1
|
Pandey N, Rajagopal R. Tissue damage induced midgut stem cell proliferation and microbial dysbiosis in Spodoptera litura. FEMS Microbiol Ecol 2017; 93:4443193. [DOI: 10.1093/femsec/fix132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
|
2
|
Mario LC, Borghesi J, Crivellari-Damasceno WT, Favaron PO, Carreira ACO, Will SEAL, Maria DA, Miglino MA. Egg and fourth instar larvae gut of Aedes aegypti as a source of stem cells. Tissue Cell 2016; 48:558-65. [PMID: 27401144 DOI: 10.1016/j.tice.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 05/14/2016] [Indexed: 11/17/2022]
Abstract
According to the World Health Organization, 2015 registered more than 1.206.172 cases of Dengue in the Americas. Recently, the Aedes aegypti has been not only related to Dengue, but also with cases of Zika virus and Chikungunya. Due to its epidemiological importance, this study characterized the morphology of the embryonated eggs of A. aegypti and provided a protocol to culture stem cells from eggs and digestive tract of fourth instar larvae in order to examine cell biology and expression of markers in these vectors. Cells were isolated and cultured in DMEM-High at 28°C, and their morphology, cell cycle and immunophenotyping were examined. Morphologically, embryos were at the end of the embryonic period and showed: head, thorax, and abdomen with eight abdominal segments. The embryonic tissues expressed markers related to cell proliferation (PCNA), pluripotency (Sox2 and OCT3/4), neural cells (Nestin), mesenchymal cells (Vimentin and Stro-1), and endosomal cells (GM130 and RAB5). In culture, cells from both tissues (eggs and larvae gut) were composed by a heterogeneous population. The cells had a globoid shape and small size. Cell cycle analysis on passage 1 (P1) showed 27.5%±2.0% of cell debris, 68% of cells on G0-G1 phase, 30.2% on S phase, 1.9%±0.5% on G2-M phase. In addition, cells on passage 2 showed: 10% of cell debris, 92.4% of cells on G0-G1 phase, 6.8% on S phase, 0.6% on G2-M phase. Embryonated eggs expressed markers involved with pluripotency (Sox2 and Oct 3/4), mesenchymal cells (vimentin and Stro-1), neural cells (Nestin), and cellular death by apoptosis (Caspase 3). Specific endosomal markers for insect cells (GM130 and RAB5) were also highly expressed. In cell culture of A. aegypti larvae gut the same labeling pattern was observed, with a small decrease in the expression of mesenchymal (vimentin and Stro-1) and neural (Nestin) markers. In summary, we were able to establish a protocol to culture embryonated eggs and larvae gut of A. aegypti, describing the characteristics of undifferentiated cells, as well as the cell cycle and expression of markers, which can be used for biotechnology studies for the biological control of this vector.
Collapse
Affiliation(s)
- Lara C Mario
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jéssica Borghesi
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wilson T Crivellari-Damasceno
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil; Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Phelipe O Favaron
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Claudia O Carreira
- Center for Molecular and Cellular Therapy (NUCEL) and Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sonia E A L Will
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Durvanei A Maria
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil; Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Maria A Miglino
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Castagnola A, Jurat-Fuentes JL. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2016; 15:104-10. [PMID: 27436739 PMCID: PMC4957658 DOI: 10.1016/j.cois.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium of insects is exposed to xenobiotics and entomopathogens during the feeding developmental stages. In these conditions, an effective enterocyte turnover mechanism is highly desirable to maintain integrity of the gut epithelial wall. As in other insects, the gut of lepidopteran larvae have stem cells that are capable of proliferation, which occurs during molting and pathogenic episodes. While much is known on the regulation of gut stem cell division during molting, there is a current knowledge gap on the molecular regulation of gut healing processes after entomopathogen exposure. Relevant information on this subject is emerging from studies of the response to exposure to insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) as model intoxicants. In this work we discuss currently available data on the molecular cues involved in gut stem cell proliferation, insect gut healing, and the implications of enhanced healing as a potential mechanism of resistance against Bt toxins.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Franzetti E, Romanelli D, Caccia S, Cappellozza S, Congiu T, Rajagopalan M, Grimaldi A, de Eguileor M, Casartelli M, Tettamanti G. The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell Tissue Res 2015; 361:509-28. [DOI: 10.1007/s00441-014-2081-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/26/2014] [Indexed: 02/02/2023]
|
5
|
Castagnola A, Eda S, Jurat-Fuentes JL. Monitoring stem cell proliferation and differentiation in primary midgut cell cultures from Heliothis virescens larvae using flow cytometry. Differentiation 2010; 81:192-8. [PMID: 21190786 DOI: 10.1016/j.diff.2010.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 01/25/2023]
Abstract
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.
Collapse
Affiliation(s)
- A Castagnola
- Department of Entomology and Plant Pathology, University of Tennessee, 2431 Joe Johnson Drive, 205 Ellington Plant Sciences Building, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
6
|
Sousa MEC, Santos FAB, Wanderley-Teixeira V, Teixeira AAC, de Siqueira HÁA, Alves LC, Torres JB. Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1913-1919. [PMID: 20804764 DOI: 10.1016/j.jinsphys.2010.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 08/07/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
The interaction of Cry toxins from Bacillus thuringiensis in the midgut of some insect larvae determines their efficacies as insecticides, due to the expression and availability of sites of action of the toxin in the midgut. Researches point out cases of resistance to Cry toxin due to alterations in the binding sites in columnar cell membrane. We analyzed the effects of Cry1Ac toxin expressed by Bt-cotton plants on Alabama argillacea midgut morphophysiology clarifying in levels of morphological and ultrastructural. Larvae in the 4th instar of A. argillacea after 20 min from ingesting Bt-cotton leaves expressing 0.183 ng of Cry1Ac exhibited ultrastructural and morphological modifications in the columnar cells with significant changes in the mitochondrial polymorphism, cytoplasmic vacuolization, microvillus and basal labyrinth. Expressive morphological alterations were also observed in the goblet cells indicating that the columnar cells are not the only target of the Cry1Ac toxin. The regenerative cells did not modify their structures and exhibited decrease in regeneration capacity. In conclusion, the ingestion of 0.183 ± 0.077 ng of Cry1Ac was enough to promote alterations in the columnar and goblet cells, besides reducing significantly the number of regenerative cells, which may have contributed to larval death. Nevertheless, further studies are necessary to determine the true cause of death.
Collapse
Affiliation(s)
- Maria Esmeralda C Sousa
- Departamento de Agronomia, Programa de Pós-Graduacão em Entomologia Agrícola, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Loeb MJ. Factors affecting proliferation and differentiation of Lepidopteran midgut stem cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:1-16. [PMID: 20422716 DOI: 10.1002/arch.20349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Midgut stem cells of last instar larvae and pupae of Heliothis virescens, Lymantria dispar and several other Lepidopteran species have been cultured in vitro and have been induced to proliferate using low titers of ecdysteroids and the 77-Kda peptide fragment, alpha-arylphorin, isolated and identified from pupal fat body tissue. The insulin-related hormone, Bombyxin, also induced mitosis in cultured midgut stem cells; it appeared to be fast-acting and quickly inactivated, while alpha-arylphorin was slower to act and had a longer lasting effect in vitro, indicating different functions for these proliferation agents. Changes in Calcium ion concentration within or outside the cells discretely affected stem cell differentiation, indicating a role for second messenger participation in peptide regulation of this process. Four different peptides (MDFs 1-4) that induced midgut stem cells to differentiate to mature midgut cell types in vitro were isolated and characterized from conditioned media and hemolymph of H. virescens and L. dispar. However, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and all-trans retinoic acid (RA) from vertebrate sources induced differentiation to non-midgut cell types as well. MDF1 was located in basal areas of columnar cells of midgut epithelium, although MDF2 was observed in all of the cytoplasm of columnar cells and in droplets of antibody positive material in the midgut lumen, suggesting a digestive function as well for this peptide. Anti-MDF-3 stained the central areas of cultured midgut columnar cells and the bases of columnar cells of midgut epithelium in vivo. Midgut secretory cells stained with anti-MDF-4; streams of MFD-4-positive material were observed extending from secretory cells facing the epithelial lumen, and as a layer on the hemolymph-facing side, suggesting an endocrine or paracrine function for this or an immunologically similar peptide.
Collapse
Affiliation(s)
- Marcia J Loeb
- U. S. Department of Agriculture, Insect Biocontrol Laboratory, Beltsville, Maryland, USA.
| |
Collapse
|
8
|
Hakim RS, Baldwin K, Smagghe G. Regulation of midgut growth, development, and metamorphosis. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:593-608. [PMID: 19775239 DOI: 10.1146/annurev-ento-112408-085450] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The insect midgut is an important site of entry for pathogens and insect control agents. This review focuses on recent information related to midgut epithelial growth, metamorphosis, and repair as a defense against pathogens. The roles of stem cell mitogens and differentiation factors are described. Included is a discussion of apoptosis and autophagy in the yellow body. Sloughing, also described, protects the midgut from virus infections and bacterial toxins through death and replacement of affected cells. The mechanisms by which the repair process reduces the effectiveness of pest control strategies are discussed. Primary tissue culture methods also are described, and their value in understanding the mechanisms by which biologically based insecticides work is discussed.
Collapse
Affiliation(s)
- Raziel S Hakim
- Department of Anatomy, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
9
|
Hakim RS, Caccia S, Loeb M, Smagghe G. Primary culture of insect midgut cells. In Vitro Cell Dev Biol Anim 2009; 45:106-10. [DOI: 10.1007/s11626-009-9176-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/02/2009] [Indexed: 10/21/2022]
|
10
|
Park MS, Takeda M. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:386-392. [PMID: 18067918 DOI: 10.1016/j.jinsphys.2007.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 05/25/2023]
Abstract
Starvation affects behavior, development, metabolism, reproduction, and longevity in almost all animals including insects. In the American cockroach, Periplaneta americana, we investigated the effect of starvation on organ size and cell proliferation activity of the midgut, over a period of one month, using anti-bromodeoxyuridine (BrdU), and anti-phospho-histone H3 antibodies. Under starvation conditions, the midgut became clear and fragile while its length and diameter were reduced. Both the rate of BrdU-uptake in the nucleus and the mitotic activity shown by anti-phospho-histone H3 antibody decreased under long starvation up to half that of the continuously fed control. Refeeding restored BrdU-uptake and mitosis that overshot the fed control. When casein, starch, or cooking oil was fed as representative nutrient sources to the starved cockroaches, all restored BrdU-uptake, but non-nutrient, talc, did not. This study supports the hypothesis that P. americana has a homeostatic mechanism to regulate the cell population of the midgut epithelium according to changes in the nutritional environment.
Collapse
Affiliation(s)
- Moon Soo Park
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | |
Collapse
|
11
|
Zhang J, Takeda M. Molecular characterization of MbADGF, a novel member of the adenosine deaminase-related growth factor in the cabbage armyworm, Mamestra brassicae: the functional roles in the midgut cell proliferation. INSECT MOLECULAR BIOLOGY 2007; 16:351-60. [PMID: 17439545 DOI: 10.1111/j.1365-2583.2007.00732.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To clarify the functional mechanism of the adenosine deaminase-related growth factor (ADGF) particularly in the regulation of insect development, the cDNA encoding a homologue of ADGF proteins was cloned from the cabbage armyworm, Mamestra brassicae, named MbADGF. The purified MbADGF recombinant protein stimulated cell proliferation in a dose-dependent manner of SES-MaBr-4 and NIAS-MaBr-93 cell lines that were derived from fat bodies and haemocytes of M. brassicae. The adenosine deaminase activity of MbADGF was detected using adenosine and 2'-deoxyadenosine as substrates. Northern analysis demonstrated that during the larval development the level of MbADGF in the midgut increased. In situ hybridization showed that MbADGF mRNA was expressed in midgut goblet cells and in the apical cytoplasm of columnar cells, which suggests that MbADGF protein may execute its adenosine deaminase activity at the apical cytoplasm of columnar cells to convert adenosine into inosine.
Collapse
Affiliation(s)
- J Zhang
- Division of Biofunctional Science, Graduate School of Science and Technology, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
12
|
Loeb MJ. Role of integrin beta1-like protein in proliferation and differentiation of cultured stem cells from midgut of Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:55-64. [PMID: 16416447 DOI: 10.1002/arch.20097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cultured midgut cells from Heliothis virescens larvae were incubated with anti-human integrin beta1 made in rabbit and then passed over a column of magnetic beads bound to anti-rabbit IgG (MACS, Miltenyi Bergisch Gladbach, Germany). Cells bound to integrin beta1 antibody also bound to the anti-rabbit IgG on the magnetic beads (MACS) and were retained in the column while it remained in the magnetic field. Non-bound cells were eluted at this time. They did not stain with anti-integrin antibody just after elution. Removing the column from the magnetic field allowed cells bound to the beads-integrin beta1 antibody to be eluted. All of these cells stained with human anti-integrin beta1 upon elution. Each cell fraction was cultured in medium for 3 days. During this time, the populations of cells tended to return to heterogeneous staining patterns characteristic of control populations. However, cells that did not stain immediately with anti-integrin beta1 antibody exhibited double the rate of multiplication and 8 times more differentiation than the integrin-antibody positive cells that eluted later, as well as the non-treated control cells. In a second experiment, midgut cells were incubated for 4 days with various titers of human anti-integrin beta1 to block surface integrin beta1-like reactive sites. Stem cells blocked with anti-integrin beta1 antibody during incubation exhibited double the rate of differentiation than non-treated control cells and those showing anti-integrin beta1-positive stain upon elution.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland, USA.
| |
Collapse
|
13
|
Smagghe G, Vanhassel W, Moeremans C, De Wilde D, Goto S, Loeb MJ, Blackburn MB, Hakim RS. Stimulation of Midgut Stem Cell Proliferation and Differentiation by Insect Hormones and Peptides. Ann N Y Acad Sci 2006; 1040:472-5. [PMID: 15891093 DOI: 10.1196/annals.1327.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem cells derived from midguts of the caterpillar, Spodoptera littoralis, can be induced to multiply and differentiate in vitro. Ecdysone (E) and 20-hydroxyecdysone (20E) had a concentration-dependent effect: E was more active in cell proliferation and 20E in differentiation. Ecdysteroid receptors in midgut stem cell nuclei were stained with the antibody 9B9. In addition, alpha-arylphorin and four midgut differentiation factors (MDF) specifically stimulated proliferation and differentiation of stem cells, respectively. The activity of a panel of peptide growth factors and hormones on growth and metamorphosis of the insect midgut is discussed.
Collapse
Affiliation(s)
- Guy Smagghe
- Laboratory of Agrozoology, Ghent University, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Loeb MJ. Altering the fate of stem cells from midgut of Heliothis virescens:the effect of calcium ions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 59:202-10. [PMID: 16034982 DOI: 10.1002/arch.20060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cultured stem cells from larval midgut tissue of the lepidopteran Heliothis virescens respond to alterations in external calcium ion concentration (Ca(2+) (out)) by changing the rate of stem cell proliferation and by differentiating to larval or non-larval phenotypes. Decreasing the external concentration of Ca(2+) with the Ca(2+) chelating agent EGTA increased proliferation of stem cells in culture, and doubled the proportion of cells differentiating to columnar and goblet cells typical of larval midgut compared to controls. In contrast, increasing inward transport of Ca(2+) into the cells by increasing the concentration of external calcium ion concentration, or by incubation with the Ca(2+) ionophore A23187 (which tends to open inward plasma membrane Ca(2+) channels), induced dose-dependent differentiation to non-midgut cell types such as squamous and scale-like cells. However, the latter treatments did not significantly alter stem cell proliferation or differentiation to normal larval midgut epithelium.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| |
Collapse
|
15
|
Goto S, Loeb MJ, Takeda M. BOMBYXIN STIMULATES PROLIFERATION OF CULTURED STEM CELLS DERIVED FROM HELIOTHIS VIRESCENS AND MAMESTRA BRASSICAE LARVAE1. ACTA ACUST UNITED AC 2005; 41:38-42. [PMID: 15926858 DOI: 10.1290/0312092.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bombyxin stimulated proliferation of cultured midgut stem cells that were derived from two noctuiid moth larvae, Heliothis virescens and Mamestra brassicae. Bombyxin exhibited the highest activity at 10(-12) M. The number of cells increased for 3 d after the addition of bombyxin. Although a single addition of bombyxin did not maintain proliferation, a second addition, made 3 d after the first treatment, retained the effect. Results suggest that the decline of effect after the first addition was not due to the loss of sensitivity of the cultured cells but to the loss of effect of the growth factor added. Addition of bombyxin at more than 10(-10) M was less effective. Bombyxin did not affect the number of cultured midgut cells without pupal fat body extract (FBX). The data suggest that FBX contains the factors that maintain sensitivity of midgut cells to proliferate in the presence of bombyxin. Bombyxin must be a unique growth factor that stimulates proliferation of midgut stem cells in vitro from lepidopteran larvae.
Collapse
Affiliation(s)
- Shintaro Goto
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | | | | |
Collapse
|
16
|
Loeb MJ, Coronel N, Natsukawa D, Takeda M. Implications for the functions of the four known midgut differentiation factors: An immunohistologic study of Heliothis virescens midgut. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 56:7-20. [PMID: 15101062 DOI: 10.1002/arch.10140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antibodies to the peptides that induce differentiation of midgut larval stem cells, the midgut differentiating factors MDF-2, MDF-3, and MDF-4, bind to columnar cells in midgut cultures and in intact midgut of Heliothis virescens, in manners similar to the binding of anti- MDF-1 to those tissues. Antibodies to MDF-2 and MDF-3 also stained droplets in the midgut lumen, suggesting that columnar cells may also release MDF-2- and MDF-3-like cytokines to the lumen. Antibody to MDF-4 exhibited similar staining patterns but also recognized stem and differentiating cells, the presumed targets of peptides that regulate stem cell differentiation. Antibody to MDF-4 also bound to one type of endocrine cell in midgut cultures and in sections of midgut, as well as to the endocrine secretion released both to the midgut lumen and the hemolymph. Antibodies to the MDFs 1, 2, and 3, incubated with cultures of midgut cells, did not appear to prevent differentiation of the stem cells in the cultures but affected viability of mature cells, reflected in increased apoptosis and doubling of the number of differentiating cells compared to controls. Only antibody to MDF-4 induced temporary necrosis and inhibition of population recovery, indicating that MDF4 may be the true differentiation factor. The other MDFs may have additional functions beyond regulation of midgut stem cell differentiation in vivo.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | |
Collapse
|
17
|
Blackburn MB, Loeb MJ, Clark E, Jaffe H. Stimulation of midgut stem cell proliferation by Manduca sexta alpha-arylphorin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:26-32. [PMID: 14691960 DOI: 10.1002/arch.10119] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracts of the green-colored perivisceral fat body of newly ecdysed Manduca sexta pupae stimulate mitosis in midgut stem cells of Heliothis virescens cultured in vitro. Using a combination of cation- and anion-exchange chromatography, we have isolated a protein from these fat body extracts that accounts for the observed stem cell proliferation. SDS-PAGE analysis of the protein results in a single band of 77 kDa. Sequences of tryptic peptides from this protein are identical to internal sequences of the storage hexamer alpha-arylphorin. The alpha-arylphorin isolated by our procedure represents a small fraction of the total arylphorin present in the fat body extract. However, it alone seems responsible for the stimulation of mitotic activity in H. virescens midgut stem cells.
Collapse
Affiliation(s)
- Michael B Blackburn
- Insect Biocontrol Laboratory, Plant Sciences Institute, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA.
| | | | | | | |
Collapse
|
18
|
Loeb MJ, Clark EA, Blackburn M, Hakim RS, Elsen K, Smagghe G. Stem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:186-198. [PMID: 12886516 DOI: 10.1002/arch.10098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Dept of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Smagghe GJ, Elsen K, Loeb MJ, Gelman DB, Blackburn M. Effects of a fat body extract on larval midgut cells and growth of lepidoptera. In Vitro Cell Dev Biol Anim 2003; 39:8-12. [PMID: 12892521 DOI: 10.1290/1543-706x(2003)039<0008:eoafbe>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Treatment with fat body extract (FBX) from pupae of the tobacco hornworm, Manduca sexta, caused mortality in larvae of two pest lepidopterans, the gypsy moth, Lymantria dispar, and the cotton leafworm, Spodoptera littoralis. In FBX-treated larvae, the feeding rate was depressed, causing reduced weight gain and then larval death. Their midgut showed formation of multicellular layers of midgut epidermis, indicating stem-cell hyperplasia. Hence, the integument of FBX-treated larvae had a double cuticle, indicating induction of premature molting. But radioimmunoassay measurements confirmed that the amount of ecdysteroids in FBX was too low to be responsible for the molt-inducing effects observed after treatment with FBX. With midgut stem cell cultures in vitro, addition of FBX to the culture medium stimulated cell proliferation and differentiation in a concentration-dependent manner. This effect was compared with those of insect molting hormones, ecdysone and 20-hydroxyecdysone; an ecdysteroid agonist, RH-2485; and a purified protein from FBX (multiplication factor). This article describes the mode of action of FBX and possible interplay between fat body factor(s) and insect hormones in the development and metamorphosis of the insect midgut.
Collapse
Affiliation(s)
- Guy J Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
20
|
Loeb MJ, Jaffe H. Peptides that elicit midgut stem cell differentiation isolated from chymotryptic digests of hemolymph from Lymantria dispar pupae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2002; 50:85-96. [PMID: 12173293 DOI: 10.1002/arch.10033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isolated stem cells of Heliothis virescens, cultured in vitro, were induced to differentiate by Midgut Differentiation Factors 3 and 4. These were peptides identified from a chymotrypsin digest of hemolymph taken from newly pupated Lymantria dispar. Partial purification was obtained by filtration through size exclusion filters. The most active preparation was subsequently subjected to a series of 3 Reverse Phase-HPLC procedures. Partial sequences of the peptides were identified via automated Edman degradation as the nanomers EEVVKNAIA-OH (MDF 3) and ITPTSSLAT-OH (MDF 4). These sequences were commercially synthesized. The synthetic compounds proved active in a dose-dependent manner. Stem cells responded to synthetic MDF 3 and MDF 4 as they did to previously identified peptides MDF 1 and 2, which have quite different amino acid sequences. All of the 4 MDFs administered singly induced statistically similar differentiation responses at 2 x 10(-8), 2 x 10(-9), and 2 x 10(-10) M. However, pairs of the 4 MDFs produced even more differentiation, the same response as one alone, no response, or were inhibitory, dependent on the MDF pair and its concentration. The data suggests complicated receptor interactions.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Bldg 011A, Rm 214, BARC West, Beltsville, MD 20705, USA.
| | | |
Collapse
|
21
|
GOTO SHINTARO, TAKEDA MAKIO, LOEB MARCIAJ, HAKIM RAZIELS. Immunohistochemical detection of a putative insect cytokine, midgut differentiation factor 1 (MDF-1) in midgut columnar cells ofHeliothis virescens. INVERTEBR REPROD DEV 2001. [DOI: 10.1080/07924259.2001.9652712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Loeb MJ, De Loof A, Gelman DB, Hakim RS, Jaffe H, Kochansky JP, Meola SM, Schoofs L, Steel C, Vafopoulou X, Wagner RM, Woods CW. Testis ecdysiotropin, an insect gonadotropin that induces synthesis of ecdysteroid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 47:181-188. [PMID: 11462222 DOI: 10.1002/arch.1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Testes of lepidoptera synthesized ecdysteroid in a somewhat different temporal pattern than the prothoracic glands that release ecdysteroid to the hemolymph. Brain extracts from Heliothis virescens and Lymantria dispar induced testes to synthesize ecdysteroid, but did not affect prothoracic glands. The testis ecdysiotropin (LTE) was isolated from L. dispar pupal brains by a series of high-pressure chromatography steps. Its sequence was Ile-Ser-Asp-Phe-Asp-Glu-Tyr-Glu-Pro-Leu-Asn-Asp-Ala-Asp-Asn-Asn-Glu-Val-Leu-Asp-Phe-OH, of molecular mass 2,473 Daltons. The predominant signaling pathway for LTE was via G(i) protein, IP3, diacylglycerol and PKC; a modulating pathway, apparently mediated by an angiotensin II-like peptide, was controlled via G(s) protein, cAMP, and PKA. Testis ecdysteroid caused isolated testis sheaths to also synthesize a growth factor that induced development of the male genital tract. The growth factor appeared to be a glycoprotein similar to vertebrate alpha-1-glycoprotein. A polyclonal antibody to LTE indicated LTE-like peptide in L. dispar brain medial neurosecretory cells, the suboesophageal, and other ganglia, and also in its target organ, the testis sheath. LTE immunoreactivity was also seen in testis sheaths of Rhodnius prolixus. LTE-like immunoactivity was also detected in developing optic lobes, antennae, frontal ganglia, and elongating spermatids of developing L. dispar pupae. This may indicate that LTE has a role in development as well as stimulation of testis ecdysteroid synthesis. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Loeb MJ, Martin PA, Narang N, Hakim RS, Goto S, Takeda M. Control of life, death, and differentiation in cultured midgut cells of the lepidopteran, Heliothis virescens. In Vitro Cell Dev Biol Anim 2001; 37:348-52. [PMID: 11515966 DOI: 10.1007/bf02577569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differentiated cells in the insect midgut depend on stem cells for renewal. We have immunologically identified Integrin beta1, a promotor of cell-cell adhesion that also induces signals mediating proliferation, differentiation, and apoptosis on the surfaces of cultured Heliothis virescens midgut cells; clusters of immunostained integrin beta1-like material, indicative of activated integrin, were detected on aggregating midgut columnar cells. Growth factor-like peptides (midgut differentiation factors 1 and 2 [MDF1 and MDF2]), isolated from conditioned medium containing Manduca sexta midgut cells, may be representative of endogenous midgut signaling molecules. Exposing the cultured midgut cells to Bacillus thuringiensis (Bt) toxin caused large numbers of mature differentiated cells to die, but the massive cell death simultaneously induced a 150-200% increase in the numbers of midgut stem and differentiating cells. However, after the toxin was washed out, the proportions of cell types returned to near-control levels within 2 d, indicating endogenous control of cell-population dynamics. MDF1 was detected immunologically in larger numbers of Bt-treated columnar cells than controls, confirming its role in inducing the differentiation of rapidly produced stem cells. However, other insect midgut factors regulating increased proliferation, differentiation, as well as inhibition of proliferation and adjustment of the ratio of cell types, remain to be discovered.
Collapse
Affiliation(s)
- M J Loeb
- Insect Biocontrol Laboratory, USDA, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Takeda M, Sakai T, Fujisawa Y, Narita M, Iwabuchi K, Loeb MJ. Cockroach midgut peptides that regulate cell proliferation, differentiation, and death in vitro. In Vitro Cell Dev Biol Anim 2001; 37:343-7. [PMID: 11515965 DOI: 10.1007/bf02577568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts of Periplaneta americana was fractionated by high-performance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larval Heliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body of Mamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells.
Collapse
Affiliation(s)
- M Takeda
- Graduate School of Science and Technology, Kobe University, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Loeb MJ, Martin PA, Hakim RS, Goto S, Takeda M. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:599-606. [PMID: 11249948 DOI: 10.1016/s0022-1910(00)00150-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Toxin from two strains of Bacillus thuringiensis (Bt), AA 1-9 and HD-73, caused dose-dependent destruction of cultured midgut cells from Heliothis virescens larvae. HD-73 toxin was more effective although, at the doses used, not all cells were killed. After 2 days of exposure to 0.8 pg/µl AA 1-9 or 0.06 pg/µl HD-73, columnar and goblet cell numbers declined to ca 20% of controls. In contrast, stem and differentiating cells increased to 140-200% of controls. The dynamic of depletion and replacement depended on toxin type and concentration. Two days after toxin was washed out, ratios of cell types returned to approximate control levels, suggesting rapid population corrections in vitro. Regulation of the ratio of cell types in each population, and the rate of proliferation and differentiation of stem cells was induced by the cultured midgut cells themselves. Controls and cells treated with toxin from Bt strain AA 1-9 were stained using a polyclonal antibody to Lepidopteran midgut differentiation factor 1 (MDF1). With Bt toxin, 1.5 times more cells stained for MDF1, suggesting increased synthesis of this differentiation factor during increased stem cell differentiation. The response of cultured midgut cells to Bt toxin injury is similar to injured vertebrate tissues dependent on stem cells for replacement and healing.
Collapse
Affiliation(s)
- M J. Loeb
- Insect Biocontrol Laboratory, US Department of Agriculture, Beltsville, MD, USA
| | | | | | | | | |
Collapse
|
26
|
Hakim RS, Baldwin KM, Loeb M. The role of stem cells in midgut growth and regeneration. In Vitro Cell Dev Biol Anim 2001; 37:338-42. [PMID: 11515964 DOI: 10.1007/bf02577567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Manduca sexta (L.) [Lepidoptera: Sphingidae] and Heliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation.
Collapse
Affiliation(s)
- R S Hakim
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
27
|
Loeb MJ, Hakim RS, Martin P, Narang N, Goto S, Takeda M. Apoptosis in cultured midgut cells from heliothis virescens larvae exposed to various conditions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 45:12-23. [PMID: 11015120 DOI: 10.1002/1520-6327(200009)45:1<12::aid-arch2>3.0.co;2-p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We exposed midgut cells from primary cultures of Heliothis virescens larvae to cell-free previously used medium, the Vaughn X and HyQ SFtrade mark media used for serum-free culture of insect cell lines which do not support H. virescens midgut cells, and to toxin from Bacillus thuringiensis. A statistically significant increase in the percent of dying cells was counted in cell populations in Vaughn X medium. Use of the TUNEL method to detect apoptosis indicated a low rate (7.2%) of apoptosis in control cultures grown in Heliothis medium, an increase to approximately 20% in previously used and HyQ SFtrade mark media, and to approximately 45% of cells remaining after exposure to and initial destruction by B. thuringiensis toxin. Apoptotic nuclei were predominant (approximately 6%) in mature columnar cells in control cultures. Approximately 1% of goblet, stem, and differentiating cells were apoptotic. However, apoptosis rose to 12% in stem and differentiating cells exposed to used and unsuitable medium. B. thuringiensis exposure to toxin for 2-3 days resulted in visible membrane damage and necrosis, causing the death of 84% of the cells as measured by both the TUNEL and Annexin methods. Some of the columnar cells and stem and differentiating cells that remained also contained apoptotic nuclei. Stem and differentiating cells normally replace dying mature cells in the midgut. Thus, exposure of cultures of H. virescens midgut cells to adverse environments such as unsuitable or poisonous media appeared to induce down-regulation of the cell populations by apoptosis.
Collapse
Affiliation(s)
- M J Loeb
- Insect Biocontrol Laboratory, USDA, Beltsville, Maryland
| | | | | | | | | | | |
Collapse
|