1
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Calabrese V. Stem Cells And Hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Abstract
The hormesis concept demonstrates that in contrast to the toxic effect of high doses of materials, irradiation, etc., low doses of them are beneficial and, in addition, help to eliminate (prevent) the deleterious effect of high doses given after it. By this effect, it is an important factor of (human) evolution protecting man from harmful impacts, similarly to the role of immunity. However, immunity is also continuously influenced by hormetic effects of environmental [chemical (pollutions), physical (background irradiations and heat), etc.] and medical (drugs and therapeutic irradiations) and food interactions. In contrast to earlier beliefs, the no-threshold irradiation dogma is not valid in low-dose domains and here the hormesis concept is valid. Low-dose therapeutic irradiation, as well as background irradiations (by radon spas or moderately far from the epicenter of atomic bomb or nuclear facilities), is rather beneficial than destructive and the fear from them seems to be unreasonable from immunological point of view. Practically, all immune parameters are beneficially influenced by all forms of low-dose radiations.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:61-74. [PMID: 30172135 DOI: 10.1016/j.scitotenv.2018.08.264] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
UNLABELLED The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. CAPSULE The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593 Stuttgart, Germany.
| | - Vicent Calatayud
- Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome 00123, Italy.
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex 06904, France.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
4
|
Cho SJ, Kang H, Hong EH, Kim JY, Nam SY. Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T-cells undergoing activation and regulation of their expression of select cytokines. J Immunotoxicol 2019; 15:137-146. [DOI: 10.1080/1547691x.2018.1521484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Seong-Jun Cho
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Hana Kang
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Ji Young Kim
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| |
Collapse
|
5
|
Chirumbolo S, Bjørklund G. PERM Hypothesis: The Fundamental Machinery Able to Elucidate the Role of Xenobiotics and Hormesis in Cell Survival and Homeostasis. Int J Mol Sci 2017; 18:ijms18010165. [PMID: 28098843 PMCID: PMC5297798 DOI: 10.3390/ijms18010165] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
In this article the Proteasome, Endoplasmic Reticulum and Mitochondria (PERM) hypothesis is discussed. The complex machinery made by three homeostatic mechanisms involving the proteasome (P), endoplasmic reticulum (ER) and mitochondria (M) is addressed in order to elucidate the beneficial role of many xenobiotics, either trace metals or phytochemicals, which are spread in the human environment and in dietary habits, exerting their actions on the mechanisms underlying cell survival (apoptosis, cell cycle regulation, DNA repair and turnover, autophagy) and stress response. The "PERM hypothesis" suggests that xenobiotics can modulate this central signaling and the regulatory engine made fundamentally by the ER, mitochondria and proteasome, together with other ancillary components such as peroxisomes, by acting on the energetic balance, redox system and macromolecule turnover. In this context, reactive species and stressors are fundamentally signalling molecules that could act as negative-modulating signals if PERM-mediated control is offline, impaired or dysregulated, as occurs in metabolic syndrome, degenerative disorders, chronic inflammation and cancer. Calcium is an important oscillatory input of this regulation and, in this hypothesis, it might play a role in maintaining the correct rhythm of this PERM modulation, probably chaotic in its nature, and guiding cells to a more drastic decision, such as apoptosis. The commonest effort sustained by cells is to maintain their survival balance and the proterome has the fundamental task of supporting this mechanism. Mild stress is probably the main stimulus in this sense. Hormesis is therefore re-interpreted in the light of this hypothetical model and that experimental evidence arising from flavonoid and hormesis reasearch.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana 8610, Norway.
| |
Collapse
|
6
|
Lim S, Ko EJ, Kang YJ, Baek KW, Ock MS, Song KS, Kang HJ, Keum YS, Hyun JW, Kwon TK, Nam SY, Cha HJ, Choi YH. Effect of irradiation on cytokine secretion and nitric oxide production by inflammatory macrophages. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Cho SJ, Kang H, Kim MY, Lee JE, Kim SJ, Nam SY, Kim JY, Kim HS, Pyo S, Yang KH. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation. Int J Radiat Oncol Biol Phys 2016; 94:1207-18. [DOI: 10.1016/j.ijrobp.2016.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
|
8
|
Ayyanath MM, Cutler GC, Scott-Dupree CD, Sibley PK. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS One 2013; 8:e74532. [PMID: 24040272 PMCID: PMC3765407 DOI: 10.1371/journal.pone.0074532] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/05/2013] [Indexed: 01/26/2023] Open
Abstract
Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University Agricultural Campus, Truro, Nova Scotia, Canada
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - G. Christopher Cutler
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University Agricultural Campus, Truro, Nova Scotia, Canada
- * E-mail:
| | - Cynthia D. Scott-Dupree
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Paul K. Sibley
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
MotherSill C, Seymour C. Changing paradigms in radiobiology. Mutat Res 2012; 750:85-95. [PMID: 22273762 DOI: 10.1016/j.mrrev.2011.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
The last 25 years have seen a major shift in emphasis in the field of radiobiology from a DNA-centric view of how radiation damage occurs to a much more biological view that appreciates the importance of macro-and micro-environments, hierarchical organization, underlying genetics, evolution, adaptation and signaling at all levels from atoms to ecosystems. The new view incorporates concepts of hormesis, nonlinear systems, bioenergy field theory, uncertainty and homeodynamics. While the mechanisms underlying these effects and responses are still far from clear, it is very apparent that their implications are much wider than the field of radiobiology. This reflection discusses the changing views and considers how they are influencing thought in environmental and medical science and systems biology.
Collapse
Affiliation(s)
- Carmel MotherSill
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Colin Seymour
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
10
|
Vaiserman AM. Hormesis, adaptive epigenetic reorganization, and implications for human health and longevity. Dose Response 2010; 8:16-21. [PMID: 20221294 DOI: 10.2203/dose-response.09-014.vaiserman] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hormesis is a common phenomenon in a number of biomedical areas. However, the basic nature of this phenomenon remains largely unknown. Therefore, significant uncertainty is inevitable in attempts to apply hormesis as a pro-health and anti-aging tool. Evidence supporting that hormetic-like effects may be the result of a generalized whole-organism adaptive epigenetic response is reviewed. Specific hormesis-inducing interventions during development would allow to achieve an optimal balance between activation and repression of various genes and thus to prevent age-related degenerative diseases and slow aging. The reasons that oscillating temperature mild stress could potentially be used for human application are discussed.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Laboratory of Mathematical Modeling of Aging Processes, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, Ukraine.
| |
Collapse
|
11
|
Sørensen JG, Holmstrup M, Sarup P, Loeschcke V. Evolutionary theory and studies of model organisms predict a cautiously positive perspective on the therapeutic use of hormesis for healthy aging in humans. Dose Response 2009; 8:53-7. [PMID: 20221289 DOI: 10.2203/dose-response.09-040.sorensen] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hormesis, the beneficial effects of mild stress exposures, is a well documented phenomenon in a range of organisms. The documentation mainly relies on relatively simple and controlled laboratory investigations. In order to better understand hormesis and predict the outcome of more complex and realistic conditions, a number of key issues should be investigated in much more detail. One obstacle is the development of precise treatments optimized for single individuals. Only then can we progress with the use of hormesis as a therapeutic tool for humans.
Collapse
Affiliation(s)
- Jesper G Sørensen
- Department of Terrestrial Ecology, National Environmental Research Institute, Aarhus University, Vejlsøvej 25, Silkeborg, Denmark.
| | | | | | | |
Collapse
|
12
|
Postiglione I, Chiaviello A, Palumbo G. Twilight effects of low doses of ionizing radiation on cellular systems: a bird's eye view on current concepts and research. Med Oncol 2009; 27:495-509. [PMID: 19504191 DOI: 10.1007/s12032-009-9241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
The debate about the health risks from low doses of radiation is vigorous and often acrimonious since many years and does not appear to weaken. Being far from completeness, this review presents only a bird's eye view on current concepts and research in the field. It is organized and divided in two parts. The first is dedicated to molecular responses determined by radiation-induced DNA ruptures. It focuses its attention on molecular pathways that are activated by ATM and tries to describe the variegated functions and specific roles of Chk2 and p53 and other proteins in sensing, promoting and executing DNA repair. The second part is more concerned with the risk associated with exposure to low dose radiation and possible effects that the radiation-affected cell may undergo. These effects include induction of apoptosis and mitotic catastrophe, bystander effect and genomic instability, senescence and hormetic response. Current hypotheses and research on these issues are briefly discussed.
Collapse
Affiliation(s)
- Ilaria Postiglione
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L Califano and IEOS/CNR, University FEDERICO II, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | |
Collapse
|
13
|
Abstract
Current radiation protection regulatory limits are based on the linear non-threshold (LNT) theory using health data from atomic bombing survivors. Studies in recent years sparked debate on the validity of the theory, especially at low doses. The present LNT overestimates radiation risks since the dosimetry included only acute gammas and neutrons; the role of other bomb-caused factors, e.g. fallout, induced radioactivity, thermal radiation (UVR), electromagnetic pulse (EMP), and blast, were excluded. Studies are proposed to improve the dose-response relationship.
Collapse
Affiliation(s)
- C R Aleta
- Lackierergasse 3/4, A1090, Vienna, Austria.
| |
Collapse
|
14
|
Mangel M. Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Higson D. The Australasian Radiation Protection Society's position statement on risks from low levels of ionizing radiation. Dose Response 2007; 5:299-307. [PMID: 18648567 DOI: 10.2203/dose-response.07-016.higson] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Controversy continues on whether or not ionizing radiation is harmful at low doses, with unresolved scientific uncertainty about effects below a few tens of millisieverts. To settle what regulatory controls should apply in this dose region, an assumption has to be made relating dose to the possibility of harm or benefit. The position of the Australasian Radiation Protection Society on this matter is set out in a statement adopted by the Society in 2005. Its salient features are: --There is insufficient evidence to establish a dose-effect relationship for doses that are less than a few tens of millisieverts in a year. A linear extrapolation from higher dose levels should be assumed only for the purpose of applying regulatory controls.--Estimates of collective dose arising from individual doses that are less than some tens of millisieverts in a year should not be used to predict numbers of fatal cancers. --The risk to an individual of doses significantly less than 100 microsieverts in a year is so small, if it exists at all, that regulatory requirements to control exposure at this level are not warranted.
Collapse
|
16
|
Ren H, Shen J, Tomiyama-Miyaji C, Watanabe M, Kainuma E, Inoue M, Kuwano Y, Abo T. Augmentation of innate immunity by low-dose irradiation. Cell Immunol 2006; 244:50-6. [PMID: 17420010 DOI: 10.1016/j.cellimm.2007.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
The effect of low-dose irradiation on the immune system was investigated in mice. When a 0.2 Gy dose of X-ray irradiation was administered every other day for a total of four times, the number of lymphocytes yielded by the liver, spleen and thymus decreased at the initial stage (around day 10). At this stage, NK cells, extrathymic T cells and NKT cells were found to be radioresistant. In other words, conventional lymphocytes were radiosensitive, even in the case of low-dose irradiation. However, the number of lymphocytes in all tested immune organs increased beyond the control level at the recovery stage (around day 28). Enumeration of the absolute number of lymphocyte subsets showed that the most prominently expanding populations were NK cells, extrathymic T cells and NKT cells, especially in the liver where primordial lymphocytes are primarily present. Functional and phenotypic activation of these populations also occurred at the recovery stage. It raised a possibility that an initial activation of macrophages by low-dose irradiation then mediated the present phenomenon. These results suggest that low-dose irradiation eventually has the potential to induce a hormesis effect on the immune system.
Collapse
Affiliation(s)
- Hongwei Ren
- Department of Immunology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-no threshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substantially beyond common background levels, can be explained by metabolic interactions among multiple abiotic stresses. Demographic and experimental data are mainly in accord with this expectation. Therefore, non-linearity becomes the primary model for assessing risks from low-dose ionizing radiation. This is the evolutionary imperative upon which risk assessment for radiation should be based.
Collapse
|
18
|
Abstract
Research reports using cells from bacteria, yeast, alga, nematodes, fish, plants, insects, amphibians, birds and mammals, including wild deer, rodents or humans show non-linear radio-adaptive processes in response to low doses of low LET radiation. Low doses increased cellular DNA double-strand break repair capacity, reduced the risk of cell death, reduced radiation or chemically-induced chromosomal aberrations and mutations, and reduced spontaneous or radiation-induced malignant transformation in vitro. In animals, a single low, whole body dose of low LET radiation, increased cancer latency and restored a portion of the life that would have been lost due to either spontaneous or radiation-induced cancer in the absence of the low dose. In genetically normal fetal mice, a prior low dose protected against radiation-induced birth defects. In genetically normal adult-male mice, a low dose prior to a high dose protected the offspring of the mice from heritable mutations produced by the large dose. The results show that low doses of low-LET radiation induce protective effects and that these induced responses have been tightly conserved throughout evolution, suggesting that they are basic responses critical to life. The results also argue strongly that the assumption of a linear increase in risk with increasing dose in humans is unlikely to be correct, and that low doses actually reduce risk.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiation Biology and Health Physics Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada
| |
Collapse
|
19
|
Calabrese EJ. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 138:379-411. [PMID: 16098930 DOI: 10.1016/j.envpol.2004.10.001] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/05/2004] [Indexed: 05/04/2023]
Abstract
This paper provides an assessment of the toxicological basis of the hormetic dose-response relationship including issues relating to its reproducibility, frequency, and generalizability across biological models, endpoints measured and chemical class/physical stressors and implications for risk assessment. The quantitative features of the hormetic dose response are described and placed within toxicological context that considers study design, temporal assessment, mechanism, and experimental model/population heterogeneity. Particular emphasis is placed on an historical evaluation of why the field of toxicology rejected hormesis in favor of dose response models such as the threshold model for assessing non-carcinogens and linear no threshold (LNT) models for assessing carcinogens. The paper argues that such decisions were principally based on complex historical factors that emerged from the intense and protracted conflict between what is now called traditional medicine and homeopathy and the overly dominating influence of regulatory agencies on the toxicological intellectual agenda. Such regulatory agency influence emphasized hazard/risk assessment goals such as the derivation of no observed adverse effect levels (NOAELs) and the lowest observed adverse effect levels (LOAELs) which were derived principally from high dose studies using few doses, a feature which restricted perceptions and distorted judgments of several generations of toxicologists concerning the nature of the dose-response continuum. Such historical and technical blind spots lead the field of toxicology to not only reject an established dose-response model (hormesis), but also the model that was more common and fundamental than those that the field accepted.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, School of Public Health, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
|
21
|
Abstract
Ageing is characterized by a progressive accumulation of molecular damage in nucleic acids, proteins and lipids. The inefficiency and failure of maintenance, repair and turnover pathways is the main cause of age-related accumulation of damage. Research in molecular gerontology is aimed at understanding the genetic and epigenetic regulation of survival and maintenance mechanisms at the levels of transcription, post-transcriptional processing, post-translational modifications, and interactions among various gene products. Concurrently, several approaches are being tried and tested to modulate ageing in a wide variety of organisms. The ultimate aim of such studies is to improve the quality of human life in old age and prolong the health-span. Various gerontomodulatory approaches include gene therapy, hormonal supplementation, nutritional modulation and intervention by free radical scavengers and other molecules. A recent approach is that of applying hormesis in ageing research and therapy, which is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. A combination of molecular, physiological and psychological modulatory approaches can realize "healthy ageing" as an achievable goal in the not-so-distant future.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
22
|
Sørensen JG, Loeschcke V. Effects of relative emergence time on heat stress resistance traits, longevity and hsp70 expression level in Drosophila melanogaster. J Therm Biol 2004. [DOI: 10.1016/j.jtherbio.2004.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Kristensen TN, Sørensen JG, Loeschcke V. Mild heat stress at a young age inDrosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Genet 2003; 82:89-94. [PMID: 15133188 DOI: 10.1007/bf02715811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In a number of animal species it has been shown that exposure to low levels of stress at a young age has a positive effect on stress resistance later in life, and on longevity. The positive effects have been attributed to the activation of defence/cleaning systems (heat shock proteins (Hsps), antioxidases, DNA repair) or to effects of a changed metabolic rate, or both. We investigated the effect of mild stress exposures early in life on Hsp70 synthesis after a harder stress exposure later in life in five isofemale lines of Drosophila melanogaster. Female flies were either exposed to repeated bouts of mild heat stress (3 h at 34 degrees C) at a young age (days 2, 4 and 6 post-eclosion) or held under standard laboratory conditions. At 16 and 32 days of adult age, respectively, flies were exposed to a high-temperature treatment known to induce Hsp70 in the investigated species (1 h at 37 degrees C). Thereafter, the inducible Hsp70 levels were measured. Our data show a tendency towards increased Hsp70 synthesis with increased age for both 'mild stress' and 'no stress' flies. Moreover, the results show that flies exposed to mild stress at a young age synthesized more Hsp70 upon induction, compared to control flies, and that this difference was accentuated at 32 days compared to 16 days of age. Thus, bouts of mild heat stress at a young age impact on the physiological stress response system later in life. This may be caused by an increased ability to react to future stresses. Alternatively, the mild stress exposure at a young age may actually have caused cellular damages increasing the need for Hsp70 levels after stress exposure later in life. The importance of an Hsp70 upregulation (throughout life) in explaining the phenomenon of hormesis is discussed, together with alternative hypotheses, and suggestions for further studies.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Aarhus Centre for Environmental Stress Research (ACES), Department of Ecology and Genetics, University of Aarhus, Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
24
|
Stebbing ARD. Adaptive Responses Account for the beta-Curve-Hormesis is Linked to Acquired Tolerance. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2003; 1:493-511. [PMID: 19330133 PMCID: PMC2656118 DOI: 10.1080/15401420390271100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date there is no single shared property of the various physical and chemical agents that elicit the beta-curve to account for its form, leading to the proposition that hormesis is a consequence of the nonspecificity of adaptive responses. It is argued that adaptive responses to toxic agents may be expected to follow the beta-curve. Four kinds of examples are reviewed (enzyme activity, sequestration and repair, and reproductive and homeostatic responses) that corroborate this proposition. The homeostasis example (incorporating homeorhesis) is considered in more detail, using the author's published hydroid experimental growth data, to show that both the alpha- and beta-curves are satisfactorily explained in this way. Many consider that hormesis is merely due to regulatory overcorrections, but it is proposed that it is a consequence of adaptations of the rate-sensitive growth control mechanism (homeorhesis) to sustained levels of inhibition to which the growth control mechanism adapts. In response to low levels of inhibition, upward adjustment of preferred growth rates confers greater resistance to inhibition, with growth hormesis as a cumulative byproduct.
Collapse
Affiliation(s)
- A R D Stebbing
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
| |
Collapse
|
25
|
|
26
|
Parsons PA. Metabolic efficiency in response to environmental agents predicts hormesis and invalidates the linear no-threshold premise: ionizing radiation as a case study. Crit Rev Toxicol 2003; 33:443-9. [PMID: 12809433 DOI: 10.1080/713611046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hormesis derives from high metabolic efficiency and hence high fitness that evolve in response to single and multiple environmental agents in low to moderate stress habitats. Consequently, nonlinear fitness continua are an evolutionary expectation for all environmental agents, which invalidates the LNT premise. For ionizing radiation, hormesis is interpreted to be adaptation to background radiation exposures, combined with adaptation to higher radiation exposures dependent on metabolic protection from the array of other abiotic stresses in the environment. This model of radiation hormesis renders suggestions of therapeutic radiation supplementation redundant because of similar health effects from other environmental agents. Furthermore, the model is compatible with a return of exposure levels for radiation protection to higher doses than are presently permissible, a deduction with substantial economic benefits.
Collapse
|
27
|
|
28
|
Abstract
The ongoing debate over the possible beneficial effects of ionising radiation on health, hormesis, is reviewed from different perspectives. Radiation hormesis has not been strictly defined in the scientific literature. It can be understood as a decrease in the risk of cancer due to low-dose irradiation, but other positive health effects may also be encompassed by the concept. The overwhelming majority of the currently available epidemiological data on populations exposed to ionising radiation support the assumption that there is a linear non-threshold dose-response relationship. However, epidemiological data fail to demonstrate detrimental effects of ionising radiation at absorbed doses smaller than 100-200 mSv. Risk estimates for these levels are therefore based on extrapolations from higher doses. Arguments for hormesis are derived only from a number of epidemiological studies, but also from studies in radiation biology. Radiobiological evidence for hormesis is based on radio-adaptive response; this has been convincingly demonstrated in vitro, but some questions remain as to how it affects humans. Furthermore, there is an ecologically based argument for hormesis in that, given the evolutionary prerequisite of best fitness, it follows that humans are best adapted to background levels of ionising radiation and other carcinogenic agents in our environment. A few animal studies have also addressed the hormesis theory, some of which have supported it while others have not. To complete the picture, the results of new radiobiological research indicate the need for a paradigm shift concerning the mechanisms of cancer induction. Such research is a step towards a better understanding of how ionising radiation affects the living cell and the organism, and thus towards a more reliable judgement on how to interpret the present radiobiological evidence for hormesis.
Collapse
Affiliation(s)
- Lennart Johansson
- Radiation Physics, Radiation Sciences, Umeå University Hospital, Sweden.
| |
Collapse
|
29
|
Abstract
Assuming the stress theory of aging, longevity depends upon primary selection for stress resistance and metabolic efficiency. Predominantly based upon experimental studies in the insect Drosophila melanogaster, high genetic variability for fitness, especially mortality, occurs under extreme stress. Isofemale strains derived from the progeny of recently collected single inseminated Drosophila females from the wild should provide useful biological material for extrapolating to quantitative genetic studies in man. Furthermore, environments from the benign (hormetic) to the extreme can be incorporated. Survival to old age may depend upon genes for metabolic efficiency that respond to the environmental challenges of living as limits to adaptation are approached. Under this scenario the survival of longevity mutants in man to ages analogous to the extreme life spans found in some experimental organisms under benign or protected laboratory conditions is unlikely. More future emphasis is needed on genetic variation of longevity in natural populations of experimental organisms under an array of realistically stressful environments to act as an evolutionary model for longevity in our own species.
Collapse
|
30
|
Parsons PA. Radiation hormesis: challenging LNT theory via ecological and evolutionary considerations. HEALTH PHYSICS 2002; 82:513-516. [PMID: 11906140 DOI: 10.1097/00004032-200204000-00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ecological and evolutionary considerations suggest that radiation hormesis is made up of two underlying components. The first (a) is background radiation hormesis based upon the background exposure to which all organisms are subjected throughout evolutionary time. The second and much larger component (b) is stress-derived radiation hormesis arising as a protective mechanism derived from metabolic adaptation to environmental stresses throughout evolutionary time especially from climate-based extremes. Since (b) > > (a), hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This biological model renders linear no-threshold theory invalid. Accumulating evidence from experimental organisms ranging from protozoa to rodents, and from demographic studies on humans, is consistent with this interpretation. Although hormesis is not universally accepted, the model presented can be subjected to hypothesis-based empirical investigations in a range of organisms. At this stage, however, two consequences follow from this evolutionary model: (1) hormesis does not connote a value judgement usually expressed as a benefit; and (2) there is an emerging and increasingly convincing case for reviewing and relaxing some recommended radiation protection exposure levels in the low range.
Collapse
Affiliation(s)
- Peter A Parsons
- Department of Genetics and Human Variation, La Trobe University, Australia.
| |
Collapse
|
31
|
Cypser JR, Johnson TE. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 2002; 57:B109-14. [PMID: 11867647 DOI: 10.1093/gerona/57.3.b109] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that the nematode Caenorhabditis elegans displays broad hormetic abilities. Hormesis is the induction of beneficial effects by exposure to low doses of otherwise harmful chemical or physical agents. Heat as well as pretreatment with hyperbaric oxygen or juglone (a chemical that generates reactive oxygen species) significantly increased subsequent resistance to the same challenge. Cross-tolerance between juglone and oxygen was also observed. The same heat or oxygen pretreatment regimens that induced subsequent stress resistance also increased life expectancy and maximum life span of populations undergoing normal aging. Pretreatment with ultraviolet or ionizing radiation did not promote subsequent resistance or increased longevity. In dose-response studies, induced thermotolerance paralleled the induced increase in life expectancy, which is consistent with a common origin.
Collapse
Affiliation(s)
- James R Cypser
- Institute for Behavioral Genetics, University of Colorado, Boulder 80303, USA
| | | |
Collapse
|
32
|
|
33
|
Abstract
Organisms in natural habitats are exposed to an array of environmental stresses, which all have energetic costs. Under this ecological scenario, hormesis for ionizing radiation becomes an evolutionary expectation at exposures substantially exceeding background. This conclusion implies that some relaxation of radiation protection criteria is worthy of serious consideration.
Collapse
Affiliation(s)
- P A Parsons
- School of Genetics and Human Variation, LaTrobe University, Victoria, Australia.
| |
Collapse
|
34
|
Abstract
Biology of aging is well understood at a descriptive level. Based on these data, biogerontological research is now able to develop various possibilities for intervention. A promising approach for the identification of gerontogenes and gerontogenic processes is through the hormetic effects of mild stress on slowing down aging. Although there are several issues remaining to be resolved, specially with regard to the notion of mild stress, application of hormesis in aging research and therapy is a powerful new approach.
Collapse
Affiliation(s)
- S I Rattan
- Danish Centre for Molecular Gerontology, Department of Molecular and Structural Biology, University of Aarhus, Denmark
| |
Collapse
|
35
|
Forbes VE. Practical limitations of prescribing stress as an anti-aging treatment. Hum Exp Toxicol 2001; 20:287-8; discussion 319-20. [PMID: 11506280 DOI: 10.1191/096032701701548043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- V E Forbes
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| |
Collapse
|
36
|
|
37
|
Affiliation(s)
- P A Parsons
- School of Genetics and Human Variation, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|