1
|
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191:114540. [PMID: 36228896 PMCID: PMC10066857 DOI: 10.1016/j.addr.2022.114540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023]
Abstract
Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Deleray AC, Kramer JR. Biomimetic Glycosylated Polythreonines by N-Carboxyanhydride Polymerization. Biomacromolecules 2022; 23:1453-1461. [PMID: 35104406 DOI: 10.1021/acs.biomac.2c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylated threonine (Thr) is a structural motif found in seemingly disparate natural proteins from deep-sea collagen to mucins. Synthetic mimics of these important proteins are of great interest in biomedicine. Such materials also provide ready access to probe the contributions of individual amino acids to protein structure in a controlled and tunable manner. N-Carboxyanhydride (NCA) polymerization is one major route to such biomimetic polypeptides. However, challenges in the preparation and polymerization of Thr NCAs have impeded obtaining such structures. Here, we present optimized routes to several glycosylated and acetylated Thr NCAs of high analytical purity. Transition metal catalysis produced tunable homo-, statistical, and block-polypeptides with predictable chain lengths and low dispersities. We conducted structural work to examine their aqueous conformations and found that a high content of free OH Thr induces the formation of water-insoluble β-sheets. However, glycosylation appears to induce a polyproline II-type helical conformation, which sheds light on the role of glyco-Thr in rigid proteins such as mucins and collagen.
Collapse
Affiliation(s)
- Anna C Deleray
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Greco B, Malacarne V, De Girardi F, Scotti GM, Manfredi F, Angelino E, Sirini C, Camisa B, Falcone L, Moresco MA, Paolella K, Di Bono M, Norata R, Sanvito F, Arcangeli S, Doglioni C, Ciceri F, Bonini C, Graziani A, Bondanza A, Casucci M. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Sci Transl Med 2022; 14:eabg3072. [PMID: 35044789 DOI: 10.1126/scitranslmed.abg3072] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Immunotherapy with chimeric antigen receptor (CAR)-engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1-PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.
Collapse
Affiliation(s)
- Beatrice Greco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valeria Malacarne
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Federica De Girardi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elia Angelino
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Falcone
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Katia Paolella
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Di Bono
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossana Norata
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Graziani
- Lipid Signaling in Cancer and Metabolism Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10124 Torino, Italy
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
4
|
Abstract
Aptamers are nucleic acids referred to as chemical antibodies as they bind to their specific targets with high affinity and selectivity. They are selected via an iterative process known as ‘selective evolution of ligands by exponential enrichment’ (SELEX). Aptamers have been developed against numerous cancer targets and among them, many tumor cell-membrane protein biomarkers. The identification of aptamers targeting cell-surface proteins has mainly been performed by two different strategies: protein- and cell-based SELEX, when the targets used for selection were proteins and cells, respectively. This review aims to update the literature on aptamers targeting tumor cell surface protein biomarkers, highlighting potentials, pitfalls of protein- and cell-based selection processes and applications of such selected molecules. Aptamers as promising agents for diagnosis and therapeutic approaches in oncology are documented, as well as aptamers in clinical development.
Collapse
|
5
|
Qu J, Yu H, Li F, Zhang C, Trad A, Brooks C, Zhang B, Gong T, Guo Z, Li Y, Ragupathi G, Lou Y, Hwu P, Huang W, Zhou D. Molecular basis of antibody binding to mucin glycopeptides in lung cancer. Int J Oncol 2015; 48:587-94. [PMID: 26692014 PMCID: PMC4725460 DOI: 10.3892/ijo.2015.3302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023] Open
Abstract
Glycopeptides bearing Tn epitopes are emerging targets for cancer diagnosis and immunotherapy. In this study, we analyzed membrane proteins containing O-glycosylated tandem repeat (TR) sequences in lung cancer patients of different types and stages, using gene microarray data in public domain. The expression of Tn and glycopeptide epitopes on the surface of lung cancer cell lines were studied by monoclonal IgG antibodies 14A, 16A, and B72.3. The binding of mAbs to synthetic glycopeptides were studied by surface plasmon resonance. Nine mucin mRNAs were found to be expressed in lung cancer patients but at similar level to healthy individuals. At protein level, a glycopeptide epitope on cancer cell surface is preferably recognized by mAb 16A, as compared to peptide-alone (14A) or sugar-alone epitopes (B72.3). 14A and 16A favor clustered TR containing more than three TR sequences, with 10-fold lower Kd than two consecutive TR. B72.3 preferrably recognized clustered sialyl-Tn displayed on MUC1 but not other O-glycoproteins, with 100-fold stronger binding when MUC1 is transfected as a sugar carrier, while the total sugar epitopes remain unchanged. These findings indicate that clusters of both TR backbones and sugars are essential for mAb binding to mucin glycopeptides. Three rules of antibody binding to mucin glycopeptides at molecular level are presented here: first, the peptide backbone of a glycopeptide is preferentially recognized by B cells through mutations in complementarity determining regions (CDRs) of B cell receptor, and the sugar-binding specificity is acquired through mutations in frame work of heavy chain; secondly, consecutive tandem repeats (TR) of peptides and glycopeptides are preferentially recognized by B cells, which favor clustered TR containing more than three TR sequences; thirdly, certain sugar-specific B cells recognize and accommodate clustered Tn and sialyl-Tn displayed on the surface of a mucin but not other membrane proteins.
Collapse
Affiliation(s)
- Jin Qu
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongtao Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and iHuman Institute, Shanghai Tech University, Shanghai 201203, P.R. China
| | - Fenge Li
- Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Chunlei Zhang
- Shenzhen Hospital of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Ahmad Trad
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Cory Brooks
- Department of Chemistry, California State University, Fresno, CA 93740, USA
| | - Bin Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ting Gong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Zhi Guo
- Tianjin Cancer Hospital, Tianjin 300060, P.R. China
| | - Yunsen Li
- Laboratory of Cellular and Molecular Tumor Immunology, Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | | | - Yanyan Lou
- Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick Hwu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and iHuman Institute, Shanghai Tech University, Shanghai 201203, P.R. China
| | - Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
6
|
Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc Natl Acad Sci U S A 2010; 107:10056-61. [PMID: 20479270 DOI: 10.1073/pnas.0915176107] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the "Tn antigen." Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen.
Collapse
|
7
|
Tarp MA, Sørensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 2006; 17:197-209. [PMID: 17050588 DOI: 10.1093/glycob/cwl061] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptide-based vaccines can override tolerance in human MUC1 transgenic mice and induce humoral immunity with high specificity for MUC1 cancer-specific glycoforms (Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, et al. 2006. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 16:96-107). In order to further characterize the immune response to Tn/STn-MUC1 glycoforms, we generated monoclonal antibodies with specificity similar to the polyclonal antibody response found in transgenic mice. In the present study, we define the immunodominant epitope on Tn/STn-MUC1 glycopeptides to the region including the amino acids GSTA of the MUC1 20-amino acid tandem repeat (HGVTSAPDTRPAPGSTAPPA). Most other MUC1 antibodies are directed to the PDTR region, although patients with antibodies to the GSTA region have been identified. A panel of other MUC1 glycoform-specific monoclonal antibodies was included for comparison. The study demonstrates that the GSTA region of the MUC1 tandem repeat contains a highly immunodominant epitope when presented with immature short O-glycans. The cancer-specific expression of this glycopeptide epitope makes it a prime candidate for immunodiagnostic and therapeutic measures.
Collapse
Affiliation(s)
- Mads A Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Ferreira CSM, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 2006; 27:289-301. [PMID: 17033199 DOI: 10.1159/000096085] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 01/01/2023] Open
Abstract
Agents able to bind tightly and selectively to disease markers can greatly benefit disease diagnosis and therapy. Aptamers are functional molecules, usually DNA or RNA oligonucleotides, with the appropriate sequence and structure to form a complex with a target molecule. MUC1 is a well-known tumour marker present in a variety of malignant tumours and it has been a target of interest for many years. In this work we report the selection of DNA aptamers that bind with high affinity and selectivity to the MUC1 peptides. Combinatorial chemistry techniques based on the SELEX methodology were used for the identification of the specific aptamers. These were selected from an initial library containing a 25-base-long variable region, resulting in 4(25) random sequences of single-stranded DNA molecules, for their ability to bind to synthetic forms of MUC1. Ten rounds of in vitro selection were performed enriching for MUC1 binding. By round ten more than 90% of the pool of sequences consisted of MUC1-binding molecules. Selected aptamer families were cloned, sequenced and found to be unique, sharing no sequence consensus. The binding properties of these aptamers were quantitated by enzyme-linked immunosorbent assay and surface plasmon resonance, whereas their specificity for MUC1-expressing cancer cells has been validated using fluorescent microscopy. Aptamers offer significant advantages over existing antibody-based recognition procedures in that they offer higher binding affinity (higher retention/reduced dissociation) and specificity to the target (ability to determine variations on the protein target down to single amino acid changes), higher selectivity against mutated protein epitopes and potentially reduced immunogenicity and increased tumour penetration associated with their size.
Collapse
Affiliation(s)
- C S M Ferreira
- Chemistry Department, The Open University, Milton Keynes, MK7 6AA, UK
| | | | | |
Collapse
|
9
|
Missailidis S, Thomaidou D, Borbas KE, Price MR. Selection of aptamers with high affinity and high specificity against C595, an anti-MUC1 IgG3 monoclonal antibody, for antibody targeting. J Immunol Methods 2005; 296:45-62. [PMID: 15680150 DOI: 10.1016/j.jim.2004.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 10/19/2004] [Accepted: 10/25/2004] [Indexed: 11/28/2022]
Abstract
Targeting of antibodies has found a number of applications in assays, anti-idiotypic therapies and vaccine design with a number of anti-idiotypic Abs generated and used in clinical applications, and some currently in clinical trials. Meanwhile, aptamers are a novel and particularly interesting targeting modality, with a unique ability to bind to a variety of targets. Aptamers offer unique benefits compared to other targeting agents, due to their high affinity and selectivity, relatively small size and in vitro synthesis, making them attractive alternatives to Abs and peptides. Aptamers have already been selected against a number of Abs for various applications. We now present a novel methodology for the selection of aptamers against Abs, which minimises the number of steps used and results in molecules that bind to the target Ab with high affinity and specificity. We have used the well-characterised anti-MUC1 monoclonal Ab C595 as an exemplar for raising aptamers against Abs. The methodology is based on the adsorption of the Ab to the surface of a PCR tube and the performance of SELEX selections in the PCR tube, based on elution steps resulting from the denaturation of the Ab on the first PCR amplification cycle. After 10 rounds of selection and amplification, selected aptamers have been characterised using a number of techniques, including fluorescence quenching, ELISA and competition ELISA procedures and a FRET type assay. Aptamers were found to bind their target Ab with a higher affinity than its natural antigenic peptide, as observed in fluorescent quenching and FRET experiments. Furthermore, they were able to displace the antigens from the antibody binding pocket in competition assays. This methodology offers the possibility of rapidly selecting aptamers for antibody targeting that could be used as diagnostic, imaging or therapeutic agents, or as recognition units in immunoassays, and can be potentially useful in raising aptamers against other protein targets.
Collapse
Affiliation(s)
- Sotiris Missailidis
- Chemistry Department, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | | | | | | |
Collapse
|
10
|
Croce MV, Isla-Larrain MT, Rua CE, Rabassa ME, Gendler SJ, Segal-Eiras A. Patterns of MUC1 tissue expression defined by an anti-MUC1 cytoplasmic tail monoclonal antibody in breast cancer. J Histochem Cytochem 2003; 51:781-8. [PMID: 12754289 DOI: 10.1177/002215540305100609] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our aim was to determine the pattern of expression of MUC1 mucin cytoplasmic tail (MUC1 CT) in breast carcinoma. A total of 98 invasive breast adenocarcinoma tumor samples were assayed by immunohistochemical (IHC) analysis. The pattern of reaction was classified as membrane, cytoplasmic, or mixed. Subcellular fractions were prepared after SDS-PAGE and Western blotting. The antibodies employed were anti-MUC1 CT (CT2 monoclonal antibody, MAb) and C595 MAb against the extracellular MUC1 core protein. With the CT2 MAb, IHC showed a high percentage of positive staining in 93% of specimens, with membrane staining the most common pattern observed. C595 MAb was reactive in 73% of specimens. Similar percentages of membrane and cytoplasmic staining were found, mainly in a mixed pattern. Western blotting showed different bands. With the CT2 MAb, the membrane fraction showed the most intense reaction; a strong band of reaction was detected at approximately <30 kD. With the C595 MAb, in most cases a double band at 200 kD was found. In breast epithelium, the pattern of MUC1 CT expression may constitute an indicator of MUC1 production because it does not depend on glycosylation. The pattern and extension of MUC1 CT positivity do not vary according to the histopathological subtype of the tumor.
Collapse
Affiliation(s)
- María V Croce
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Cudic M, Ertl HCJ, Otvos L. Synthesis, conformation and T-helper cell stimulation of an O-linked glycopeptide epitope containing extended carbohydrate side-chains. Bioorg Med Chem 2002; 10:3859-70. [PMID: 12413838 DOI: 10.1016/s0968-0896(02)00388-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To answer the question whether or not T cells to immunodominant protein fragments recognize glycosylated antigens, we synthesized a series of glycopeptides corresponding to peptide 31D, a major T-helper cell epitope of the rabies virus nucleoprotein. Thr4 of the epitope is known to allow mono- or disaccharide side-chain substitutions in either alpha- or beta-anomeric configuration without interfering with MHC-binding. To model naturally occurring glycoprotein fragments that carry extended sugar chains, we prepared Fmoc-Ser/Thr-OPfp building blocks containing alpha- and beta-linked linear tri- and heptasaccharides. Peptide 31D was synthesized with the complex carbohydrates attached to Thr4, and the T-helper cell activity of the glycopeptides was determined. Addition of alpha-linked carbohydrates, that mimic most of the natural O-linked glycoproteins, resulted in a major drop in the T-cell stimulatory ability in a sugar length-dependent manner. In contrast, the cytosolic glycoprotein mimicking beta-linked glycopeptides retained their T-cell stimulatory activity, with the trisaccharide-containing analogue being almost as potent as the unglycosylated peptide. When the peptides were preincubated with diluted human serum, all peptides lost their ability to stimulate the 9C5.D8-H hybridoma. These findings indicated that (i) in contrast to cytosolic glycosylation, incorporation of long O-linked carbohydrates into T-helper cell epitopes abrogates the antigenicity of these protein fragments, and (ii) glycosylation is not a viable alternative to improve the immunogenic properties of subunit peptide vaccines. Glycosylation with all four carbohydrate moieties similarly destroyed the inducible alpha-helical structure of peptide 31D as detected by CD, indicating that the differences in the T-cell activity were not due to different peptide conformations.
Collapse
Affiliation(s)
- Mare Cudic
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Bochicchio B, Tamburro AM. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 2002; 14:782-92. [PMID: 12395395 DOI: 10.1002/chir.10153] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last years polyproline II (PPII) structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response. The polyproline left-handed helical structure was nearly unknown until now and often confused with unordered, disordered, irregular, unstructured, extended, or random coil conformations because it is neither alpha-helical nor beta-turn nor beta-sheet, i.e., a classical structure. In spite of the regularity of the PPII structure and, more precisely, its well-defined dihedral angle values, a typical feature of PPII structure is the absence of any intramolecular hydrogen bonds that renders the PPII structure indistinguishable from an irregular backbone structure by (1)H-NMR spectroscopy. The only way to unambiguously reveal PPII structure in solution is to use spectroscopies based on optical activity, such as circular dichroism (CD), vibrational circular dichroism (VCD), and Raman optical activity (ROA). Herein we focus on the identification of PPII structure by CD, widely considered to be the most reliable methodology. Then we report on VCD and ROA spectroscopies as tools in the identification of PPII structure. A third section is dedicated to the analysis of the stabilization of PPII conformation in aqueous solution. Finally, the significance of PPII in self-assembly processes, in elasticity of elastomeric proteins, and in proteins-(peptides) proteins molecular recognition processes are considered.
Collapse
|
13
|
Grinstead JS, Koganty RR, Krantz MJ, Longenecker BM, Campbell AP. Effect of glycosylation on MUC1 humoral immune recognition: NMR studies of MUC1 glycopeptide-antibody interactions. Biochemistry 2002; 41:9946-61. [PMID: 12146959 DOI: 10.1021/bi012176z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.
Collapse
Affiliation(s)
- Jeffrey S Grinstead
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
14
|
Henderikx P, Coolen-van Neer N, Jacobs A, van der Linden E, Arends JW, Müllberg J, Hoogenboom HR. A human immunoglobulin G1 antibody originating from an in vitro-selected Fab phage antibody binds avidly to tumor-associated MUC1 and is efficiently internalized. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1597-608. [PMID: 12000712 PMCID: PMC1850867 DOI: 10.1016/s0002-9440(10)61107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the engineering and characterization of a whole human antibody directed toward the tumor-associated protein core of human MUC1. The antibody PH1 originated from the in vitro selection on MUC1 of a nonimmune human Fab phage library. The PH1 variable genes were reformatted for expression as a fully human IgG1. The resulting PH1-IgG1 human antibody displays a 160-fold improved apparent kd (8.7 nmol/L) compared to the kd of the parental Fab (1.4 micromol/L). In cell-binding studies with flow cytometry and immunohistochemistry, PH1-IgG1 exhibits staining patterns typical for antibodies recognizing the tumor-associated tandem repeat region on MUC1, eg, it binds the tumor-associated glycoforms of MUC1 in breast and ovarian cancer cell lines, but not the heavily glycosylated form of MUC1 on colon carcinoma cell lines. In many tumors PH1-IgG1 binds to membranous and cytoplasmic MUC1, with often intense staining of the whole-cell membrane (eg, in adenocarcinoma). In normal tissues staining is either absent or less intense, in which case it is found mostly at the apical side of the cells. Finally, fluorescein isothiocyanate-labeled PH1-IgG1 internalizes quickly after binding to human OVCAR-3 cells, and to a lesser extent to MUC1 gene-transfected 3T3 mouse fibroblasts. The tumor-associated binding characteristics of this antibody, its efficient internalization, and its human nature, make PH1-IgG1 a valuable candidate for further studies as a cancer-targeting immunotherapeutic.
Collapse
|
15
|
Smith RG, Missailidis S, Price MR. Purification of anti-MUC1 antibodies by peptide mimotope affinity chromatography using peptides derived from a polyvalent phage display library. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 766:13-26. [PMID: 11820288 DOI: 10.1016/s0378-4347(01)00422-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.
Collapse
Affiliation(s)
- Richard G Smith
- University of Nottingham, Cancer Research Laboratories, School of Pharmaceutical Sciences, UK.
| | | | | |
Collapse
|
16
|
Seitz O, Heinemann I, Mattes A, Waldmann H. Synthetic peptide conjugates—tailor-made probes for the biology of protein modification and protein processing. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(00)01115-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Abstract
Despite the omnipresence of protein glycosylation in nature, little is known about how the attachment of carbohydrates affects peptide and protein activity. One reason is the lack of a straightforward method to access biologically relevant glycopeptides and glycoproteins. The isolation of homogeneous glycopeptides from natural sources is complicated by the heterogeneity of naturally occuring glycoproteins. It is chemical and chemoenzymatic synthesis that is meeting the challenge to solve this availability problem, thus playing a key role for the advancement of glycobiology. The current art of glycopeptide synthesis, albeit far from being routine, has reached a level of maturity that allows for the access to homogeneous and pure material for biological and medicinal research. Even the ambitious goal of the total synthesis of an entire glycoprotein is within reach. It is demonstrated that with the help of synthetic glycopeptides the effects of glycosylation on protein structure and function can be studied in molecular detail. For example, in immunology, synthetic (tumour-specific) glycopeptides can be used as immunogens to elicit a tumour-cell-specific immune response. Again, synthetic glycopeptides are an invaluable tool to determine the fine specificity of the immune response that can be mediated by both carbohydrate-specific B and T cells. Furthermore, selected examples for the use of synthetic glycopeptides as ligands of carbohydrate-binding proteins and as enzyme substrates or inhibitors are presented.
Collapse
Affiliation(s)
- O Seitz
- Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|