1
|
Thorpe SJ, Ball C, Fox B, Thompson KM, Thorpe R, Bristow A. Anti-D and anti-i activities are inseparable in V4-34-encoded monoclonal anti-D: the same framework 1 residues are required for both reactivities. Transfusion 2008. [DOI: 10.1111/j.1537-2995.2007.01624.x-i2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Thorpe SJ, Ball C, Fox B, Thompson KM, Thorpe R, Bristow A. Anti-D and anti-i activities are inseparable in V4-34-encoded monoclonal anti-D: the same framework 1 residues are required for both reactivities. Transfusion 2008; 48:930-40. [PMID: 18346025 DOI: 10.1111/j.1537-2995.2007.01624.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The heavy-chain V4-34 germline gene segment is mandatory for pathologic cold-reacting autoantibodies with anti-I/i specificity (cold agglutinins) and is also preferentially used by monoclonal immunoglobulin M alloantibodies against D and other Rh antigens. The use of the V4-34 segment by monoclonal anti-D has previously been shown to also confer anti-I/i reactivity (cold agglutinin activity), which has implications for the use of such antibodies for Rh blood typing. V4-34 framework 1 (FR1) sequence is believed to be critical for cold agglutinin activity of cold agglutinins. STUDY DESIGN AND METHODS The aim of this investigation was to use site-directed mutagenesis of a recombinant V4-34-encoded anti-D to determine the contribution of V4-34 FR1 sequence to anti-D activity and whether mutational modifications in the FR1 region could separately alter anti-D and anti-i activities. RESULTS The results show that amino acid changes in V4-34 FR1 at W7, A23, and Y25 have a profound effect on anti-D activity as well as on anti-i activity. It was not possible to substantially reduce or remove anti-i activity without reducing anti-D activity to a comparable extent. CONCLUSIONS The same nonpolar hydrophobic amino acids in FR1 are critical for maintaining both anti-D and anti-i activity. It is proposed that these residues influence the conformation of the antigen-binding site.
Collapse
Affiliation(s)
- Susan J Thorpe
- Biotherapeutics Group and Technology Development and Infrastructure Group, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
3
|
Dezorzová-Tomanová K, Molinková D, Pekarová M, Celer V, Smola J. Isolation of Lawsonia intracellularis specific single-chain Fv antibody fragments from phage display library. Res Vet Sci 2007; 83:85-90. [PMID: 17198717 DOI: 10.1016/j.rvsc.2006.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
Single-chain antibodies (scFv) exhibiting specific binding to Lawsonia intracellularis were isolated from a phagemid library expressing scFvs molecules on the surface of filamentous bacteriophages. For scFv selection whole bacterial cells were used and individual clones were tested in ELISA test. The total of seven unique clones with different fingerprint profiles was isolated. All clones were able to bind specifically in immunofluorescence assay. This is the first report of species specific recombinant antibodies against L. intracellularis.
Collapse
Affiliation(s)
- K Dezorzová-Tomanová
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, Veterinary and Pharmaceutical University Brno, 612 42 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
4
|
Bedouelle H, Renard M, Belkadi L, England P. Harnessing malE for the study of antigen/antibody recognitions. Res Microbiol 2002; 153:395-8. [PMID: 12405344 DOI: 10.1016/s0923-2508(02)01337-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of hybrids between the variable fragment (Fv) of antibodies and protein MalE of Escherichia coli at the genetic level makes possible their preparation in a functional state, independently of any interaction with the antigen. We used such hybrids and a mutagenesis approach to study the recognition between antibody D1.3 and its antigen lysozyme, and its maturation. We subsequently transformed D1.3 into a reagentless fluorescent biosensor by knowledge-based design.
Collapse
Affiliation(s)
- Hugues Bedouelle
- Department of Structural Biology and Chemistry, CNRS URA 2185, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
5
|
Vukovic P, Chen K, Qin Liu X, Foley M, Boyd A, Kaslow D, Good MF. Single-chain antibodies produced by phage display against the C-terminal 19 kDa region of merozoite surface protein-1 of Plasmodium yoelii reduce parasite growth following challenge. Vaccine 2002; 20:2826-35. [PMID: 12034110 DOI: 10.1016/s0264-410x(02)00197-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria.
Collapse
Affiliation(s)
- Peter Vukovic
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, 300 Herston Road, P.O. Royal Brisbane Hospital, Herston, Qld. 40029, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol 2001; 312:79-93. [PMID: 11545587 DOI: 10.1006/jmbi.2001.4914] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant single-chain antibodies (scFvs) that are expressed in the cytoplasm of cells are of considerable biotechnological and therapeutic potential. However, the reducing environment of the cytoplasm inhibits the formation of the intradomain disulfide bonds that are essential for correct folding and functionality of these antibody fragments. Thus, scFvs expressed in the cytoplasm are mostly insoluble and inactive.Here, we describe a general approach for stabilizing scFvs for efficient functional expression in the cell cytoplasm in a soluble, active form. The scFvs are expressed as C-terminal fusions with the Escherichia coli maltose-binding protein (MBP). We tested a large panel of scFvs that were derived from hybridomas and from murine and human scFv phage display and expression libraries by comparing their stability and functionality as un-fused versus MBP fused proteins. We found that MBP fused scFvs are expressed at high levels in the cytoplasm of E. coli as soluble and active proteins regardless of the redox state of the bacterial cytoplasm. In contrast, most un-fused scFvs can be produced (to much lower levels) in a functional form only when expressed in trxB(-) but not in trxB(+) E. coli cells. We show that MBP-scFv fusions are more stable than the corresponding un-fused scFvs, and that they perform more efficiently in vivo as cytoplasmic intrabodies in E. coli. Thus, MBP seems to function as a molecular chaperone that promotes the solubility and stability of scFvs that are fused to it.
Collapse
Affiliation(s)
- H Bach
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Green Building, Room 202, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Jung S, Spinelli S, Schimmele B, Honegger A, Pugliese L, Cambillau C, Plückthun A. The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains. J Mol Biol 2001; 309:701-16. [PMID: 11397090 DOI: 10.1006/jmbi.2001.4665] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal segment (FR-H1) of the heavy chain (V(H)) of antibodies shows significant conformational variability correlating with the nature of the amino acids H6, H7 and H10 (Kabat H9). In this study, we have established a causal relationship between the local sequence and the structure of this framework region and linked this relationship to important biophysical properties such as affinity, folding yield and stability. We have generated six mutants of the scFv fragment aL2, covering some of the most abundant amino acid combinations in positions H6, H7 and H10 (according to a new consensus nomenclature, Kabat H9). For the aL2 wild-type (w.t.) with the sequence 6(Q)7(P)10(A) and for two of the mutants, the X-ray structures have been determined. The structure of the triple mutant aL2-6(E)7(S)10(G) shows the FR-H1 backbone conformations predicted for this amino acid combination, which is distinctly different from the structure of the w.t, thus supporting our hypothesis that these residues determine the conformation of this segment. The mutant aL2-6(E)7(P)10(G) represents a residue combination not occurring in natural antibody sequences. It shows a completely different, unique structure in the first beta-strand of V(H), not observed in natural Fv fragments and forms a novel type of diabody. Two V(H) domains of the mutant associate by swapping the first beta-strand. Concentration-dependent changes in Trp fluorescence indicate that this dimerization also occurs in solution. The mutations in amino acids H6, H7 and H10 (Kabat H9) influence the dimerization behavior of the scFv and its thermodynamic stability. All the observations reported here have practical implications for the cloning of Fv fragments with degenerate primers, as well as for the design of new antibodies by CDR grafting or synthetic libraries.
Collapse
Affiliation(s)
- S Jung
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Honegger A, Plückthun A. The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. J Mol Biol 2001; 309:687-99. [PMID: 11397089 DOI: 10.1006/jmbi.2001.4664] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunoglobulin V(H) domain frameworks can be grouped into four distinct types, depending on the main-chain conformation of framework 1. Based on the analysis of over 200 X-ray structures representing more than 100 non-redundant V(H) domain sequences, we have come to the conclusion that the marked structural variability of the V(H) framework 1 region is caused by three residues: the buried side-chain of H6, which can be either a glutamate or a glutamine residue, the residue in position H7, which may be proline only if H6 is glutamine, and by H9 (H10 according to a new consensus nomenclature), which has to be either glycine or proline if H6 is a glutamate residue. In natural antibodies, these three residues are encoded in combinations that are compatible with each other and with the rest of the structure and therefore will yield functional molecules. However, the degenerate primer mixtures commonly used for PCR cloning of antibody fragments can and frequently do introduce out-of-context mutations to combinations that can lead to severe reduction of stability, production yield and antigen affinity.
Collapse
Affiliation(s)
- A Honegger
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | |
Collapse
|
9
|
Abstract
The application of single-chain Fv fragments (scFv) in medicine and biotechnology places great demands on their stability. Only recently has attention been given to the production of highly stable scFvs, and in a number of examples it was found that such fragments indeed perform better during practical applications. The structural parameters influencing scFv stability are now beginning to be elucidated. This review summarizes progress in rational and evolutionary engineering methods, the structural implications of these results, as well as some examples where stability engineering has been successfully applied.
Collapse
Affiliation(s)
- A Wörn
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Switzerland
| | | |
Collapse
|
10
|
Schwalbach G, Sibler AP, Choulier L, Deryckère F, Weiss E. Production of fluorescent single-chain antibody fragments in Escherichia coli. Protein Expr Purif 2000; 18:121-32. [PMID: 10686142 DOI: 10.1006/prep.1999.1185] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We describe a novel vector-host system suitable for the efficient preparation of fluorescent single-chain antibody Fv fragments (scFv) in Escherichia coli. The previously described pscFv1F4 vector used for the bacterial expression of functional scFv to the E6 protein of human papillomavirus type 16 was modified by appending to its C-terminus the green fluorescent protein (GFP). The expression of the scFv1F4-GFP fusion proteins was monitored by analyzing of the typical GFP fluorescence of the transformed cells under UV illumination. The brightest signal was obtained when scFv1F4 was linked to the cycle 3 GFP variant (GFPuv) and expressed in the cytoplasm of AD494(DE3) bacteria under control of the arabinose promoter. Although the scFv1F4 expressed under these conditions did not contain disulfide bridges, about 1% of the molecules were able to bind antigen. Fluorescence analysis of antigen-coated agarose beads incubated with the cytoplasmic scFv-GFP complexes showed that a similar proportion of fusions retained both E6-binding and green-light-emitting activities. The scFv1F4-GFPuv molecules were purified by affinity chromatography and successfully used to detect viral E6 protein in transfected COS cells by fluorescence microscopy. When an anti-beta-galactosidase scFv, which had previously been adapted to cytoplasmic expression at high levels, was used in this system, it was possible to produce large amounts of functional fluorescent antibody fragments. This indicates that these labeled scFvs may have many applications in fluorescence-based single-step immunoassays.
Collapse
Affiliation(s)
- G Schwalbach
- Ecole Supérieure de Biotechnologie de Strasbourg, ULP/UPRES 1329, boulevard Sébastien Brant, Illkirch, 67400, France
| | | | | | | | | |
Collapse
|
11
|
Cocca BA, Seal SN, Radic MZ. Tandem affinity tags for the purification of bivalent anti-DNA single-chain Fv expressed in Escherichia coli. Protein Expr Purif 1999; 17:290-8. [PMID: 10545278 DOI: 10.1006/prep.1999.1148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies to DNA define an important autospecificity that arises in systemic lupus erythematosus (SLE). To elucidate the molecular features that may explain the pathogenesis of SLE, a heterologous system for expression of cloned V genes is often desirable. Here, a single-chain Fv coding domain was constructed by using the heavy- and light-chain V genes of a high-affinity site-directed mutant of the murine anti-dsDNA autoantibody, 3H9. This scFv was joined in frame to the c-jun leucine zipper for dimerization, and to two affinity tags, domain B of the staphylococcal protein A and a pentahistidine peptide, for purification. Dimerization of the scFv was determined by size-exclusion chromatography. The yields of the scFv following affinity purification on IgG agarose or Ni-NTA agarose were compared, and the activities of the resulting protein fractions were determined. A two-step purification of periplasmic extracts on Ni-NTA agarose and IgG agarose, followed by elution with 3.5 M MgCl(2), yielded scFv with the highest specific activity. The final purified material bound DNA by ELISA, electrophoretic mobility shift assay, and immunofluorescence of fixed Hep-2 cells. Antibodies purified in this fashion should have applications in structure/function studies in which it is essential to generate highly purified antigen-combining sites.
Collapse
Affiliation(s)
- B A Cocca
- Department of Microbiology and Immunology, MCP Hahnemann University, Philadelphia, Pennsylvania, 19129, USA
| | | | | |
Collapse
|
12
|
Wörn A, Plückthun A. Different equilibrium stability behavior of ScFv fragments: identification, classification, and improvement by protein engineering. Biochemistry 1999; 38:8739-50. [PMID: 10393549 DOI: 10.1021/bi9902079] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A classification of scFv fragments concerning their unfolding/refolding equilibria is proposed. It is based on the analysis of different mutants of the levan-binding A48 scFv fragment and the HER-2 binding 4D5 scFv fragment as well as a "hybrid" scFv carrying the VL domain of 4D5 and the VH domain of an A48 mutant. The denaturant-induced unfolding curves of the corresponding scFv fragments were measured and, if necessary for the classification, compared with the denaturation of the isolated domains. Depending on the relative intrinsic stabilities of the domains and the stability of the interface, the different scFv fragments were grouped into different classes. We also demonstrate with several examples how such a classification can be used to improve the stability of a given scFv fragment, by concentrating engineering efforts on the "weak part" of the particular molecule, which may either be the intrinsic stability of VL, of VH, or the stability of the interface. One of the scFv fragments obtained by this kind of approach is extremely stable, starting denaturation only at about 7 M urea. We believe that such extremely stable frameworks may be very suitable recipients in CDR grafting experiments. In addition, the thermodynamic equilibrium stabilities of seven related A48 scFv mutants covering a broad range of stabilities in urea unfolding were shown to be well correlated with thermal aggregation properties measured by light scattering and analytical gel filtration.
Collapse
Affiliation(s)
- A Wörn
- Biochemisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|