1
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
2
|
Erdem Yilmaz O. Antimicrobial and Gas Adsorption Properties of Electrospun Ferrocene-Polyurethane-Based Nanofibers Containing Silver Nitrate. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
4
|
Yavvari PS, Awasthi AK, Sharma A, Bajaj A, Srivastava A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. J Mater Chem B 2019; 7:2102-2122. [DOI: 10.1039/c8tb02962h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of positive biomedical attributes of biodegradable polyelectrolytes (PELs) prepared from aspartic acid is provided. The utility of these PELs in emerging applications such as biomineralization modulators, antimycobacterials, biocompatible cell encapsulants and tissue adhesives is highlighted.
Collapse
Affiliation(s)
- Prabhu Srinivas Yavvari
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Anand Kumar Awasthi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Aashish Sharma
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- NCR Biotech Science Cluster
- Faridabad-121001
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| |
Collapse
|
5
|
Aderibigbe B, Ray SS. Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Yan Y, Zhang J, Ren L, Tang C. Metal-containing and related polymers for biomedical applications. Chem Soc Rev 2016; 45:5232-63. [PMID: 26910408 PMCID: PMC4996776 DOI: 10.1039/c6cs00026f] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical, University, Xi’an, Shannxi, 710129, China
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lixia Ren
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
7
|
Alkan A, Wurm FR. Water-Soluble Metallocene-Containing Polymers. Macromol Rapid Commun 2016; 37:1482-93. [DOI: 10.1002/marc.201600205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Arda Alkan
- Max Planck Institute for Polymer Research (MPIP); Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research (MPIP); Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
8
|
Aderibigbe BA. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Upton BM, Gipson RM, Duhović S, Lydon BR, Matsumoto NM, Maynard HD, Diaconescu PL. Synthesis of ferrocene-functionalized monomers for biodegradable polymer formation. Inorg Chem Front 2014. [DOI: 10.1039/c3qi00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Synthesis, Characterization and Kinetic Release Profile of Iron Containing Polymeric Co-conjugates with Antiproliferative Activity. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9968-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Affiliation(s)
- Susana S. Braga
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Nkazi B, Neuse E, Sadik E, Aderibigbe B. Synthesis, Characterization, Kinetic Release Study and Evaluation of Hydrazone Linker in Ferrocene Conjugates at Different pH Values. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li S, Wang Z, Wei Y, Wu C, Gao S, Jiang H, Zhao X, Yan H, Wang X. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials 2013; 34:902-11. [DOI: 10.1016/j.biomaterials.2012.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/30/2012] [Indexed: 11/25/2022]
|
14
|
Syntheses and in vitro antitumor activities of ferrocene-conjugated Arg-Gly-Asp peptides. J Inorg Biochem 2012; 116:19-25. [DOI: 10.1016/j.jinorgbio.2012.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
|
15
|
Auzias M, Therrien B, Süss-Fink G. Heteronuclear complexes containing the N,N′-di(2-pyridyl)amidocarboxylferrocene ligand. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Bruno SM, Fernandes JA, Marques J, Neto SC, Ribeiro-Claro PJ, Pillinger M, Paz FAA, Marques MPM, Braga SS, Gonçalves IS. Structural Studies and Cytotoxicity of Trimethyl(ferrocenylmethyl)ammonium Iodide Encapsulated in β-Cyclodextrin. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Snegur LV, Babin VN, Simenel AA, Nekrasov YS, Ostrovskaya LA, Sergeeva NS. Antitumor activities of ferrocene compounds. Russ Chem Bull 2011. [DOI: 10.1007/s11172-010-0377-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Affiliation(s)
- Gilles Gasser
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ingo Ott
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
19
|
|
20
|
Wu C, Ye H, Bai W, Li Q, Guo D, Lv G, Yan H, Wang X. New potential anticancer agent of carborane derivatives: selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates. Bioconjug Chem 2010; 22:16-25. [PMID: 21162536 DOI: 10.1021/bc100158b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The large diversity of structures and unique bonding modes of organometallic complexes make them possible to act as promising candidate therapeutic agents. In this study, the new type of ferrocene-substituted dithio-o-carborane conjugates (FcSB1, FcSB2, and FcSBCO) has been synthesized, and their in vitro antineoplastic activities have been explored by means of the electrochemical study, the real time cell electronic sensing (RT-CES) system, and biological assays. The conjugate-cell interactions were first monitored by electrochemistry, and the results show different cell uptake efficiency for FcSB1, FcSB2, and FcSBCO toward target cells. Both the highly hydrophobic ferrocenyl and carboranyl groups render the conjugates able to rapidly enter cells and exert acute cytotoxicity after 4 h incubation in serum-free media. However, FcSB1, FcSB2, and FcSBCO display different inhibition efficiencies toward SMMC-7721 and HepG2 cancer cells via the G(0)/G(1) arrest mechanism in a physiological environment. The anticancer activity is in the order FcSB2 > FcSB1 > FcSBCO, which is parallel to the order of the redox potentials of the ferrocenyl groups in the three complexes. In particular, FcSB1 and FcSB2 display a potent selective inhibition effect on the proliferation of the cancer cell lines SMMC-7721 and HepG2, but almost no effect on the normal cell line, the human embryonic lung fibroblast (HELF) cells. Thus, these results may provide some clues for use of the ferrocene-carborane conjugates in developing anticancer drugs.
Collapse
Affiliation(s)
- Chunhui Wu
- State Key Lab of Bioelectronics (Chien-Shiung Wu Lab), Southeast University, Jiangsu 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gál E, Cristea C, Silaghi-Dumitrescu L, Lovász T, Csámpai A. Iodine-catalyzed stepwise [4+2] cycloaddition of phenothiazine- and ferrocene-containing Schiff bases with DHP promoted by microwave irradiation. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Hillard EA, Vessières A, Jaouen G. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents. TOP ORGANOMETAL CHEM 2010. [DOI: 10.1007/978-3-642-13185-1_4] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Noor F, Kinscherf R, Bonaterra GA, Walczak S, Wölfl S, Metzler-Nolte N. Enhanced cellular uptake and cytotoxicity studies of organometallic bioconjugates of the NLS peptide in Hep G2 cells. Chembiochem 2009; 10:493-502. [PMID: 19115329 DOI: 10.1002/cbic.200800469] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SPACE INVADERS: Organometallic fragments such as the ferrocenyl group (shown in red in the picture) help to enhance cellular entry of NLS peptides. Eventually, these nontoxic conjugates find their way to the cellular nucleus as shown by fluorescence microscopy studies in this work. Intracellular delivery to biomolecular targets is still a major challenge in molecular and cell biology. We recently found that attaching an organometallic group, namely the cobaltocenium cation, to the SV 40 large T antigen nuclear localisation signal (NLS) greatly enhances cellular uptake of the conjugate (Noor et al., Angew. Chem. Int. Ed. 2005, 45, 2429). In addition, nuclear localisation of the conjugate was observed. In this work, we present a thorough investigation of this novel cellular delivery system with respect to the nature of the metal complex and the peptide sequence. A number of ferrocene ((Fe(II)), neutral metal complex) and cobaltocenium ((Co(III)), cationic metal complex) bioconjugates with both the NLS wild-type sequence PKKKRKV and a scrambled sequence (NLS(scr), KKVKPKR) were prepared by solid-phase peptide synthesis (SPPS). Cellular and nuclear uptake of these bioconjugates was studied by fluorescence microscopy on living Hep G2 cells. In addition, cytotoxicity screening on the conjugates was carried out, as the toxic effects of several simple metallocenes have been noted previously. Rapid cellular uptake as well as nuclear localisation was observed for the metal-NLS conjugates, but not for any dipeptide controls, the metal-NLS(scr) conjugates or any metal-free conjugates. It thus appears that the presence of a metallocene, but not its charge, and the correct NLS sequence is essential for cellular uptake. Fluorescence microscopy co-localisation studies did not reveal a significant endosomal entrapment of the conjugates. The metallocene not only provides a hydrophobic handle for membrane translocation but also facilitates the localisation and distribution of the conjugate in the cytoplasm. The NLS peptide on the other hand is responsible for the nuclear localisation of the bioconjugate. Finally, none of the conjugates were found to be toxic up to the highest concentrations that was tested (1 mM) against the Hep G2 cells that were used in this study. In conclusion, this work supports metallocene-NLS bioconjugates, in particular with the very robust cobaltocenium group, as a simple but potent, nontoxic system for cellular uptake and nuclear delivery. Concurrently, our finding is relevant to the still-unresolved question of cytotoxicity of metallocenes because it excludes binding and/or damage to the DNA as a mechanism of metallocene cytotoxicity. This finding is confirmed by a combined yeast cytotoxicity/genotoxicity assay, which also shows very little toxic effects for all organometal-NLS conjugates that were tested.
Collapse
Affiliation(s)
- Fozia Noor
- Department of Biochemical Engineering, University of Saarland, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Synthesis, structure, electrochemistry, and cytotoxic properties of ferrocenyl ester derivatives. Met Based Drugs 2009; 2009:420784. [PMID: 19325925 PMCID: PMC2659881 DOI: 10.1155/2009/420784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 01/26/2009] [Indexed: 11/20/2022] Open
Abstract
A series of ferrocenyl ester complexes, varying the lipophilic character of the pendant groups, was prepared and characterized by spectroscopic and analytical methods. The syntheses of Fe(C5H4CO2CH3)2, Fe(CpCOOCH3) (CpCOO
CH2CH3), and
Fe(CpCOOCH2CH3)2 are reported. The solid-state structure of Fe(C5H4CO2CH3)2 has been determined by X-ray crystallography. Fe(C5H4CO2CH3)2 has the cyclopentadienyl rings virtually in an eclipsed conformation with the pendant groups not completely opposite to each other. Cyclic voltammetry characterization showed that the functionalized ferrocenes oxidize at potentials, Epa, higher than ferrocene as a result of the electro withdrawing effect of the pendant groups on the cyclopentadienyl ligand. The cytotoxicities of Fe(C5H4CO2CH2CH2OH)2, Fe(C5H4CO2CH2CH=CH2)2, Fe(C5H4CO2CH3)2, Fe(CpCOOCH3)(CpCOOCH2CH3), and Fe(CpCOOCH2CH3)2 in colon cancer HT-29 and breast cancer MCF-7 cell lines were measured by the MTT biological viability assay and compared to ferrocene and ferrocenium. Fe(C5H4CO2CH2CH=CH2)2 showed the best IC50 values, 180(10)
μM for HT-29 and 190(30)
μM for MCF-7 cell lines, with cytotoxicities similar to ferrocenium.
The cytotoxic data suggest that as we increase the lipophilic character of the functionalized ferrocene,
the cytotoxicity improves approaching to the cytotoxic activity of
ferrocenium.
Collapse
|
25
|
Petrovski Ž, Norton de Matos MR, Braga SS, Pereira CC, Matos ML, Gonçalves IS, Pillinger M, Alves PM, Romão CC. Synthesis, characterization and antitumor activity of 1,2-disubstituted ferrocenes and cyclodextrin inclusion complexes. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2007.11.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Snegur LV, Nekrasov YS, Sergeeva NS, Zhilina ZV, Gumenyuk VV, Starikova ZA, Simenel AA, Morozova NB, Sviridova IK, Babin VN. Ferrocenylalkyl azoles: bioactivity, synthesis, structure. Appl Organomet Chem 2008. [DOI: 10.1002/aoc.1362] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Dou YY, Xie YF, Tang LF. Synthesis, electrochemical properties and fungicidal activity of 1,1′-bis(aroyl)ferrocenes and their derivatives. Appl Organomet Chem 2008. [DOI: 10.1002/aoc.1345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Hillard EA, Pigeon P, Vessières A, Amatore C, Jaouen G. The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Trans 2007:5073-81. [PMID: 17992292 DOI: 10.1039/b705030e] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferrocenyl compound 2-ferrocenyl-1,1-bis(4-hydroxyphenyl)-but-1-ene (), is very cytotoxic against breast cancer cells (IC(50) = 0.44 microM against MDA-MB-231). We now report the synthesis of a new series of para- and meta- substituted mono- and di- ferrocenyl phenols [2-ferrocenyl-1-(3-hydroxyphenyl)-1-phenyl-but-1-ene (), 2-ferrocenyl-1-(3-hydroxyphenyl)-1-(4-hydroxyphenyl)-but-1-ene (), 1,2-di-ferrocenyl-1-(4-hydroxyphenyl)-but-1-ene (), and 1,2-di-ferrocenyl-1-(3-hydroxyphenyl)-but-1-ene ()] and their electrochemical and biochemical properties, especially in comparison to the previously reported "standard" compounds [2-ferrocenyl-1-(4-hydroxyphenyl)-1-phenyl-but-1-ene () and ()]. We also report the synthesis and characterization of the diphenyl analogue, 2-ferrocenyl-1,1-diphenyl-but-1-ene (). This structure-activity relationship study was motivated by our hypothesis that the cytotoxicity of is related to its ability to form a quinone methide structure after two in situ 1-electron oxidations, a process which requires the presence of at least one p-phenol. The mono-ferrocenyl compounds (including those previously reported) are reasonably well recognized by the oestrogen receptors alpha (RBAs = 0.9-9.6%) and beta (RBAs = 0.28-16.3%), although the bulkier di-ferrocenyl compounds show very little affinity. In vitro, the cytotoxic effects of the phenolic complexes are related to the positioning of the hydroxyl group (para- superior to meta-), and to the number of ferrocenyl groups (one superior to two), with IC(50) values against the MDA-MB-231 cell line ranging from 0.44-3.5 microM. On the hormone-dependent breast cancer cell line MCF-7, the observed effect seems to be the result of two components, one cytotoxic (antiproliferative) and one estrogenic (proliferative). Electrochemical studies show that only the compounds with a p-phenol engage in proton-coupled intramolecular electron transfer.
Collapse
Affiliation(s)
- Elizabeth Anne Hillard
- Laboratoire de Chimie et Biochimie des Complexes Moléculaires, UMR CNRS 7576, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231, Paris, Cedex 05, France
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Simenel AA, Kuzmenko YV, Morozova EA, Ilyin MM, Gun'ko IF, Snegur LV. Synthesis and enantiomeric resolution of ferrocenyl(alkyl)azoles. J Organomet Chem 2003. [DOI: 10.1016/j.jorganchem.2003.08.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
|