida
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Next-generation Development Center for Cancer Treatment, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Kenji Yamatoya
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
| | - Tohru Mutoh
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis (ex FEI), Thermo Ficher Scientific, Shinagawa Seaside West Tower 1F, 4-12-2 HigashiSinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California San Francisco 600 16th St., San Francisco, CA, 94143, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Sachiko Tsukita
- Graduate School of Frontier Biosciences and Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tetsuo Noda
- Director's Room, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
9
|
Nixon B, Anderson AL, Smith ND, McLeod R, Johnston SD. The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc Biol Sci 2017; 283:rspb.2016.0495. [PMID: 27147099 DOI: 10.1098/rspb.2016.0495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023] Open
Abstract
Although mammalian spermatozoa only acquire functional maturity as they are conveyed through the male (epididymal maturation) and female (capacitation) reproductive tracts, the degree of post-testicular development necessary to achieve fertilization in other vertebrate species remains far less clear. Indeed, despite reports that the epididymis of birds and reptiles is capable of secreting proteins that bind and modify the sperm surface characteristics, it remains unclear whether capacitation is a pre-requisite for fertilization in these species. Using the ancient reptilian Australian saltwater crocodile as a model, this study was undertaken to explore whether reptile sperm do undergo capacitation-like changes following ejaculation. Our studies revealed that crocodile spermatozoa experienced a rapid and sustained, cyclic-AMP mediated increase in progressive motility following incubation under conditions optimized for the induction of capacitation in mammalian species such as the mouse and human. This response was coupled with elevated levels of phosphorylation associated with both protein kinase A and tyrosine kinase substrates, the latter of which were predominantly localized within the sperm flagellum. In findings that also accord with mammalian spermatozoa, we confirmed a homologue of outer dense fibre 2 as one of the principal substrates for tyrosine phosphorylation. Overall, our findings support the concept that crocodile spermatozoa do undergo a process that is homologous to capacitation in preparation for fertilization of an ovum.
Collapse
Affiliation(s)
- Brett Nixon
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Amanda L Anderson
- School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, The University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Robby McLeod
- Koorana Crocodile Farm, Coowonga, Queensland 4702, Australia
| | - Stephen D Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
10
|
Su K, Sun Z, Niu R, Lei Y, Cheng J, Wang J. Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride. ENVIRONMENTAL TOXICOLOGY 2017; 32:1558-1565. [PMID: 27862939 DOI: 10.1002/tox.22377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017.
Collapse
Affiliation(s)
- Kai Su
- College of Animal Science and Veterinary Medicine, Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Taiyuan Zoo, Taiyuan, Shanxi, 030009, People's Republic of China
| | - Zilong Sun
- College of Animal Science and Veterinary Medicine, Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ruiyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ying Lei
- Taiyuan Zoo, Taiyuan, Shanxi, 030009, People's Republic of China
| | - Jing Cheng
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, People's Republic of China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| |
Collapse
|
11
|
Ahn J, Park YJ, Chen P, Lee TJ, Jeon YJ, Croce CM, Suh Y, Hwang S, Kwon WS, Pang MG, Kim CH, Lee SS, Lee K. Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS One 2017; 12:e0175787. [PMID: 28414809 PMCID: PMC5393594 DOI: 10.1371/journal.pone.0175787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The testis has been identified as the organ in which a large number of tissue-enriched genes are present. However, a large portion of transcripts related to each stage or cell type in the testis still remains unknown. In this study, databases combined with confirmatory measurements were used to investigate testis-enriched genes, localization in the testis, developmental regulation, gene expression profiles of testicular disease, and signaling pathways. Our comparative analysis of GEO DataSets showed that 24 genes are predominantly expressed in testis. Cellular locations of 15 testis-enriched proteins in human testis have been identified and most of them were located in spermatocytes and round spermatids. Real-time PCR revealed that expressions of these 15 genes are significantly increased during testis development. Also, an analysis of GEO DataSets indicated that expressions of these 15 genes were significantly decreased in teratozoospermic patients and polyubiquitin knockout mice, suggesting their involvement in normal testis development. Pathway analysis revealed that most of those 15 genes are implicated in various sperm-related cell processes and disease conditions. This approach provides effective strategies for discovering novel testis-enriched genes and their expression patterns, paving the way for future characterization of their functions regarding infertility and providing new biomarkers for specific stages of spematogenesis.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yoo-Jin Park
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Chen
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Tae Jin Lee
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Young-Jun Jeon
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeonbuk, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Republic of Korea
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, Republic of Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, Willard B, Gopalan B, Sabanegh E. Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J Androl 2016; 18:43-53. [PMID: 25999357 PMCID: PMC4736356 DOI: 10.4103/1008-682x.153848] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Among infertile men, a diagnosis of unilateral varicocele is made in 90% of varicocele cases and bilateral in the remaining varicocele cases. However, there are reports of under-diagnosis of bilateral varicocele among infertile men and that its prevalence is greater than 10%. In this prospective study, we aimed to examine the differentially expressed proteins (DEP) extracted from spermatozoa cells of patients with bilateral varicocele and fertile donors. Subjects consisted of 17 men diagnosed with bilateral varicocele and 10 proven fertile men as healthy controls. Using the LTQ-orbitrap elite hybrid mass spectrometry system, proteomic analysis was done on pooled samples from 3 patients with bilateral varicocele and 5 fertile men. From these samples, 73 DEP were identified of which 58 proteins were differentially expressed, with 7 proteins unique to the bilateral varicocele group and 8 proteins to the fertile control group. Majority of the DEPs were observed to be associated with metabolic processes, stress responses, oxidoreductase activity, enzyme regulation, and immune system processes. Seven DEP were involved in sperm function such as capacitation, motility, and sperm-zona binding. Proteins TEKT3 and TCP11 were validated by Western blot analysis and may serve as potential biomarkers for bilateral varicocele. In this study, we have demonstrated for the first time the presence of DEP and identified proteins with distinct reproductive functions which are altered in infertile men with bilateral varicocele. Functional proteomic profiling provides insight into the mechanistic implications of bilateral varicocele-associated male infertility.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell 2015; 26:4358-72. [PMID: 26424803 PMCID: PMC4666132 DOI: 10.1091/mbc.e15-08-0578] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Intraflagellar transport (IFT) is necessary for the assembly and maintenance of most cilia, with the exception of gametic flagella in some organisms. IFT is required for assembly of mouse sperm flagella, and defects in IFT lead to male infertility. However, mature sperm lack IFT proteins and thus do not require IFT for maintenance of the axoneme. Drosophila sperm are unusual in that they do not require the intraflagellar transport (IFT) system for assembly of their flagella. In the mouse, the IFT proteins are very abundant in testis, but we here show that mature sperm are completely devoid of them, making the importance of IFT to mammalian sperm development unclear. To address this question, we characterized spermiogenesis and fertility in the Ift88Tg737Rpw mouse. This mouse has a hypomorphic mutation in the gene encoding the IFT88 subunit of the IFT particle. This mutation is highly disruptive to ciliary assembly in other organs. Ift88−/− mice are completely sterile. They produce ∼350-fold fewer sperm than wild-type mice, and the remaining sperm completely lack or have very short flagella. The short flagella rarely have axonemes but assemble ectopic microtubules and outer dense fibers and accumulate improperly assembled fibrous sheath proteins. Thus IFT is essential for the formation but not the maintenance of mammalian sperm flagella.
Collapse
Affiliation(s)
- Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
14
|
Lestari SW, Pujianto DA, Soeharso P, Loanda E. Evaluation of outer dense fiber-1 and -2 protein expression in asthenozoospermic infertile men. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background: Most of male infertility are caused by defect in sperm motility (asthenozoospermia). The molecular mechanism of low sperm motility in asthenozoospermic patients has not been fully understood. Sperm motility is strongly related to the axoneme structure which is composed of microtubules and supported by outer dense fiber (ODF) and fibrous sheath (FS) protein. The objective of this study was to characterize the ODF (ODF1 and ODF2) expression in asthenozoospermic infertile male and control normozoospermic fertile male.Methods: Asthenozoospermic samples (n=18) were collected from infertile patients at Andrology Lab, Cipto Mangunkusumo Hospital Jakarta and control were taken from normozoospermic fertile donor (n=18). After motility analyses by computer-assisted sperm analysis (CASA), semen were divided into two parts, for Western blot and for immunocytochemistry analysis. Antibody against ODF1 and ODF2 protein were used in both analyses.Results: Analysis of ODF1 protein expression showed bands with molecular weight of ~30 kDa and ODF2 ~85 kDa. The mean band intensity of ODF1 and ODF2 protein were lower in the asthenozoospermic group (AG) compared to normozoospermic group (NG). Moreover, both ODF proteins were less intense and less localized in the AG than NG. Sperm motility was lower in AG, compared to control NG, i.e. average path velocity (VAP) = 32.07 ± 7.03 vs 37.58 ± 8.73 µm/s, p = 0.455; straight line velocity (VSL) = 24.17 ± 6.90 vs 27.61 ± 4.50 µm/s, p = 0.317 and curvilinear velocity (VCL) = 45.68 ± 7.91 vs 55.55 ± 16.40 µm/s, p = 0.099.Conclusion: There is down-regulation of ODF1 and ODF2 protein expression and less-compact localization in AG sperm compared to the NG. These changes might have caused disturbances in the sperm motility as observed in this study.
Collapse
|
15
|
Lee KH. Ectopic Expression of Cenexin1 S796A Mutant in ODF2(+/-) Knockout Background Causes a Sperm Tail Development Defect. Dev Reprod 2015; 16:363-70. [PMID: 25949111 PMCID: PMC4282242 DOI: 10.12717/dr.2012.16.4.363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/14/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
The outer dense fiber 2 (ODF2) protein is an important component of sperm tail outer dense fiber and localizes at the centrosome. It has been reported that the RO072 ES cell derived homozygote knock out of ODF2 results in an embryonic lethal phenotype, and XL169 ES cell derived heterozygote knock out causes severe defects in sperm tail development. The ODF2s splicing variant, Cenexin1, possesses a C-terminal extension, and the phosphorylation of serine 796 residue in an extended C-terminal is responsible for Plk1 binding. Cenexin1 assembles ninein and causes ciliogenesis in early stages of the cell cycle in a Plk1-independent manner. Alternatively, in the late stages of the cell cycle, G2/M phase, Cenexin1 binds to Plk1 and results in proper mitotic progression. In this study, to identify the in vivo function of Plk1 binding to phosphorylated Cenexin1 S796 residue, and to understand the in vivo functional differences between ODF2 and Cenexin1, we generated ODF2/Cenexin1 S796A/Cenexin1 WT expressing transgenic mice in a RO072 ES cell derived ODF2(+/-) knock out background. We observed a severe defect of sperm tail development by ectopic expression of Cenexin1 S796A mutant and no phenotypic differences between the ectopic expression of ODF2/Cenexin1 WT in ODF2(+/-) background and in normal wild type mice.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Wang X, Wei Y, Fu G, Li H, Saiyin H, Lin G, Wang Z, Chen S, Yu L. Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Mol Hum Reprod 2014; 21:136-45. [PMID: 25361759 DOI: 10.1093/molehr/gau097] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tssk4 belongs to the Testis Specific Serine/threonine protein Kinase (TSSK) family, members of which play an important role in spermatogenesis and/or spermiogenesis. Several Tssk family proteins have extensively been studied. However, the exact function of Tssk4 remains unclear. A Tssk4 knockout mouse model was generated and the males were subfertile due to seriously decreased sperm motility. The ultrastructure of the Tssk4(-/-)sperm tail is disorganized at the midpiece-principal piece junction, leading to a severe bend in the sperm flagellum. One or more axonemal microtubule doublets are absent and the midpiece is fused with the principal piece. Furthermore, we identified the association between Tssk4 and Odf2, a prominent cytoskeletal protein of the outer dense fiber (ODF) in sperm flagellum. Tssk4 can change the phosphorylation state of Odf2 and conversely Odf2 potentiates the autophosphorylation activity of Tssk4. These findings reveal that Tssk4 is required for maintaining the structural integrity of sperm flagellum and male fertility.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Guolong Fu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Haitao Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Gang Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
17
|
Faucette AN, Maher VA, Gutierrez MA, Jucker JM, Yates DC, Welsh TH, Amstalden M, Newton GR, Nuti LC, Forrest DW, Ing NH. Temporal changes in histomorphology and gene expression in goat testes during postnatal development. J Anim Sci 2014; 92:4440-8. [PMID: 25085396 DOI: 10.2527/jas.2014-7903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Testicular cell proliferation and differentiation is critical for development of normal testicular function and male reproductive maturity. The objective of the current study was to evaluate histoarchitecture and expression of genes marking specific cells and important functions as well as testosterone production of the developing goat testes. Testes were harvested from Alpine bucks at 0, 2, 4, 6, and 8 mo of age (n = 5/age group). Paired testes weight increased from 2 to 4 (P < 0.001) and 4 to 6 mo (P < 0.01). The greatest increases in seminiferous tubule and lumen diameters and height of the seminiferous epithelium occurred between 2 and 4 mo (P < 0.001). Genes expressed in haploid germ cells (Protamine1 [PRM1], Outer Dense Fiber protein 2 [ODF2], and Stimulated by Retinoic Acid gene 8 [STRA8]) increased dramatically at the same time (P < 0.001). Expression of other genes decreased (P < 0.05) during testicular maturation. These genes included P450 side chain cleavage (CYP11A1), Sex determining region Y-box 9 (SOX9), Insulin-like Growth Factor 1 Receptor (IGF1R), and Heat Shock Protein A8 (HSPA8). The Glutathione S-Transferase A3 (GSTA3) gene, whose product was recently recognized as a primary enzyme involved in isomerization of androstenedione in man and livestock species including goats, sheep, cattle, pigs, and horses, uniquely peaked in expression at 2 mo (P < 0.05). Follicle-Stimulating Hormone Receptor (FSHR) mRNA abundance tended to steadily decrease with age (P = 0.1), while Luteinizing Hormone Receptor (LHCGR) mRNA abundance in testes was not significantly different across the ages. Testosterone content per gram of testicular tissue varied among individuals. However, testosterone content per testis tended to increase at 6 mo (P = 0.06). In conclusion, major changes in cellular structure and gene expression in goat testes were observed at 4 mo of age, when spermatogenesis was initiated. Male goats mature rapidly and represent a good model species for the study of agents that enhance or impair development of testicular functions.
Collapse
Affiliation(s)
- A N Faucette
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - V A Maher
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - M A Gutierrez
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - J M Jucker
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - D C Yates
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - T H Welsh
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - M Amstalden
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - G R Newton
- Cooperative Agriculture Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - L C Nuti
- Cooperative Agriculture Research Center, Prairie View A&M University, Prairie View, TX 77446
| | - D W Forrest
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| | - N H Ing
- Department of Animal Science, Texas A&M University, Texas A&M AgriLife Research, College Station 77843-2471
| |
Collapse
|
18
|
Krementsov DN, Katchy A, Case LK, Carr FE, Davis B, Williams C, Teuscher C. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci 2013; 135:91-102. [PMID: 23798566 DOI: 10.1093/toxsci/kft141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Transcriptional activation of Odf2/Cenexin by cell cycle arrest and the stress activated signaling pathway (JNK pathway). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1338-46. [PMID: 23458833 DOI: 10.1016/j.bbamcr.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
Abstract
The centrosome/basal body protein ODF2/Cenexin is necessary for the formation of the primary cilium. Primary cilia are essential organelles that sense and transduce environmental signals. Primary cilia are therefore critical for embryonic and postnatal development as well as for tissue homeostasis in adulthood. Impaired function of primary cilia causes severe human diseases. ODF2 deficiency prevents formation of the primary cilium and is embryonically lethal. To explore the regulation of primary cilia formation we analyzed the promoter region of Odf2 and its transcriptional activity. In cycling cells, Odf2 transcription is depressed but becomes up-regulated in quiescent cells. Low transcriptional activity is mediated by sequences located upstream from the basal promoter, and neither transcription factors with predicted binding sites in the Odf2 promoter nor Rfx3 or Foxj, which are known to control ciliary gene expression, could activate Odf2 transcription. However, co-expression of either C/EBPα, c-Jun or c-Jun and its regulator MEKK1 enhances Odf2 transcription in cycling cells. Our results provide the first analysis of transcriptional regulation of a ciliary gene. Furthermore, we suggest that transcription of even more ciliary genes is largely inhibited in cycling cells but could be activated by cell cycle arrest and by the stress signaling JNK pathway.
Collapse
|
20
|
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis, Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Kennett Square, USA
| |
Collapse
|
21
|
Choi E, Cho C. Expression of a sperm flagellum component encoded by the Als2cr12 gene. Gene Expr Patterns 2011; 11:327-33. [PMID: 21402173 DOI: 10.1016/j.gep.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
Genes exclusively expressed in male germ cells encode proteins that play important roles in spermatogenesis and fertilization. In this study, we investigated the expression of a novel spermatogenic cell-specific gene known as amyotrophic lateral sclerosis 2 chromosome region candidate 12 (Als2cr12). Our in silico and in vitro analyses revealed that the mouse Als2cr12 gene produces two transcript isoforms by alternative splicing and that one of the isoforms is unique to spermatogenic cells. Using an antibody against the ALS2CR12 protein, we found that a protein from the germ cell-specific Als2cr12 transcript is present in mature sperm from the epididymis as well as germ cells in the testis. Further analysis of the ALS2CR12 protein in sperm disclosed the localization of the protein in the sperm tail. Specifically, our data suggest that the ALS2CR12 protein is associated with the fibrous sheath in the sperm flagellum. Thus, our study provides the first information regarding the expression of the Als2cr12 gene at the transcriptional, protein and cellular levels.
Collapse
Affiliation(s)
- Eunyoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | |
Collapse
|
22
|
Mariappa D, Aladakatti RH, Dasari SK, Sreekumar A, Wolkowicz M, van der Hoorn F, Seshagiri PB. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin-2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol Reprod Dev 2010; 77:182-93. [PMID: 19953638 DOI: 10.1002/mrd.21131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.
Collapse
Affiliation(s)
- Daniel Mariappa
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Schweizer S, Hoyer-Fender S. Mouse Odf2 localizes to centrosomes and basal bodies in adult tissues and to the photoreceptor primary cilium. Cell Tissue Res 2009; 338:295-301. [PMID: 19756757 PMCID: PMC2766462 DOI: 10.1007/s00441-009-0861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 08/12/2009] [Indexed: 11/16/2022]
Abstract
Odf2 (outer dense fiber 2) is the major protein of the cytoskeleton of the sperm tail. In somatic cells, it is a component of the centrosome in which it is located in the appendages of the mother centriole. Additionally, as shown previously by forced expression in cultured cells, Odf2 localizes to centrioles, basal bodies, and primary cilia, which are all structurally and functionally interconnected. The importance of Odf2 has become obvious by the absence of primary cilia in Odf2-deficient cells and by the embryonic lethality of the Odf2 gene trap insertional mouse. However, nothing is known about the endogenous localization of Odf2 in the tissues of adult mice. We show here that Odf2 protein localizes to centrosomes, to photoreceptor primary cilia, and to basal bodies of ciliated cells of the respiratory epithelium and of the kidney. Our results thus suggest that Odf2 contributes to assorted ciliopathies.
Collapse
Affiliation(s)
- Stephanie Schweizer
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology - Developmental Biology, GZMB, Georg August University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
24
|
Huang SY, Pribenszky C, Kuo YH, Teng SH, Chen YH, Chung MT, Chiu YF. Hydrostatic pressure pre-treatment affects the protein profile of boar sperm before and after freezing–thawing. Anim Reprod Sci 2009; 112:136-49. [DOI: 10.1016/j.anireprosci.2008.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/06/2008] [Accepted: 04/23/2008] [Indexed: 01/15/2023]
|
25
|
Soung NK, Park JE, Yu LR, Lee KH, Lee JM, Bang JK, Veenstra TD, Rhee K, Lee KS. Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev Cell 2009; 16:539-50. [PMID: 19386263 PMCID: PMC2741019 DOI: 10.1016/j.devcel.2009.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/31/2008] [Accepted: 02/11/2009] [Indexed: 11/22/2022]
Abstract
Outer dense fiber 2 (ODF2) was initially identified as a major component of the sperm tail cytoskeleton, and was later suggested to be localized to somatic centrosomes and required for the formation of primary cilia. Here we show that a splice variant of hODF2 called hCenexin1, but not hODF2 itself, efficiently localizes to somatic centrosomes via a variant-specific C-terminal extension and recruits Plk1 through a Cdc2-dependent phospho-S796 motif within the extension. This interaction and Plk1 activity were important for proper recruitment of pericentrin and gamma-tubulin, and, ultimately, for formation of normal bipolar spindles. Earlier in the cell cycle, hCenexin1, but again not hODF2, also contributed to centrosomal recruitment of ninein and primary cilia formation independent of Plk1 interaction. These findings provide a striking example of how a splice-generated C-terminal extension of a sperm tail-associating protein mediates unanticipated centrosomal events at distinct stages of the somatic cell cycle.
Collapse
Affiliation(s)
- Nak-Kyun Soung
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Li-Rong Yu
- Center for Proteomics, Division of Systems Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Kyung H. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jung-Min Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeong K. Bang
- Korea Basic Science Institute, Busan, 609-735, South Korea
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute-Frederick, Frederick, MD 21702
| | - Kunsoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
26
|
Baek N, Woo JM, Han C, Choi E, Park I, Kim DH, Eddy EM, Cho C. Characterization of eight novel proteins with male germ cell-specific expression in mouse. Reprod Biol Endocrinol 2008; 6:32. [PMID: 18652659 PMCID: PMC2500023 DOI: 10.1186/1477-7827-6-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/24/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Spermatogenesis and fertilization are highly unique processes. Discovery and characterization of germ cell-specific genes are important for the understanding of these reproductive processes. We investigated eight proteins encoded by novel spermatogenic cell-specific genes previously identified from the mouse round spermatid UniGene library. METHODS Polyclonal antibodies were generated against the novel proteins and western blot analysis was performed with various protein samples. Germ cell specificity was investigated using testes from germ cell-less mutant mice. Developmental expression pattern was examined in testicular germ cells, testicular sperm and mature sperm. Subcellular localization was assessed by cell surface biotin labeling and trypsinization. Protein localization and properties in sperm were investigated by separation of head and tail fractions, and extractabilities by a non-ionic detergent and urea. RESULTS The authenticity of the eight novel proteins and their specificity to spermatogenic cells were confirmed. In examining the developmental expression patterns, we found the presence of four proteins only in testicular germ cells, a single protein in testicular germ cells and testicular sperm, and three proteins in the testicular stages and mature sperm from the epididymis. Further analysis of the three proteins present in sperm disclosed that one is located at the surface of the acrosomal region and the other two are associated with cytoskeletal structures in the sperm flagellum. We name the genes for these sperm proteins Shsp1 (Sperm head surface protein 1), Sfap1 (Sperm flagellum associated protein 1) and Sfap2 (Sperm flagellum associated protein 2). CONCLUSION We analyzed eight novel germ cell-specific proteins, providing new and inclusive information about their developmental and cellular characteristics. Our findings will facilitate future investigation into the biological roles of these novel proteins in spermatogenesis and sperm functions.
Collapse
Affiliation(s)
- Namhoe Baek
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Jong-Min Woo
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Cecil Han
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Eunyoung Choi
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Inju Park
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Do Han Kim
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Edward M Eddy
- Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Chunghee Cho
- Department of Life Science and Research Center for Biomolecular Nanotechnology, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
27
|
Molecular dissection of ODF2/Cenexin revealed a short stretch of amino acids necessary for targeting to the centrosome and the primary cilium. Eur J Cell Biol 2008; 87:137-46. [DOI: 10.1016/j.ejcb.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/20/2007] [Accepted: 10/19/2007] [Indexed: 11/19/2022] Open
|
28
|
Hüber D, Hoyer-Fender S. Alternative splicing of exon 3b gives rise to ODF2 and Cenexin. Cytogenet Genome Res 2007; 119:68-73. [PMID: 18160784 DOI: 10.1159/000109621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/25/2007] [Indexed: 11/19/2022] Open
Abstract
ODF2 was first identified as the major component of the sperm tail outer dense fibers. Additionally, ODF2 is a critical component of the mature centriole of the animal centrosome where it locates to the distal appendages. Moreover, generation of primary cilia strictly depends on ODF2. The mature centriole is characterized further by recruitment of Cenexin. Albeit highly similar in sequence the relationship between ODF2 and Cenexin has not been investigated. We demonstrate here that ODF2 and Cenexin are alternative splice products by identifying a novel exon 3b encoding Cenexin specific amino acids. Even though ODF2 is the main isoform in testicular tissue RT-PCR analyses revealed that isoforms are not restricted to specific tissues.
Collapse
Affiliation(s)
- D Hüber
- University of Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie, Anthropologie und Entwicklungsbiologie, GZMB, Germany
| | | |
Collapse
|
29
|
Steels JD, Estey MP, Froese CD, Reynaud D, Pace-Asciak C, Trimble WS. Sept12 is a component of the mammalian sperm tail annulus. ACTA ACUST UNITED AC 2007; 64:794-807. [PMID: 17685441 DOI: 10.1002/cm.20224] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their essential role in cytokinesis was first shown in yeast, the septins have been described to function in diverse cellular contexts. The members of this unique class of GTPases are capable of binding and hydrolyzing GTP, associating with membranes and oligomerizing into higher order structures. Here we describe Sept12, a novel septin, identified in a yeast two hybrid screen using Sept5 as the bait. Sept12 contains the primary sequence elements of a septin and is capable of interacting with other septins. In addition, Sept12 purifies with bound nucleotide and binds to phosphoinositides, confirming its identity as a septin. RT-PCR and Northern blots reveal that Sept12 mRNA is expressed predominantly in testis, and this is supported by tissue Western blots. In rats, Sept12 protein levels rise upon sexual maturity and the Sept12 protein colocalizes with the annulus in isolated mature spermatozoa. Further, coexpression of Sept12 with Sept4, an essential annulus component, results in complete colocalization of both proteins into robust and highly curved filaments in CHO cells. This study suggests Sept12 may be involved in mammalian fertility.
Collapse
Affiliation(s)
- Jonathan D Steels
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Salmon NA, Reijo Pera RA, Xu EY. A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis 2007; 44:515-22. [PMID: 17078042 PMCID: PMC3038656 DOI: 10.1002/dvg.20241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Outer dense fiber 2 (Odf2) is highly expressed in the testis where it encodes a major component of the outer dense fibers of the sperm flagellum. Furthermore, ODF2 protein has recently been identified as a widespread centrosomal protein. While the expression of Odf2 highlighted a potential role for this gene in male germ cell development and centrosome function, the in vivo function of Odf2 was not known. We have generated Odf2 knockout mice using an Odf2 gene trapped embryonic stem cell (ESC) line. Insertion of a gene trap vector into exon 9 resulted in a gene that encodes a severely truncated protein lacking a large portion of its predicted coil forming domains as well as both leucine zipper motifs that are required for protein-protein interactions with ODF1, another major component of the outer dense fibers. Although wild-type and heterozygous mice were recovered, no mice homozygous for the Odf2 gene trap insertion were recovered in an extended breeding program. Furthermore, no homozygous embryos were found at the blastocyst stage of embryonic development, implying a critical pre-implantation role for Odf2. We show that Odf2 is expressed widely in adults and is also expressed in the blastocyst stage of preimplantation development. These findings are in contrast with early studies reporting Odf2 expression as testis specific and suggest that embryonic Odf2 expression plays a critical role during preimplantation development in mice.
Collapse
Affiliation(s)
- Nicholas A. Salmon
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Renee A. Reijo Pera
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California-San Francisco, San Francisco, California
| | - Eugene Yujun Xu
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Correspondence to: Eugene Yujun Xu, Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.
| |
Collapse
|
31
|
Wakle M, Khole V. A sperm cytoskeletal protein TSA70 is a novel phosphorylated member of cenexin/odf2 family. Biochem Biophys Res Commun 2007; 354:528-34. [PMID: 17240355 DOI: 10.1016/j.bbrc.2007.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Using post-vasectomy monoclonal antibody we recently identified a testis specific sperm auto-antigen called TSA70 which is post-meiotically expressed and plays a role in sperm motility and capacitation-acrosome reaction. In the present study, we report its cytoskeletal nature based on its resistance to various high ionic salt solutions. TSA70 is developmentally regulated and appears postpubertally. The two protein spots identified by 2D WB namely TSA1-pI=5.821, MW=77.050 and TSA3-pI=6.173, MW=75.519 showed sequence homology to Cenexin/odf2 indicating that two are isoforms of the same protein. The immunoreactivity of TSA70 with anti-Cenexin antibody substantiates its homology with Cenexin/odf2. In silico analysis revealed the presence of two leucine zippers in TSA70 and also predicted potential phosphorylation sites at serine, threonine, and tyrosine residues. The phosphorylated status of TSA70 was further confirmed by immunoblot analysis. The differential cellular expression suggests that TSA70 is a novel member of Cenexin/odf2 family that exhibits functional divergence.
Collapse
Affiliation(s)
- Monali Wakle
- Gamete Immunobiology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, India
| | | |
Collapse
|
32
|
Kouadjo KE, Yoshioka M, Nishida Y, St-Amand J. Most expressed transcripts in sexual organs and other tissues. Mol Reprod Dev 2007; 75:230-42. [PMID: 17595017 DOI: 10.1002/mrd.20733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study characterizes the most highly expressed transcripts of 15 intact tissues in mice by using the serial analysis of gene expression (SAGE) strategy which indicates the relative level of expression for each transcript matched to the tag. We show that the most abundant transcripts in the prostate, testis, and skeletal muscle characterize the main functions of these organs as an exocrine gland of male reproduction, spermatogenesis, and contraction, respectively. In addition, the top nine most abundant transcripts in the testis are tissue-specific genes while the most abundant transcripts in the prostate are also abundantly expressed in the liver. Furthermore, the most abundant transcripts in the ovary, mammary gland, and vagina are related to steroidogenesis, adipocytes, and keratinization, respectively, whereas genes involved in the cell defence are abundantly expressed in the liver, lung, bone, mammary gland, and adipose tissue. These findings suggest that the top 10 transcripts are sufficient to characterize each tissue of the body.
Collapse
Affiliation(s)
- Kouame E Kouadjo
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, Canada
| | | | | | | |
Collapse
|
33
|
Soung NK, Kang YH, Kim K, Kamijo K, Yoon H, Seong YS, Kuo YL, Miki T, Kim SR, Kuriyama R, Giam CZ, Ahn CH, Lee KS. Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol Cell Biol 2006; 26:8316-35. [PMID: 16966375 PMCID: PMC1636773 DOI: 10.1128/mcb.00671-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/12/2006] [Accepted: 08/28/2006] [Indexed: 11/20/2022] Open
Abstract
Outer dense fiber 2 (Odf2) was initially identified as a major component of sperm tail cytoskeleton and later was suggested to be a widespread component of centrosomal scaffold that preferentially associates with the appendages of the mother centrioles in somatic cells. Here we report the identification of two Odf2-related centrosomal components, hCenexin1 and hCenexin1 variant 1, that possess a unique C-terminal extension. Our results showed that hCenexin1 is the major isoform expressed in HeLa cells, whereas hOdf2 is not detectably expressed. Mammalian polo-like kinase 1 (Plk1) is critical for proper mitotic progression, and its association with the centrosome is important for microtubule nucleation and function. Interestingly, depletion of hCenexin1 by RNA interference (RNAi) delocalized Plk1 from the centrosomes and the C-terminal extension of hCenexin1 was crucial to recruit Plk1 to the centrosomes through a direct interaction with the polo-box domain of Plk1. Consistent with these findings, the hCenexin1 RNAi cells exhibited weakened gamma-tubulin localization and chromosome segregation defects. We propose that hCenexin1 is a critical centrosomal component whose C-terminal extension is required for proper recruitment of Plk1 and other components crucial for normal mitosis. Our results further suggest that the anti-Odf2 immunoreactive centrosomal antigen previously detected in non-germ line cells is likely hCenexin1.
Collapse
Affiliation(s)
- Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fitzgerald C, Sikora C, Lawson V, Dong K, Cheng M, Oko R, van der Hoorn FA. Mammalian transcription in support of hybrid mRNA and protein synthesis in testis and lung. J Biol Chem 2006; 281:38172-80. [PMID: 17040916 PMCID: PMC3158134 DOI: 10.1074/jbc.m606010200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Post-transcriptional mechanisms including differential splicing expand the protein repertoire beyond that provided by the one gene-one protein model. Trans-splicing has been observed in mammalian systems but is low level (sometimes referred to as noise), and a contribution to hybrid protein expression is unclear. In the study of rat sperm tail proteins a cDNA, called 1038, was isolated representing a hybrid mRNA derived in part from the ornithine decarboxylase antizyme 3 (Oaz3) gene located on rat chromosome 2 fused to sequences encoded by a novel gene on chromosome 4. Cytoplasmic Oaz3 mRNA is completely testis specific. However, in several tissues Oaz3 is transcribed and contributes to hybrid 1038 mRNA synthesis, without concurrent Oaz3 mRNA synthesis. 1038 mRNA directs synthesis of a hybrid 14-kDa protein, part chromosome 2- and part chromosome 4-derived as shown in vitro and in transfected cells. Antisera that recognize a chromosome 4-encoded C-terminal peptide confirm the hybrid character of endogenous 14-kDa protein and its presence in sperm tail structures and 1038-positive tissue. Our data suggest that the testis-specific OAZ3 gene may be an example of a mammalian gene that in several tissues is transcribed to contribute to a hybrid mRNA and protein. This finding expands the repertoire of known mechanisms available to cells to generate proteome diversity.
Collapse
Affiliation(s)
- Carolyn Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Curtis Sikora
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Vannice Lawson
- Department of Anatomy and Cell Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Karen Dong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Min Cheng
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Richard Oko
- Department of Anatomy and Cell Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Frans A. van der Hoorn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada. Tel.: 403-220-4243; Fax: 403-210-8109;
| |
Collapse
|
35
|
Iguchi N, Tobias JW, Hecht NB. Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proc Natl Acad Sci U S A 2006; 103:7712-7. [PMID: 16682651 PMCID: PMC1472510 DOI: 10.1073/pnas.0510999103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gametes rely heavily on posttranscriptional control mechanisms to regulate their differentiation. In eggs, maternal mRNAs are stored and selectively activated during development. In the male, transcription ceases during spermiogenesis, necessitating the posttranscriptional regulation of many paternal mRNAs required for spermatozoan assembly and function. To date, most of the testicular mRNAs known to be translationally regulated are initially transcribed in postmeiotic cells. Because protein synthesis occurs on polysomes and translationally inactive mRNAs are sequestered as ribonucleoproteins (RNPs), movement of mRNAs between these fractions is indicative of translational up- and down-regulation. Here, we use microarrays to analyze mRNAs in RNPs and polysomes from testis extracts of prepuberal and adult mice to characterize the translation state of individual mRNAs as spermatogenesis proceeds. Consistent with published reports, many of the translationally delayed postmeiotic mRNAs shift from the RNPs into the polysomes, establishing the validity of this approach. In addition, we detect another 742 mouse testicular transcripts that show dramatic shifts between RNPs and polysomes. One subgroup of 35 genes containing the known, translationally delayed phosphoglycerate kinase 2 (Pgk2) is initially transcribed during meiosis and is translated in later-stage cells. Another subgroup of 82 meiotically expressed genes is translationally down-regulated late in spermatogenesis. This high-throughput approach defines the changing translation patterns of populations of genes as male germ cells differentiate and identifies groups of meiotic transcripts that are translationally up- and down-regulated.
Collapse
Affiliation(s)
- Naoko Iguchi
- *Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - John W. Tobias
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104
| | - Norman B. Hecht
- *Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
- To whom correspondence should be addressed at:
Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, 1310 Biomedical Research Building II/III, 421 Curie Boulevard. E-mail:
| |
Collapse
|
36
|
Cao W, Gerton GL, Moss SB. Proteomic Profiling of Accessory Structures from the Mouse Sperm Flagellum. Mol Cell Proteomics 2006; 5:801-10. [PMID: 16452089 DOI: 10.1074/mcp.m500322-mcp200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellum of a mammalian spermatozoon consists of an axoneme surrounded in distinct regions by accessory structures known as the fibrous sheath, outer dense fibers, and the mitochondrial sheath. Although the characterization of individual proteins has provided clues about the roles of these accessory structures, a more complete understanding of flagellar function requires the identification of all the polypeptides in these assemblies. Epididymal mouse sperm were treated with SDS to dislodge sperm heads and to extract the axoneme and membranous elements. The remaining flagellar accessory structures were purified by sucrose gradient centrifugation. Analysis of proteins from these structures by two-dimensional gel electrophoresis and colloidal Coomassie Blue staining showed a highly reproducible pattern of >200 spots. Individual spots were picked, digested with trypsin, and identified by mass spectrometry and peptide microsequencing. Approximately 50 individual proteins were identified that could be assigned to five general categories: 1) proteins previously reported to localize to the accessory structures, e.g. ODF2 in the outer dense fibers, the sperm-specific glyceraldehyde-3-phosphate dehydrogenase in the fibrous sheath, and glutathione peroxidase in the mitochondrial sheath, validating this proteomic approach; 2) proteins that had not been shown to localize to any accessory structure but would be predicted to be present, e.g. glycolytic enzymes; 3) proteins known to be part of the flagellum but not localized to a specific site, e.g. adenylate kinase; 4) proteins not expected to be part of the accessory structures based on their previously reported locations, e.g. tektins; and 5) unknown proteins for which no information is available to make a determination as to location. The unexpected presence of the tektins in the accessory structures of the flagellum was confirmed by both immunoblot and immunofluorescence analysis. This proteomic analysis identified a number of unexpected and novel proteins in the accessory structures of the mammalian flagellum.
Collapse
Affiliation(s)
- Wenlei Cao
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
37
|
Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18:25-38. [PMID: 16478600 DOI: 10.1071/rd05120] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 01/18/2023] Open
Abstract
Because it is generally accepted that a high percentage of poorly motile or immotile sperm will adversely affect male fertility, analysis of sperm motility is a central part of the evaluation of male fertility. In spite of its importance to fertility, poor sperm motility remains only a description of a pathology whose underlying cause is typically poorly understood. The present review is designed to bring the clinician up to date with the most current understanding of the mechanisms that regulate sperm motility and to raise questions about how aberrations in these mechanisms could be the underlying causes of this pathology.
Collapse
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA 19348, USA.
| |
Collapse
|
38
|
Ing NH, Laughlin AM, Varner DD, Welsh TH, Forrest DW, Blanchard TL, Johnson L. Gene expression in the spermatogenically inactive "dark" and maturing "light" testicular tissues of the prepubertal colt. ACTA ACUST UNITED AC 2005; 25:535-44. [PMID: 15223842 DOI: 10.1002/j.1939-4640.2004.tb02824.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the testis of the 1.5-year-old horse, spermatogenesis initiates locally in grossly light, central areas that contrast with grossly dark, peripheral areas that are as yet inactive in spermatogenesis. Gene expression was compared between "light" and "dark" tissues of 1.5-year-old horse testes to identify mechanisms important to the initiation of spermatogenesis. Microarrays containing human cDNAs were used to assess expression levels of 9132 genes simultaneously in matched pairs of dark and light testis tissues from 3 prepubertal colts. In all 3 analyses, dysferlin (DYS), down-regulated in ovarian cancer 1 (DOC1), and Golgi apparatus protein 1 (GLG1) genes were preferentially expressed in dark tissues, while outer dense fiber of sperm tails (ODF2) and phosphodiesterase 3B (PDE3B) genes were more highly expressed in light testis tissue (>1.7 balanced difference value, Incyte GEM tools software). Expression levels of 88 additional genes appeared to be different between dark and light tissues in 2 of the 3 microarray analyses. The preferential expression of DYS, DOC1, ODF2, and PDE3B genes in dark or light testis tissues was confirmed on Northern blots and localized to cell types by in situ hybridization. Future studies to determine the role of genes regulated during the initiation of spermatogenesis may aid in elucidating molecular mechanisms during this critical time as well as in identifying new therapies for enhancing male fertility.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Horowitz E, Zhang Z, Jones BH, Moss SB, Ho C, Wood JR, Wang X, Sammel MD, Strauss JF. Patterns of expression of sperm flagellar genes: early expression of genes encoding axonemal proteins during the spermatogenic cycle and shared features of promoters of genes encoding central apparatus proteins*. ACTA ACUST UNITED AC 2005; 11:307-17. [PMID: 15829580 DOI: 10.1093/molehr/gah163] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sperm are motile cells. Thus, a significant component of the spermatogenic cycle is devoted to the formation of flagellum, a process that must be coordinated to insure proper construction. To document the temporal pattern of flagellar gene expression, we employed real-time PCR to assess changes in accumulation of a cohort of genes encoding axoneme, outer dense fibre (ODF) and fibrous sheath (FS) proteins during the first wave of spermatogenesis in the mouse. Axoneme genes were expressed first at the pachytene spermatocyte stage, followed by expression of transcripts encoding ODF and FS components. However, there were differences among these families with respect to the time of initial expression and the rate of mRNA accumulation. To gain understanding of factors that determine these patterns of expression, we cloned the promoters of three axoneme central apparatus genes (Pf6, Spag6 and Pf20). These promoters shared common features including the absence of a TATA box, and putative binding sites for several factors implicated in spermatogenesis (CREB/CREM, SOX17 and SPZ1) as well as ciliogenesis (FOXJ1). Collectively, our findings demonstrate a sequential pattern of expression of flagellar component genes, differential times of expression or rates of transcript accumulation within each class and shared promoter features within a class.
Collapse
Affiliation(s)
- Eran Horowitz
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Oko R, van der Hoorn FA. Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol 2004; 275:23-33. [PMID: 15464570 PMCID: PMC3138780 DOI: 10.1016/j.ydbio.2004.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/15/2004] [Accepted: 07/19/2004] [Indexed: 01/25/2023]
Abstract
We recently discovered that in rat spermatids, kinesin light chain KLC3 can associate with outer dense fibers, major sperm tail components, and accumulates in the sperm midpiece. Here, we show that mitochondria isolated from rat-elongating spermatids have bound KLC3. Immunoelectron microscopy indicates that the association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the plasma membrane to the developing midpiece. KLC3 is able to bind in vitro to mitochondria from spermatids as well as somatic cells employing a conserved kinesin light chain motif, the tetratrico-peptide repeats. Expression of KLC3 in fibroblasts results in formation of large KLC3 clusters close to the nucleus, which also contain mitochondria: no other organelles were present in these clusters. Mitochondria are not present in KLC3 clusters after deletion of KLC3's tetratrico-peptide repeats. Our results indicate that the rat spermatid kinesin light chain KLC3 can associate with mitochondria.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Frans A. van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
41
|
Donkor FF, Mönnich M, Czirr E, Hollemann T, Hoyer-Fender S. Outer dense fibre protein 2 (ODF2) is a self-interacting centrosomal protein with affinity for microtubules. J Cell Sci 2004; 117:4643-51. [PMID: 15340007 DOI: 10.1242/jcs.01303] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Outer dense fibre protein 2 (ODF2) is a major protein of sperm tail outer dense fibres which are prominent sperm tail-specific cytoskeletal structures. Moreover, ODF2 was also identified as a widespread component of the centrosomal scaffold and was found to associate preferentially with the appendages of the mother centriole [Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, S. and Tsukita, S. (2001) Mol. Biol. Cell 12, 1687-1697]. Secondary structure predictions indicated ODF2 as an overall coiled-coil protein with a putative fibre forming capacity. To investigate its potential functions in generating the centrosomal scaffold and in microtubule nucleation we asked whether ODF2 is able to form a fibrillar structure by self-association in vivo and if it interacts with microtubules. By cytological investigation of transfected mammalian cells expressing ODF2-GFP fusion proteins and in vitro coprecipitation assays we could demonstrate that ODF2 is a self-interacting protein that forms a fibrillar structure partially linked to the microtubule network. Microtubule cosedimentation and coprecipitation assays indicated ODF2 as a microtubule-associated protein. However, we could not demonstrate a direct interaction of ODF2 with tubulin, suggesting that binding of endogenous ODF2 to the axonemal as well as to centrosomal microtubules may be mediated by, as yet, unknown proteins.
Collapse
Affiliation(s)
- Fatima F Donkor
- Göttinger Zentrum für Molekulare Biowissenschaften, Entwicklungsbiologie, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Hoyer-Fender S, Neesen J, Szpirer J, Szpirer C. Genomic organisation and chromosomal assignment of ODF2 (outer dense fiber 2), encoding the main component of sperm tail outer dense fibers and a centrosomal scaffold protein. Cytogenet Genome Res 2004; 103:122-7. [PMID: 15004474 DOI: 10.1159/000076299] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 08/25/2003] [Indexed: 11/19/2022] Open
Abstract
ODF2 (outer dense fiber 2) was first described as the main protein component of the sperm tail cytoskeleton, the outer dense fibers, but was shown recently to be a component of the centrosomal scaffold in chicken. In mouse two related ODF2 cDNA clones were isolated which have been suggested to be most likely the result of alternative splicing. We show here the exon/intron organisation of mouse ODF2 and demonstrate that alternative splicing results in related cDNA sequences and most likely explains, at least partially, the highly complex protein pattern detected on Western blots. ODF2 was mapped to rat chromosome 3 and more specifically by FISH analysis at bands 3q11-->3q12. In addition, we demonstrate that ODF2 is indeed a component of the centrosome and the mitotic spindle poles in mammals.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Zoologisches Institut-Entwicklungsbiologie, Institut für Humangenetik, Universität Göttingen, Göttingen, Germany.
| | | | | | | |
Collapse
|
43
|
Almstrup K, Nielsen JE, Hansen MA, Tanaka M, Skakkebaek NE, Leffers H. Analysis of cell-type-specific gene expression during mouse spermatogenesis. Biol Reprod 2004; 70:1751-61. [PMID: 14960480 DOI: 10.1095/biolreprod.103.026575] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume of specific cells, or changes in the cell-type composition. This reflects the cellularity of the tissue. Here we have combined techniques that assess the expression profiles of genes at the whole-tissue level, differential display and DNA array, and, at the level of cellularity, in situ hybridization. Combining results from these techniques allows determination of the cell-type-specific gene-expression patterns of many genes during spermatogenesis. Differential display was used to determine expression profiles with high sensitivity and independent of prior knowledge of the sequence, whereas DNA arrays quickly assess the expression profiles of all the genes. This identified three groups of gene-expression profiles. The major group corresponds to genes that are upregulated in spermatocytes during either the mid- or late- pachytene phase of spermatogenesis (stages VII-XI). This pachytene cluster was gradually extinguished in the later spermatid stages but was followed by another cluster of genes expressed in spermatids. Finally, a group of genes was downregulated during spermatogenesis and probably expressed in nongerm cells. We believe that expression of most genes can be described by a combination of these cell-type-specific expression patterns.
Collapse
Affiliation(s)
- Kristian Almstrup
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
44
|
Dadoune JP, Siffroi JP, Alfonsi MF. Transcription in haploid male germ cells. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:1-56. [PMID: 15380665 DOI: 10.1016/s0074-7696(04)37001-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major modifications in chromatin organization occur in spermatid nuclei, resulting in a high degree of DNA packaging within the spermatozoon head. However, before arrest of transcription during midspermiogenesis, high levels of mRNA are found in round spermatids. Some transcripts are the product of genes expressed ubiquitously, whereas some are generated from male germ cell-specific gene homologs of somatic cell genes. Others are transcript variants derived from genes with expression regulated in a testis-specific fashion. The haploid genome of spermatids also initiates the transcription of testis-specific genes. Various general transcription factors, distinct promoter elements, and specific transcription factors are involved in transcriptional regulation. After meiosis, spermatids are genetically but not phenotypically different, because of transcript and protein sharing through cytoplasmic bridges connecting spermatids of the same generation. Interestingly, different types of mRNAs accumulate in the sperm cell nucleus, raising the question of their origin and of a possible role after fertilization.
Collapse
Affiliation(s)
- Jean-Pierre Dadoune
- Laboratoire de Cytologie et Histologie, Centre Universitaire des Saints-Pères, 75270 Paris, France
| | | | | |
Collapse
|
45
|
Ohuchi J, Arai T, Kon Y, Asano A, Yamauchi H, Watanabe T. Characterization of a novel gene, sperm-tail-associated protein (Stap), in mouse post-meiotic testicular germ cells. Mol Reprod Dev 2001; 59:350-8. [PMID: 11468771 DOI: 10.1002/mrd.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During mammalian spermatogenesis, many specific molecules show the dynamics of expression and elimination, corresponding with the morphological differentiation of germ cells. We have isolated a novel cDNA designated F77 from mouse testis by cDNA subtractive hybridization between normal and sterile mice, using the C57BL/6 congenic strain for the hybrid sterilityhyphen;3 lpar;Hsthyphen;3rpar; allele from Mus spretus. The full-length F77 mRNA was 3.4 kb and showed significant nonmatching with entries in the databases. F77 was mapped at a proximal position between D8Mit212 and D8Mit138 on mouse chromosome 8, in which no corresponding genes related to its nucleotide sequence were found. F77 mRNA was not detected in any other organs except the testis of adult fertile mice. F77 protein was only seen in normal adult testis and epididymis. In contrast to normal C57BL/6 mice, F77 mRNA and protein were not seen in germ cell-deficient Kit(W)/Kit(Wv) mice. By in situ hybridization, F77 mRNA was detected mainly at round spermatids in the sexually mature testis, and immunohistochemical analysis revealed that F77 protein was located at the tail of elongated spermatids. We are proposing the name, sperm-tail-associated protein (Stap), for the gene encoding F77 cDNA. Mol. Reprod. Dev. 59: 350-358, 2001.
Collapse
Affiliation(s)
- J Ohuchi
- Laboratory of Experimental Animal Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Nakagawa Y, Yamane Y, Okanoue T, Tsukita S, Tsukita S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell 2001; 12:1687-97. [PMID: 11408577 PMCID: PMC37333 DOI: 10.1091/mbc.12.6.1687] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Because centrosomes were enriched in the bile canaliculi fraction from the chicken liver through their association with apical membranes, we developed a procedure for isolation of centrosomes from this fraction. With the use of the centrosomes, we generated centrosome-specific monoclonal antibodies. Three of the monoclonal antibodies recognized an antigen of ~90 kDa. Cloning of its cDNA identified this antigen as a chicken homologue of outer dense fiber 2 protein (Odf2), which was initially identified as a sperm outer dense fiber-specific component. Exogenously expressed and endogenous Odf2 were shown to be concentrated at the centrosomes in a microtubule-independent manner in various types of cells at both light and electron microscopic levels. Odf2 exhibited a cell cycle-dependent pattern of localization and was preferentially associated with the mother centrioles in G0/G1-phase. Toward G1/S-phase before centrosome duplication, it became detectable in both mother and daughter centrioles. In the isolated bile canaliculi and centrosomes, Odf2, in contrast to other centrosomal components, was highly resistant to KI extraction. These findings indicate that Odf2 is a widespread KI-insoluble scaffold component of the centrosome matrix, which may be involved in the maturation event of daughter centrioles.
Collapse
Affiliation(s)
- Y Nakagawa
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|