1
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
2
|
Ciftci H, Tateishi H, Koiwai K, Koga R, Anraku K, Monde K, Dağ Ç, Destan E, Yuksel B, Ayan E, Yildirim G, Yigin M, Ertem FB, Shafiei A, Guven O, Besler SO, Sierra RG, Yoon CH, Su Z, Liang M, Acar B, Haliloglu T, Otsuka M, Yumoto F, Fujita M, Senda T, DeMirci H. Structural insight into host plasma membrane association and assembly of HIV-1 matrix protein. Sci Rep 2021; 11:15819. [PMID: 34349176 PMCID: PMC8339130 DOI: 10.1038/s41598-021-95236-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Oligomerization of Pr55Gag is a critical step of the late stage of the HIV life cycle. It has been known that the binding of IP6, an abundant endogenous cyclitol molecule at the MA domain, has been linked to the oligomerization of Pr55Gag. However, the exact binding site of IP6 on MA remains unknown and the structural details of this interaction are missing. Here, we present three high-resolution crystal structures of the MA domain in complex with IP6 molecules to reveal its binding mode. Additionally, extensive Differential Scanning Fluorimetry analysis combined with cryo- and ambient-temperature X-ray crystallography and GNM-based transfer entropy calculations identify the key residues that participate in IP6 binding. Our data provide novel insights about the multilayered HIV-1 virion assembly process that involves the interplay of IP6 with PIP2, a phosphoinositide essential for the binding of Pr55Gag to membrane. IP6 and PIP2 have neighboring alternate binding sites within the same highly basic region (residues 18-33). This indicates that IP6 and PIP2 bindings are not mutually exclusive and may play a key role in coordinating virion particles' membrane localization. Based on our three different IP6-MA complex crystal structures, we propose a new model that involves IP6 coordination of the oligomerization of outer MA and inner CA domain's 2D layers during assembly and budding.
Collapse
Affiliation(s)
- Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd, Kumamoto, 862-0976, Japan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kotaro Koiwai
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kensaku Anraku
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Çağdaş Dağ
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Ebru Destan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Busra Yuksel
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Esra Ayan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gunseli Yildirim
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Merve Yigin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - F Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Alaleh Shafiei
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Omur Guven
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Sabri O Besler
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Burcin Acar
- Polymer Research Center, Bogazici University, 34342, Istanbul, Turkey
| | - Turkan Haliloglu
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Polymer Research Center, Bogazici University, 34342, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd, Kumamoto, 862-0976, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.
- School of High Energy Accelerator Science, SOKENDAI University, Tsukuba, Ibaraki, 305-0801, Japan.
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan.
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey.
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34450, Istanbul, Turkey.
| |
Collapse
|