1
|
Wei J, Zhang W, Jiang A, Peng H, Zhang Q, Li Y, Bi J, Wang L, Liu P, Wang J, Ge Y, Zhang L, Yu H, Li L, Wang S, Leng L, Chen K, Dong B. Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids. Nat Commun 2024; 15:2395. [PMID: 38493164 PMCID: PMC10944513 DOI: 10.1038/s41467-024-46780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Zygotic genome activation (ZGA) is a universal process in early embryogenesis of metazoan, when the quiescent zygotic nucleus initiates global transcription. However, the mechanisms related to massive genome activation and allele-specific expression (ASE) remain not well understood. Here, we develop hybrids from two deeply diverged (120 Mya) ascidian species to symmetrically document the dynamics of ZGA. We identify two coordinated ZGA waves represent early developmental and housekeeping gene reactivation, respectively. Single-cell RNA sequencing reveals that the major expression wave exhibits spatial heterogeneity and significantly correlates with cell fate. Moreover, allele-specific expression occurs in a species- rather than parent-related manner, demonstrating the divergence of cis-regulatory elements between the two species. These findings provide insights into ZGA in chordates.
Collapse
Affiliation(s)
- Jiankai Wei
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wei Zhang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - An Jiang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongzhe Peng
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yuting Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianqing Bi
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Penghui Liu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jing Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yonghang Ge
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liya Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lei Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shi Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Rd, Nansha Dist., Guangzhou, 511458, China.
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Giachetti CB, Tatián M, Schwindt E. Differences in the gonadal cycle between two ascidians species, Ascidiella aspersa and Ciona robusta, help to explain their invasion success in a cold temperate port. Polar Biol 2022. [DOI: 10.1007/s00300-022-03100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Hudson J, Johannesson K, McQuaid CD, Rius M. Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evol Appl 2020; 13:600-612. [PMID: 32431738 PMCID: PMC7045719 DOI: 10.1111/eva.12893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Research on the genetics of invasive species often focuses on patterns of genetic diversity and population structure within the introduced range. However, a growing body of literature is demonstrating the need to study how native genotypes affect both ecological and evolutionary mechanisms within the introduced range. Here, we used genotyping-by-sequencing to study both native and introduced ranges of the amphiatlantic marine invertebrate Ciona intestinalis. A previous study using microsatellites analysed samples collected along the Swedish west coast and showed the presence of genetically distinct lineages in deep and shallow waters. Using 1,653 single nucleotide polymorphisms (SNPs) from newly collected samples (285 individuals), we first confirmed the presence of this depth-defined genomic divergence along the Swedish coast. We then used approximate Bayesian computation to infer the historical relationship among sites from the North Sea, the English Channel and the northwest Atlantic and found evidence of ancestral divergence between individuals from deep waters off Sweden and individuals from the English Channel. This divergence was followed by a secondary contact that led to a genetic admixture between the ancestral populations (i.e., deep Sweden and English Channel), which originated the genotypes found in shallow Sweden. We then revealed that the colonization of C. intestinalis in the northwest Atlantic was as a result of an admixture between shallow Sweden and the English Channel genotypes across the introduced range. Our results showed the presence of both past and recent genetic admixture events that together may have promoted the successful colonizations of C. intestinalis. Our study suggests that secondary contacts potentially reshape the evolutionary trajectories of invasive species through the promotion of intraspecific hybridization and by altering both colonization patterns and their ecological effects in the introduced range.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Kerstin Johannesson
- Department of Marine SciencesTjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Christopher D. McQuaid
- Department of Zoology and EntomologyCoastal Research GroupRhodes UniversityGrahamstownSouth Africa
| | - Marc Rius
- School of Ocean and Earth ScienceNational Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
4
|
Aliaga B, Bulla I, Mouahid G, Duval D, Grunau C. Universality of the DNA methylation codes in Eucaryotes. Sci Rep 2019; 9:173. [PMID: 30655579 PMCID: PMC6336885 DOI: 10.1038/s41598-018-37407-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Genetics and epigenetics are tightly linked heritable information classes. Question arises if epigenetics provides just a set of environment dependent instructions, or whether it is integral part of an inheritance system. We argued that in the latter case the epigenetic code should share the universality quality of the genetic code. We focused on DNA methylation. Since availability of DNA methylation data is biased towards model organisms we developed a method that uses kernel density estimations of CpG observed/expected ratios to infer DNA methylation types in any genome. We show here that our method allows for robust prediction of mosaic and full gene body methylation with a PPV of 1 and 0.87, respectively. We used this prediction to complement experimental data, and applied hierarchical clustering to identify methylation types in ~150 eucaryotic species covering different body plans, reproduction types and living conditions. Our analysis indicates that there are only four gene body methylation types. These types do not follow phylogeny (i.e. phylogenetically distant clades can have identical methylation types) but they are consistent within clades. We conclude that the gene body DNA methylation codes have universality similar to the universality of the genetic code and should consequently be considered as part of the inheritance system.
Collapse
Affiliation(s)
- Benoît Aliaga
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Ingo Bulla
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
- Institute for Mathematics and Informatics, University of Greifswald, Greifswald, Germany
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Gabriel Mouahid
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - David Duval
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France
| | - Christoph Grunau
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
5
|
Johannesson K, Ring AK, Johannesson KB, Renborg E, Jonsson PR, Havenhand JN. Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. MARINE BIOLOGY 2018; 165:126. [PMID: 30100627 PMCID: PMC6061499 DOI: 10.1007/s00227-018-3388-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Pelagic larval development has the potential to connect populations over large geographic distances and prevent genetic structuring. The solitary tunicate Ciona intestinalis has pelagic eggs and a swimming larval stage lasting for maximum a few days, with the potential for a homogenizing gene flow over relatively large areas. In the eastern North Sea, it is found in a geomorphologically complex archipelago with a mix of fjords and open costal habitats. Here, the coastal waters are also stratified with a marked pycnocline driven by salinity and temperature differences between shallow and deep waters. We investigated the genetic structure of C. intestinalis in this area and compared it with oceanographic barriers to dispersal that would potentially reduce connectivity among local populations. Genetic data from 240 individuals, sampled in 2 shallow, and 4 deep-water sites, showed varying degrees of differentiation among samples (FST = 0.0-0.11). We found no evidence for genetic isolation by distance, but two distant deep-water sites from the open coast were genetically very similar indicating a potential for long-distance gene flow. However, samples from different depths from the same areas were clearly differentiated, and fjord samples were different from open-coast sites. A biophysical model estimating multi-generation, stepping-stone larval connectivity, and empirical data on fjord water mass retention time showed the presence of oceanographic barriers that explained the genetic structure observed. We conclude that the local pattern of oceanographic connectivity will impact on the genetic structure of C. intestinalis in this region.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Anna-Karin Ring
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Klara B. Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Elin Renborg
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Per R. Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Jon N. Havenhand
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|
6
|
Malfant M, Darras S, Viard F. Coupling molecular data and experimental crosses sheds light about species delineation: a case study with the genus Ciona. Sci Rep 2018; 8:1480. [PMID: 29367599 PMCID: PMC5784138 DOI: 10.1038/s41598-018-19811-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular studies sometimes reveal evolutionary divergence within accepted species. Such findings can initiate taxonomic revision, as exemplified in the formerly recognized species Ciona intestinalis. While an increasing number of studies have examined the ecology, reproductive barriers and genetics of C. intestinalis and C. robusta, there are still much uncertainties regarding other species of this genus. Using experimental crosses and mitochondrial data, we investigated the evolutionary relationships among four native and introduced Ciona spp., found in sympatry in the Mediterranean Sea or English Channel. Outcome of 62 bi-parental reciprocal crosses between C. intestinalis, C. robusta, C. roulei and C. edwardsi showed that C. edwardsi is reproductively isolated from the other taxa, which is in agreement with its distinct location in the phylogenetic tree. Conversely, hybrids are easily obtained in both direction when crossing C. intestinalis and C. roulei, reinforcing the hypothesis of two genetically differentiated lineages but likely being from a same species. Altogether, this study sheds light on the evolutionary relationship in this complex genus. It also calls for further investigation notably based on genome-wide investigation to better describe the evolutionary history within the genus Ciona, a challenging task in a changing world where biological introductions are shuffling species distribution.
Collapse
Affiliation(s)
- Marine Malfant
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Frédérique Viard
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| |
Collapse
|
7
|
Thompson H, Shimeld SM. Transmission and Scanning Electron Microscopy of the Accessory Cells and Chorion During Development of Ciona intestinalis Type B Embryos and the Impact of Their Removal on Cell Morphology. Zoolog Sci 2015; 32:217-22. [PMID: 26003975 DOI: 10.2108/zs140231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.
Collapse
Affiliation(s)
- Helen Thompson
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | | |
Collapse
|
8
|
Abstract
Ascidians are basal chordates that have become increasingly important for understanding chordate evolution. They comprise three orders. In the orders Phlebobranchia and Stolidobranchia, most species freely spawn eggs and sperm, whereas members of the order Aplousobranchia form colonies that brood their eggs and broadcast sperm. In the two free spawning orders, eggs and sperm are easily obtained for in vitro fertilizations. In the third order, slices of colonies yield gametes and embryos of all stages. Methods are described for obtaining gametes, performing fertilizations, and culturing embryos. Also included are methods for removing follicle cells and vitelline coats from oocytes.
Collapse
Affiliation(s)
- Charles C Lambert
- Friday Harbor Laboratories, University of Washington, Harbor, WA, USA
| |
Collapse
|
9
|
Stolfi A, Christiaen L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 2012; 192:55-66. [PMID: 22964837 PMCID: PMC3430545 DOI: 10.1534/genetics.112.140590] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/30/2012] [Indexed: 02/01/2023] Open
Abstract
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
10
|
Serafini L, Hann JB, Kültz D, Tomanek L. The proteomic response of sea squirts (genus Ciona) to acute heat stress: a global perspective on the thermal stability of proteins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:322-34. [PMID: 21839695 DOI: 10.1016/j.cbd.2011.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 01/08/2023]
Abstract
Congeners belonging to the genus Ciona have disparate distributions limited by temperature. Ciona intestinalis is more widespread with a cosmopolitan distribution ranging from tropical to sub-arctic zones, while Ciona savignyi is limited to temperate-latitudes of the northern Pacific Ocean. To compare the heat stress response between congeners, we quantified changes in protein expression using proteomics. Animals were exposed to 22°C, 25°C, and 28°C for 6h, then recovered at a control temperature (13°C) for 16h (high heat stress experiment). In a second experiment we exposed animals to lower levels of heat stress at 18°C, 20°C, and 23°C, with a 16°C control. A quantitative analysis, using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry (with a 69% and 93% identification rate for Ciona intestinalis and Ciona savignyi, respectively), showed changes in a number of protein functional groups, including molecular chaperones, extracellular matrix proteins, calcium-binding proteins, cytoskeletal proteins and proteins involved in energy metabolism. Our results indicate that C. intestinalis maintains higher constitutive levels of molecular chaperones than C. savignyi, suggesting that it is prepared to respond faster to thermal stress. Systematic discrepancies between estimated versus predicted molecular masses of identified proteins differed between protein families and were more pronounced under high heat conditions, suggesting that thermal sensitivities are lower for cytoskeletal proteins and ATP-synthase than for any other protein group represented on 2D gels.
Collapse
Affiliation(s)
- Loredana Serafini
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, San Luis Obispo, CA 93407-0401, USA
| | | | | | | |
Collapse
|
11
|
Nydam ML, Harrison RG. INTROGRESSION DESPITE SUBSTANTIAL DIVERGENCE IN A BROADCAST SPAWNING MARINE INVERTEBRATE. Evolution 2010; 65:429-42. [DOI: 10.1111/j.1558-5646.2010.01153.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lambert CC. Ascidian follicle cells: Multifunctional adjuncts to maturation and development. Dev Growth Differ 2009; 51:677-86. [DOI: 10.1111/j.1440-169x.2009.01127.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Rius M, Turon X, Marshall DJ. Non-lethal effects of an invasive species in the marine environment: the importance of early life-history stages. Oecologia 2009; 159:873-82. [PMID: 19156442 DOI: 10.1007/s00442-008-1256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Studies examining the effects of invasive species have focussed traditionally on the direct/lethal effects of the invasive on the native community but there is a growing recognition that invasive species may also have non-lethal effects. In terrestrial systems, non-lethal effects of invasive species can disrupt early life-history phases (such as fertilisation, dispersal and subsequent establishment) of native species, but in the marine environment most studies focus on adult rather than early life-history stages. Here, we examine the potential for an introduced sessile marine invertebrate (Styela plicata) to exert both lethal and non-lethal effects on a native species (Microcosmus squamiger) across multiple early life-history stages. We determined whether sperm from the invasive species interfered with the fertilisation of eggs from the native species and found no effect. However, we did find strong effects of the invasive species on the post-fertilisation performance of the native species. The invasive species inhibited the settlement of native larvae and, in the field, the presence of the invasive species was associated with a ten-fold increase in the post-settlement mortality of the native species, as well as an initial reduction of growth in the native. Our results suggest that larvae of the native species avoid settling near the invasive species due to reduced post-settlement survival in its presence. Overall, we found that invasive species can have complex and pervasive effects (both lethal and non-lethal) across the early life-history stages of the native species, which are likely to result in its displacement and to facilitate further invasion.
Collapse
Affiliation(s)
- Marc Rius
- Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
14
|
Yoshida R, Horie T, Tsuda M, Kusakabe TG. Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae. Dev Growth Differ 2007; 49:657-67. [PMID: 17711474 DOI: 10.1111/j.1440-169x.2007.00960.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The larval nervous system of the ascidian Ciona intestinalis exhibits an abstract form of the vertebrate nervous system. The Ci-Galphai1 gene, which encodes a G-protein alpha subunit, is specifically expressed in distinct sets of neurons in C. intestinalis larvae, including papillar neurons of the adhesive organ, ocellus photoreceptor cells, and cholinergic and GABAergic neurons in the central nervous system (CNS). A GFP reporter gene driven by the 4.2-kb 5' flanking region of Ci-Galphai1 recapitulated the endogenous gene expression patterns. Comparative genomic analysis of the Galphai1 gene between C. intestinalis and Ciona savignyi identified an 87-bp highly conserved non-coding sequence located between -3176 and -3090 bp upstream of the gene. Deletion of this conserved upstream sequence resulted in the complete loss of reporter expression in the central nervous system, while reporter expression in the adhesive organ and mesenchyme cells remained unaffected. The conserved upstream sequence can activate gene expression from basal promoters in the brain vesicle, although it requires additional cis-regulatory sequences to fully activate the CNS-specific gene expression. These results suggest that different types of central neurons share a common transcriptional activation mechanism that is different from that of papillar neurons.
Collapse
Affiliation(s)
- Reiko Yoshida
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
The use of classic genetics is emerging in the ascidian Ciona intestinalis; recent advances in genomics and high-quality developmental and evolutionary studies have made this animal an attractive model for research purposes. Genetic mapping in Ciona will likely make a major contribution to ascidian genomics and developmental biology by providing support for genome assembly and annotation and for the isolation of genes with particular mutations, while construction of genetic maps advances classic genetics in this species. Two major issues must be overcome before fine genetic maps can be constructed: the choice of proper genetic backgrounds and the establishment of laboratory strains. A high degree of polymorphism is useful for genetic mapping if we consider particular combinations of genetic backgrounds and techniques, although it is necessary to pay attention to the confused classification of C. intestinalis. Thus, it is preferred to establish laboratory strains instead of using samples with various genetic backgrounds. As these issues are unresolved, only amplified fragment length polymorphism-based maps have been created, while bulk segregant analysis is expected to isolate markers flanking mutant loci. However, rich genomic resources should facilitate the next stage of genetic map construction based on type I markers using coding sequences. The meiotic events that occur in crossing experiments for mapping purposes should shed light on population genetics and speciation issues. The results of such investigations may provide feedback for comparative genomics and developmental genetics in the near future.
Collapse
Affiliation(s)
- Shungo Kano
- DEPSN, CNRS, Institute de Nerurobiologie A. Fessard, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Small KS, Brudno M, Hill MM, Sidow A. A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 2007; 8:R41. [PMID: 17374142 PMCID: PMC1868934 DOI: 10.1186/gb-2007-8-3-r41] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/15/2007] [Accepted: 03/20/2007] [Indexed: 01/11/2023] Open
Abstract
The high degree of polymorphism in the genome of the sea squirt Ciona savignyi complicated the assembly of sequence contigs, but a new alignment method results in a much improved sequence. The sequence of Ciona savignyi was determined using a whole-genome shotgun strategy, but a high degree of polymorphism resulted in a fractured assembly wherein allelic sequences from the same genomic region assembled separately. We designed a multistep strategy to generate a nonredundant reference sequence from the original assembly by reconstructing and aligning the two 'haplomes' (haploid genomes). In the resultant 174 megabase reference sequence, each locus is represented once, misassemblies are corrected, and contiguity and continuity are dramatically improved.
Collapse
Affiliation(s)
- Kerrin S Small
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| | - Michael Brudno
- Department of Computer Science, Banting and Best Department of Medical Research, University of Toronto, Toronto, 6 King's College Rd, Ontario, M5S 3G4, Canada
| | - Matthew M Hill
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| | - Arend Sidow
- Departments of Pathology and of Genetics, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305-5324, USA
| |
Collapse
|
17
|
Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, Sordino P. Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci U S A 2007; 104:9364-9. [PMID: 17517633 PMCID: PMC1890500 DOI: 10.1073/pnas.0610158104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
We applied independent species concepts to clarify the phylogeographic structure of the ascidian Ciona intestinalis, a powerful model system in chordate biology and for comparative genomic studies. Intensive research with this marine invertebrate is based on the assumption that natural populations globally belong to a single species. Therefore, understanding the true taxonomic classification may have implications for experimental design and data management. Phylogenies inferred from mitochondrial and nuclear DNA markers accredit the existence of two cryptic species: C. intestinalis sp. A, genetically homogeneous, distributed in the Mediterranean, northeast Atlantic, and Pacific, and C. intestinalis sp. B, geographically structured and encountered in the North Atlantic. Species-level divergence is further entailed by cross-breeding estimates. C. intestinalis A and B from allopatric populations cross-fertilize, but hybrids remain infertile because of defective gametogenesis. Although anatomy illustrates an overall interspecific similarity lacking in diagnostic features, we provide consistent tools for in-field and in-laboratory species discrimination. Finding of two cryptic taxa in C. intestinalis raises interest in a new tunicate genome as a gateway to studies in speciation and ecological adaptation of chordates.
Collapse
Affiliation(s)
- Luigi Caputi
- Laboratory of Biochemistry and Molecular Biology and
| | | | - Francesco Mastrototaro
- Department of Zoology, Faculty of Biological Science, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Paola Cirino
- Service of Marine Resources for Research, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; and
| | | | - Paolo Sordino
- Laboratory of Biochemistry and Molecular Biology and
| |
Collapse
|
18
|
Ban S, Harada Y, Yokosawa H, Sawada H. Highly polymorphic vitelline-coat protein HaVC80 from the ascidian, Halocynthia aurantium: structural analysis and involvement in self/nonself recognition during fertilization. Dev Biol 2005; 286:440-51. [PMID: 16154559 DOI: 10.1016/j.ydbio.2005.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/17/2005] [Accepted: 08/01/2005] [Indexed: 11/21/2022]
Abstract
Ascidians release sperm and eggs simultaneously, but self-fertilization is effectively blocked by unknown mechanisms. We previously reported that a 70-kDa sperm receptor HrVC70 on the egg vitelline coat (VC) consisting of 12 EGF-like repeats is a candidate self/nonself recognition molecule during fertilization of the ascidian, Halocynthia roretzi. Here, we report that Halocynthia aurantium also utilizes a homolog (HaVC80) of HrVC70 as an allorecognizable sperm receptor. HaVC80 is attached to the VC during the acquisition of self-sterility and is detached from the VC by acid treatment, allowing self-fertilization. A cDNA clone of the HaVC80 precursor, HaVC130, consists of 3726 nucleotides and encodes an open reading frame of 1208 amino acids. The structure of HaVC130 is very similar to the HrVC70 precursor HrVC120, but the number of EGF-like repeats of HaVC130/VC80 is one repeat larger than that of HrVC120/VC70. There are several amino acid substitutions between different individuals, and two alleles of the HaVC80 sequence were detected in each individual. Genomic DNA sequence analysis reveals that each EGF-like domain corresponds to a specific exon, and HaVC130 may have been evolutionarily generated from HrVC120 by duplication of the 8th EGF-like repeat. The data support the hypothesis that HaVC80 is a highly polymorphic protein responsible for self-sterility in H. aurantium.
Collapse
Affiliation(s)
- Susumu Ban
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
20
|
Lambert CC. Historical introduction, overview, and reproductive biology of the protochordates. CAN J ZOOL 2005. [DOI: 10.1139/z04-160] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This issue of the Canadian Journal of Zoology exhaustively reviews most major aspects of protochordate biology by specialists in their fields. Protochordates are members of two deuterostome phyla that are exclusively marine. The Hemichordata, with solitary enteropneusts and colonial pterobranchs, share a ciliated larva with echinoderms and appear to be closely related, but they also have many chordate-like features. The invertebrate chordates are composed of the exclusively solitary cephalochordates and the tunicates with both solitary and colonial forms. The cephalochordates are all free-swimming, but the tunicates include both sessile and free-swimming forms. Here I explore the history of research on protochordates, show how views on their relationships have changed with time, and review some of their reproductive and structural traits not included in other contributions to this special issue.
Collapse
|
21
|
Johnson DS, Davidson B, Brown CD, Smith WC, Sidow A. Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Res 2004; 14:2448-56. [PMID: 15545496 PMCID: PMC534669 DOI: 10.1101/gr.2964504] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that sequence comparisons at different levels of resolution can efficiently guide functional analyses of regulatory regions in the ascidians Ciona savignyi and Ciona intestinalis. Sequence alignments of several tissue-specific genes guided discovery of minimal regulatory regions that are active in whole-embryo reporter assays. Using the Troponin I (TnI) locus as a case study, we show that more refined local sequence analyses can then be used to reveal functional substructure within a regulatory region. A high-resolution saturation mutagenesis in conjunction with comparative sequence analyses defined essential sequence elements within the TnI regulatory region. Finally, we found a significant, quantitative relationship between function and sequence divergence of noncoding functional elements. This work demonstrates the power of comparative sequence analysis between the two Ciona species for guiding gene regulatory experiments.
Collapse
Affiliation(s)
- David S Johnson
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305-5324, USA
| | | | | | | | | |
Collapse
|
22
|
Sawada H, Tanaka E, Ban S, Yamasaki C, Fujino J, Ooura K, Abe Y, Matsumoto KI, Yokosawa H. Self/nonself recognition in ascidian fertilization: vitelline coat protein HrVC70 is a candidate allorecognition molecule. Proc Natl Acad Sci U S A 2004; 101:15615-20. [PMID: 15505220 PMCID: PMC524827 DOI: 10.1073/pnas.0401928101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 09/16/2004] [Indexed: 11/18/2022] Open
Abstract
Ascidians are hermaphrodites releasing sperm and eggs simultaneously, but many species are self-sterile because of a self/nonself-recognition system in spermegg interaction. Here, we show that a 70-kDa vitelline coat protein, HrVC70, consisting of 12 epidermal growth factor-like repeats, plays a key role in self/nonself recognition during ascidian fertilization. We discovered that the amount of HrVC70 of the self-sterile mature oocytes is markedly higher than that of the self-fertile immature oocytes and that the selfsterile mature oocytes become self-fertile by acid treatment, which is able to release the HrVC70 from isolated vitelline coats. In addition, fertilization is strongly inhibited by the pretreatment of sperm with HrVC70 from a different individual, but not from the same individual, and the number of nonself sperm bound to HrVC70-agarose was significantly higher than that of self-sperm. A sequence analysis of HrVC70 disclosed that several amino acid residues in a restricted region are substituted at an individual level, with no identical sequences among the 10 individuals tested. Furthermore, genomic DNA analysis revealed that the epidermal growth factor-like domains correspond to the exons, and each intron is highly conserved among even- and odd-numbered introns, suggesting that multiple gene duplications or amplification of this region might have taken place during evolution. It was also found that diversity in cDNA sequences is derived from genomic DNA polymorphism probably elicited by crossing over and specific nucleotide substitutions. These results indicate that HrVC70 is a candidate allogeneic recognition molecule in the gamete interaction of the ascidian Halocynthia roretzi.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hendrickson C, Christiaen L, Deschet K, Jiang D, Joly JS, Legendre L, Nakatani Y, Tresser J, Smith WC. Culture of adult ascidians and ascidian genetics. Methods Cell Biol 2004; 74:143-70. [PMID: 15575606 DOI: 10.1016/s0091-679x(04)74007-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carolyn Hendrickson
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Murabe N, Hoshi M. Re-examination of sibling cross-sterility in the ascidian, Ciona intestinalis: genetic background of the self-sterility. Zoolog Sci 2002; 19:527-38. [PMID: 12130805 DOI: 10.2108/zsj.19.527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Self-sterility of solitary ascidians is a typical example of the allogeneic recognition, though its molecular mechanism remains an open question. In this paper we analyze the fertility between siblings from selfed and crossed eggs to understand the genetic basis of self-sterility in the ascidian, Ciona intestinalis. First, we show that the self-sterility is strict and stable, and the individuality expressed in gametes is highly diversified in the wild population that we used. Secondly, we show one-way cross-sterility and reciprocal cross-sterility within the siblings that are self-sterile but fertile with non-siblings. Thirdly, we show self-sterility and cross-sterility share some natures and both are closely related to the sperm capacity not to bind to the vitelline coat of the autologous eggs or the eggs sterile to the sperm concerned. In all, this paper shows that the self-sterility is genetically governed by a multiple-locus system, and that most probably individual-specific determinants are haploid expression in sperm and diploid expression in eggs, given they recognize self but not non-self.
Collapse
Affiliation(s)
- Naoyuki Murabe
- Department of Bioscience, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | | |
Collapse
|
25
|
Abstract
Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degradation of the vitelline coat, however, remains poorly understood. In order to understand the lysin system, we have been studying the fertilization mechanism in ascidians (Urochordata) because we can obtain large quantities of gametes which are readily fertilized in the laboratory. Whereas ascidians are hermaphrodites, which release sperm and eggs simultaneously, many ascidians, including Halocynthia roretzi, are strictly self-sterile. Therefore, after sperm recognize the vitelline coat as nonself, the sperm lysin system is thought to be activated. We revealed that two sperm trypsin-like proteases, acrosin and spermosin, the latter of which is a novel sperm protease with thrombin-like substrate specificity, are essential for fertilization in H. roretzi. These molecules contain motifs involved in binding to the vitelline coat. We found that the proteasome rather than trypsin-like proteases has a direct lytic activity toward the vitelline coat. The target for the ascidian lysin was found to be a 70-kDa vitelline coat component called HrVC70, which is made up of 12 EGF-like repeats. In addition to the proteasome system, the ubiquitination system toward the HrVC70 was found to be necessary for ascidian fertilization. In this review, I describe recent progress on the structures and roles in fertilization of the two trypsin-like proteases, acrosin and spermosin, and also on the novel extracellular ubiquitin-proteasome system, which plays an essential role in the degradation of the ascidian vitelline coat.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Lambert CC, Someno T, Sawada H. Sperm surface proteases in ascidian fertilization. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:88-95. [PMID: 11754025 DOI: 10.1002/jez.1145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ascidian eggs are surrounded by a noncellular layer and two cellular layers, which are penetrated by sperm. Three sperm surface proteases are essential for fertilization of eggs from the stolidobranch ascidian Halocynthia: spermosin, acrosin, and the proteasome. In the phlebobranch Ciona, a chymotrypsin-like protease and the proteasome are essential in fertilization. Sperm from the phlebobranch ascidians Phallusia mammillata, Ascidia (=Phallusia) nigra, and Ascidia columbiana, all express spermosin, acrosin, and the proteasomal chymotrypsin activities on their surfaces. Chymostatin blocks cleavage in phlebobranchs, but inhibitors of spermosin and acrosin only delay it by several minutes. Protease inhibitors have little effect upon sperm binding in Phallusia but strongly affect the rate of sperm passage through the vitelline coat. Peptide substrates and inhibitors to spermosin and acrosin cause a significant decline in the number of eggs undergoing pre-meiotic contractions at 3 min after fertilization. Thus while chymotrypsin activity is essential for penetration of the vitelline coat, spermosin and acrosin both function to increase the rate of fertilization. A crucial step in the divergence of the phlebobranchs and stolidobranchs may have been the conversion of spermosin and acrosin to essential proteases in the stolidobranchs, or, perhaps, their essential function was lost in the evolution of phlebobranchs. Aplousobranch ascidians are all colonial with very small zooids. Sperm from Aplidium californicum, Aplidium solidum (Polyclinidae), and Distaplia occidentalis (Holozoidae) have acrosin and chymotrypsin activities but lack spermosin activity. This enzyme is also missing from sperm of colonial phlebobranch and stolidobranch ascidians, suggesting that spermosin is not necessary for small zooids with internal fertilization.
Collapse
Affiliation(s)
- Charles C Lambert
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA.
| | | | | |
Collapse
|
27
|
Sordino P, Belluzzi L, De Santis R, Smith WC. Developmental genetics in primitive chordates. Philos Trans R Soc Lond B Biol Sci 2001; 356:1573-82. [PMID: 11604124 PMCID: PMC1088537 DOI: 10.1098/rstb.2001.0919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in the study of the genetics and genomics of urochordates testify to a renewed interest in this chordate subphylum, believed to be the most primitive extant chordate relatives of the vertebrates. In addition to their primitive nature, many features of their reproduction and early development make the urochordates ideal model chordates for developmental genetics. Many urochordates spawn large numbers of transparent and externally developing embryos on a daily basis. Additionally, the embryos have a defined and well-characterized cell lineage until the end of gastrulation. Furthermore, the genomes of the urochordates have been estimated to be only 5-10% of the size of the vertebrates and to have fewer genes and less genetic redundancy than vertebrates. Genetic screens, which are powerful tools for investigating developmental mechanisms, have recently become feasible due to new culturing techniques in ascidians. Because hermaphrodite ascidians are able to self-fertilize, recessive mutations can be detected in a single generation. Several recent studies have demonstrated the feasibility of applying modern genetic techniques to the study of ascidian biology.
Collapse
Affiliation(s)
- P Sordino
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|