1
|
Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Ellenbogen RG, Koch C, Lein E. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 2018; 8:8407. [PMID: 29849137 PMCID: PMC5976666 DOI: 10.1038/s41598-018-26803-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation. Surprisingly, acute human brain slices exhibited exceptional viability, and neuronal intrinsic membrane properties could be assayed for at least three days. Maintaining adult human slices in culture under sterile conditions further enabled the application of viral tools to drive rapid expression of exogenous transgenes. Widespread neuron-specific labeling was achieved as early as two days post infection with HSV-1 vectors, with virally-transduced neurons exhibiting membrane properties largely comparable to uninfected neurons over this short timeframe. Finally, we demonstrate the suitability of this culture paradigm for optical manipulation and monitoring of neuronal activity using genetically encoded probes, opening a path for applying modern molecular-genetic tools to study human brain circuit function.
Collapse
Affiliation(s)
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Andrew L Ko
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon. PLoS One 2016; 11:e0156092. [PMID: 27195771 PMCID: PMC4873243 DOI: 10.1371/journal.pone.0156092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/01/2022] Open
Abstract
In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior.
Collapse
|
3
|
Vieira PA, Corches A, Lovelace JW, Westbrook KB, Mendoza M, Korzus E. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction. Neurobiol Learn Mem 2015; 119:52-62. [PMID: 25615540 DOI: 10.1016/j.nlm.2014.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 12/27/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Kevin B Westbrook
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA
| | - Michael Mendoza
- Molecular Biology and Biochemistry Program, University of California Riverside, CA 92521, USA
| | - Edward Korzus
- Department of Psychology & Neuroscience Program, University of California Riverside, CA 92521, USA; Biomedical Sciences Program, University of California Riverside, CA 92521, USA; Molecular Biology and Biochemistry Program, University of California Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Vieira PA, Lovelace JW, Corches A, Rashid AJ, Josselyn SA, Korzus E. Prefrontal consolidation supports the attainment of fear memory accuracy. ACTA ACUST UNITED AC 2014; 21:394-405. [PMID: 25031365 PMCID: PMC4105719 DOI: 10.1101/lm.036087.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA
| | - Alex Corches
- Biomedical Sciences Program, University of California Riverside, California 92521, USA
| | - Asim J Rashid
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Edward Korzus
- Department of Psychology and Neuroscience Program, University of California Riverside, California 92521, USA Biomedical Sciences Program, University of California Riverside, California 92521, USA
| |
Collapse
|
5
|
Blockade of stimulus convergence in amygdala neurons disrupts taste associative learning. J Neurosci 2013; 33:4958-63. [PMID: 23486966 DOI: 10.1523/jneurosci.5462-12.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humans and non-human animals learn associations of temporally contingent stimuli to better cope with the changing environment. In animal models of classical conditioning, a neutral conditioned stimulus (CS) predicts an aversive unconditioned stimulus (US). Several lines of indirect evidence indicate that this learning may rely on stimulus convergence in a subset of neurons, but this hypothesis has not been directly tested. In the current study, we tested this hypothesis using a pharmacogenetic approach, the cAMP response element-binding protein (CREB)/Allatostatin Receptor system, to target a subset of amygdala neurons receiving convergent stimuli in mice during conditioned taste aversion. Virally infected basolateral amygdala neurons with higher CREB levels were predominantly active during CS presentation. Blocking stimulus convergence in infected neurons by silencing them during US disrupted taste associative memory. Moreover, silencing infected neurons only during CS also disrupted associative memory formation. These results provide support for the notion that convergent inputs of CS and US in a subpopulation of neurons are critical for associative memory formation.
Collapse
|