Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease.
Brain Stimul 2017;
10:1045-1054. [PMID:
28918943 PMCID:
PMC5675746 DOI:
10.1016/j.brs.2017.08.008]
[Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND
Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic.
OBJECTIVE
To assess therapeutic potential of VNS in a PD model.
METHODS
To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1).
RESULTS
VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1.
CONCLUSIONS
Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic.
Collapse