1
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
2
|
Improving corrected QT; Why individual correction is not enough. J Pharmacol Toxicol Methods 2021; 113:107126. [PMID: 34655760 DOI: 10.1016/j.vascn.2021.107126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
The use of QT-prolongation as a biomarker for arrhythmia risk requires that researchers correct the QT-interval (QT) to control for the influence of heart rate (HR). QT correction methods can vary but most used are the universal correction methods, such as Bazett's or Van de Water's, which use a single correction formula to correct QT-intervals in all the subjects of a study. Such methods fail to account for differences in the QT/HR relationship between subjects or over time, instead relying on the assumption that this relationship is consistent. To address these changes in rate relationships, we test the effectiveness of linear and non-linear individual correction methods. We hypothesize that individual correction methods that account for additional influences on the rate relationship will result in more effective and consistent correction. To increase the scope of this study we use bootstrap sampling on ECG recordings from non-human primates and beagle canines dosed with vehicle control. We then compare linear and non-linear individual correction methods through their ability to reduce HR correlation and standard deviation of corrected QT values. From these results, we conclude that individual correction methods based on post-treatment data are most effective with the linear methods being the best option for most cases in both primates and canines. We also conclude that the non-linear methods are more effective in canines than primates and that accounting for light status can improve correction while examining the data from the light periods separately. Individual correction requires careful consideration of inter-subject and intra-subject variabilities.
Collapse
|
3
|
Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017; 174:3749-3765. [PMID: 27641943 PMCID: PMC5647193 DOI: 10.1111/bph.13577] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is a severe side effect of drugs that induce structural or electrophysiological changes in heart muscle cells. As a result, the heart undergoes failure and potentially lethal arrhythmias. It is still a major reason for drug failure in preclinical and clinical phases of drug discovery. Current methods for predicting cardiotoxicity are based on guidelines that combine electrophysiological analysis of cell lines expressing ion channels ectopically in vitro with animal models and clinical trials. Although no new cases of drugs linked to lethal arrhythmias have been reported since the introduction of these guidelines in 2005, their limited predictive power likely means that potentially valuable drugs may not reach clinical practice. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are now emerging as potentially more predictive alternatives, particularly for the early phases of preclinical research. However, these cells are phenotypically immature and culture and assay methods not standardized, which could be a hurdle to the development of predictive computational models and their implementation into the drug discovery pipeline, in contrast to the ambitions of the comprehensive pro-arrhythmia in vitro assay (CiPA) initiative. Here, we review present and future preclinical cardiotoxicity screening and suggest possible hPSC-CM-based strategies that may help to move the field forward. Coordinated efforts by basic scientists, companies and hPSC banks to standardize experimental conditions for generating reliable and reproducible safety indices will be helpful not only for cardiotoxicity prediction but also for precision medicine. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Milena Bellin
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Christine L Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
4
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
5
|
Vo LC, Snyder C, McCracken C, McDougle CJ, McCracken JT, Aman MG, Tierney E, Arnold LE, Levi D, Kelleman M, Carroll D, Morrissey J, Vitiello B, Scahill L. No Apparent Cardiac Conduction Effects of Acute Treatment with Risperidone in Children with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2016; 26:900-908. [PMID: 27726426 PMCID: PMC5178011 DOI: 10.1089/cap.2016.0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Risperidone is approved for the treatment of serious behavioral problems in children with autism spectrum disorder (ASD). This study examined the effects of risperidone on cardiac conduction in children with ASD. METHODS Data were collected from an 8-week, five-site trial conducted by the Research Units on Pediatric Psychopharmacology Autism Network. Children (age 5-17 years) were randomly assigned to risperidone (n = 49) or placebo (n = 52) under double-blind conditions. Risperidone was superior to placebo in reducing serious behavioral problems. A standard 12-lead, electrocardiogram (ECG) was obtained in most subjects at screening and week 8. A pediatric electrophysiologist blind to treatment assignment reviewed all available ECGs for readability, abnormalities, and cardiac conduction parameters, including QTc. The electrophysiologist measurements were compared to machine readings. A second blinded electrophysiologist examined all available ECGs for abnormalities and a 20% random sample for QTc. RESULTS Of the 101 randomized subjects in the trial, complete pretreatment and week 8 data were available on 65 subjects (placebo n = 30; risperidone n = 35). The electrophysiologist did not identify any cardiac conduction adverse effects of risperidone and there was no difference in mean change on the QTc compared to placebo. The Bland-Altman plot showed a systematic bias in QTc measurements by the electrophysiologist and machine. Machine readings produced higher values than the electrophysiologist for shorter QTc intervals and machine scoring was lower than electrophysiologist readings for longer QTc values (p = 0.001). Two electrophysiologists had overall percent agreements of 82.9% (95% CI: 76.3 to 89.6) on qualitative assessment and 88.6% (95% CI: 79.3 to 98.0) on QTc interval. CONCLUSION Using conventional doses during acute treatment in children with ASD and serious behavioral problems, there was no difference in the mean change in QTc between risperidone and placebo. Compared to the electrophysiologist, the machine readings may miss elevated QTc measurements.
Collapse
Affiliation(s)
- Lan Chi Vo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher Snyder
- Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Courtney McCracken
- Children's Hospital of Atlanta & Emory University School of Medicine, Atlanta, Georgia
| | - Christopher J. McDougle
- Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Boston, Massachusetts
| | - James T. McCracken
- Division of Child Psychiatry, University of California at Los Angeles, Los Angeles, California
| | | | | | | | - Daniel Levi
- Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California
| | - Michael Kelleman
- Children's Hospital of Atlanta & Emory University School of Medicine, Atlanta, Georgia
| | - Deirdre Carroll
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - John Morrissey
- Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California
| | | | - Lawrence Scahill
- Marcus Autism Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Del Álamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, Mercola M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1717-27. [PMID: 26952934 DOI: 10.1016/j.bbamcr.2016.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Abstract
Cardiac drug discovery is hampered by the reliance on non-human animal and cellular models with inadequate throughput and physiological fidelity to accurately identify new targets and test novel therapeutic strategies. Similarly, adverse drug effects on the heart are challenging to model, contributing to costly failure of drugs during development and even after market launch. Human induced pluripotent stem cell derived cardiac tissue represents a potentially powerful means to model aspects of heart physiology relevant to disease and adverse drug effects, providing both the human context and throughput needed to improve the efficiency of drug development. Here we review emerging technologies for high throughput measurements of cardiomyocyte physiology, and comment on the promises and challenges of using iPSC-derived cardiomyocytes to model disease and introduce the human context into early stages of drug discovery. This article is part of a Special Issue entitled: Cardiomyocyte biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive MC 0411, La Jolla, CA 92093-0411, USA
| | - Derek Lemons
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive MC 0411, La Jolla, CA 92093-0411, USA
| | - Alex Savchenko
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA; Stanford Cardiovascular Institute, 265 Campus Dr., Stanford, CA 94305-5454, USA
| | - Fabio Cerignoli
- ACEA Biosciences, Inc., 6779 Mesa Ridge Road, San Diego, CA 92121, USA
| | - Rolf Bodmer
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA
| | - Mark Mercola
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Sanford-Burnham-Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, CA 92037, USA; Stanford Cardiovascular Institute, 265 Campus Dr., Stanford, CA 94305-5454, USA.
| |
Collapse
|
7
|
Fijorek K, Tanner FC, Stähli BE, Gielerak G, Krzesinski P, Uzieblo-Zyczkowska B, Smurzynski P, Stanczyk A, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Jastrzebski M, Podolec M, Kopec G, Stanula B, Kocowska M, Tylutki Z, Polak S. Model of the distribution of diastolic left ventricular posterior wall thickness in healthy adults and its impact on the behavior of a string of virtual cardiomyocytes. J Cardiovasc Transl Res 2014; 7:507-17. [PMID: 24676501 PMCID: PMC4098050 DOI: 10.1007/s12265-014-9558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Correlation of the thickness of the left ventricular posterior wall (LVPWd) with various parameters, including age, gender, weight and height, was investigated in this study using regression models. Multicenter derived database comprised over 4,000 healthy individuals. The developed models were further utilized in the in vitro-in vivo (IVIV) translation of the drug cardiac safety data with use of the mathematical model of human cardiomyocytes operating at the virtual healthy population level. LVPWd was assumed to be equivalent to the length of one-dimensional string of virtual cardiomyocyte cells which was presented, as other physiological factors, to be a parameter influencing the simulated pseudo-ECG (pseudoelectrocardiogram), QTcF and ∆QTcF, both native and modified by exemplar drug (disopyramide) after I Kr current disruption. Simulation results support positive correlation between the LVPWd and QTcF/∆QTc. Developed models allow more detailed description of the virtual population and thus inter-individual variability influence on the drug cardiac safety.
Collapse
Affiliation(s)
- Kamil Fijorek
- Department of Statistics, Cracow University of Economics, Krakow, Poland
| | - Felix C. Tanner
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Barbara E. Stähli
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Grzegorz Gielerak
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Pawel Krzesinski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | | | - Pawel Smurzynski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stanczyk
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Kalina Kawecka-Jaszcz
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, University Hospital, Krakow, Krakow, Poland
| | - Mateusz Podolec
- Department of Coronary Artery Disease, Jagiellonian University Medical College at the John Paul II Hospital, Krakow, Poland
| | - Grzegorz Kopec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College and Centre for Rare Cardiovascular Diseases at the John Paul II Hospital, Krakow, Poland
| | | | | | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Wang Q, Hu W, Lei M, Wang Y, Yan B, Liu J, Zhang R, Jin Y. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress. PLoS One 2013; 8:e84984. [PMID: 24386440 PMCID: PMC3875566 DOI: 10.1371/journal.pone.0084984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. RESULTS H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.
Collapse
Affiliation(s)
- Qi Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Weina Hu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Mingming Lei
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yong Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bing Yan
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Liu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Ren Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yuanzhe Jin
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
- * E-mail:
| |
Collapse
|