1
|
Wippel HH, Fioramonte M, Chavez JD, Bruce JE. Deciphering the architecture and interactome of hnRNP proteins and enigmRBPs. Mol Omics 2021; 17:503-516. [PMID: 34017973 PMCID: PMC8355073 DOI: 10.1039/d1mo00024a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA-binding proteins (RBPs) have conserved domains and consensus sequences that interact with RNAs and other proteins forming ribonucleoprotein (RNP) complexes. RNPs are involved in the regulation of several cellular processes, including transcription, pre-mRNA splicing, mRNA transport, localization, degradation and storage, and ultimately control of translation. Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RBPs that mediate transcription control and nuclear processing of transcripts. Some hnRNPs are part of the spliceosome complex, a dynamic machinery formed by RNPs that regulate alternative splicing of pre-mRNAs. Here, chemical crosslinking of proteins was applied to identify specific interacting regions and protein structural features of hnRNPs: hnRNPA1, hnRNPA2/B1, hnRNPC, and RALY. The results reveal interaction of these proteins within RNA-binding domains and conserved motifs, providing evidence of a coordinated action of known regulatory sequences of RBPs. Moreover, these crosslinking data enable structural model generation for RBPs, illustrating how crosslinking mass spectrometry can complement other structural methods.
Collapse
Affiliation(s)
- Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Mariana Fioramonte
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. and University of Campinas, Campinas, SP, Brazil
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Malmqvist T, Spickett C, Gallo JM, Anthony K. A UV cross-linking method combined with infrared imaging to analyse RNA-protein interactions. Biol Methods Protoc 2017; 2:bpx009. [PMID: 32161791 PMCID: PMC6994032 DOI: 10.1093/biomethods/bpx009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 11/30/2022] Open
Abstract
Photo cross-linking of proteins with short RNA oligomers is a classical method to study RNA–protein interactions that are implicated in many aspects of RNA metabolism and function. Most commonly, this involves the use of [γ-32P]-labeled RNA probes. Although very sensitive, these procedures are complicated by the safety issues associated with the use of radioisotopes. Here, we describe a modified UV cross-linking method using oligonucleotide probes end labelled with the infrared dye IRDye®800. After UV cross-linking, proteins are separated by SDS-PAGE and cross-linked products are visualized with the Odyssey® Infrared Imaging system. This end labelling approach provides a streamlined alternative to random labelling which reduces the efficiency of in-vitro transcription. End labelling is also independent of the length of the probe, thus facilitating quantitative comparisons. To validate the method, we have confirmed the binding of HuD to the 3′-UTR of the mRNA for the microtubule-associated protein tau, implicated in the pathogenesis of Alzheimer’s disease. UV cross-linking of HuD with a labeled 21-mer probe was successfully performed using a recombinant purified glutathione-S-transferase–HuD fusion protein as well as with lysates from CHO cells transfected with HuD cDNA. UV cross-linking combined with infrared imaging offers a convenient and robust strategy to analyse RNA–protein interactions and their emerging importance in disease.
Collapse
Affiliation(s)
- Tony Malmqvist
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.,Atlas Antibodies, Voltavägen 13 A, 16869 Bromma, Sweden
| | - Carl Spickett
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.,Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Karen Anthony
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.,Faculty of Health and Society, University of Northampton, Northampton NN2 7AL, UK
| |
Collapse
|
3
|
Khan DH, Davie JR. Dual cross-linking ribonucleoprotein immunoprecipitation assay. Biochem Cell Biol 2014; 92:317-9. [DOI: 10.1139/bcb-2014-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribonucleoprotein immunoprecipitation (RIP) is an antibody-based method to detect RNA–protein interactions in situ. In the assay, UV cross-linking is commonly used to preserve RNA–protein interactions for subsequent target identification. UV light is a zero-length cross linker and thus identifies proteins directly bound to RNAs. Here, we describe a dual cross-linking RIP method that involves sequential protein–protein cross-linking step with a protein–protein cross-linker, followed by protein–RNA fixation by UV irradiation. In this way, proteins that indirectly bound to RNA can be analyzed.
Collapse
Affiliation(s)
- Dilshad H. Khan
- Manitoba Institute of Child Health, 715 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - James R. Davie
- Manitoba Institute of Child Health, 715 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 2013; 32:2672-84. [PMID: 23974796 DOI: 10.1038/emboj.2013.188] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory genes that play critical roles in various processes ranging from normal development to human diseases such as cancer progression. Recent studies have shown that lncRNAs regulate the gene expression by chromatin remodelling, transcription, splicing and RNA decay control, enhancer function, and epigenetic regulation. However, little is known about translation regulation by lncRNAs. We identified a translational regulatory lncRNA (treRNA) through genome-wide computational analysis. We found that treRNA is upregulated in paired clinical breast cancer primary and lymph-node metastasis samples, and that its expression stimulates tumour invasion in vitro and metastasis in vivo. Interestingly, we found that treRNA downregulates the expression of the epithelial marker E-cadherin by suppressing the translation of its mRNA. We identified a novel ribonucleoprotein (RNP) complex, consisting of RNA-binding proteins (hnRNP K, FXR1, and FXR2), PUF60 and SF3B3, that is required for this treRNA functions. Translational suppression by treRNA is dependent on the 3'UTR of the E-cadherin mRNA. Taken together, our study indicates a novel mechanism of gene regulation by lncRNAs in cancer progression.
Collapse
|
5
|
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux AF, Claustres M, Tuffery-Giraud S, des Georges M. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum Mutat 2013; 34:774-84. [PMID: 23381846 DOI: 10.1002/humu.22291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 12/24/2022]
Abstract
Molecular diagnosis of cystic fibrosis and cystic fibrosis transmembrane regulator (CFTR)-related disorders led to the worldwide identification of nearly 1,900 sequence variations in the CFTR gene that consist mainly of private point mutations and small insertions/deletions. Establishing their effect on the function of the encoded protein and therefore their involvement in the disease is still challenging and directly impacts genetic counseling. In this context, we built a decision tree following the international guidelines for the classification of variants of unknown clinical significance (VUCS) in the CFTR gene specifically focused on their consequences on splicing. We applied general and specific criteria, including comprehensive review of literature and databases, familial genetics data, and thorough in silico studies. This model was tested on 15 intronic and exonic VUCS identified in our cohort. Six variants were classified as probably nonpathogenic considering their impact on splicing and eight as probably pathogenic, which include two apparent missense mutations. We assessed the validity of our method by performing minigenes studies and confirmed that 93% (14/15) were correctly classified. We provide in this study a high-performance method that can play a full role in interpreting the results of molecular diagnosis in emergency context, when functional studies are not achievable.
Collapse
Affiliation(s)
- Caroline Raynal
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. Mol Cell Biol 2012; 32:5056-66. [PMID: 23071087 DOI: 10.1128/mcb.01109-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Saccharomyces cerevisiae, the 3' splice site is not required for the first catalytic reaction of splicing. We have previously reported that at least 24 nucleotides downstream of the branch point is required for the first reaction to take place, but the precatalytic spliceosome forms efficiently on the truncated pre-mRNA with only 5 nucleotides retained downstream of the branch point. The factors that mediate this length-dependent control of the first catalytic step are not known. We show here that Prp2 can be recruited to the spliceosome without interacting with pre-mRNA when the 3' tail is short. Prp2 interacts with the intron when the 3' tail is extended, which results in destabilization of Prp2 and, consequently, progression of the first reaction. An RNA segment at 23 to 33 nucleotides downstream of the branch point is necessary and sufficient for the ATP-dependent action of Prp2. We also show that Prp2 directly interacts with the carboxyl-terminal fragment of Brr2 by pulldown assays. We propose that Prp2 is recruited to the spliceosome via interaction with Brr2 and is spatially positioned to interact with this specific region of the pre-mRNA, which stimulates the ATPase activity of Prp2 to promote the progression of the first catalytic step.
Collapse
|
7
|
Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc Natl Acad Sci U S A 2009; 106:2747-51. [PMID: 19196959 DOI: 10.1073/pnas.0812957106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. Originally, AID was postulated to be an RNA-editing enzyme, because of its structural homology with a known RNA-editing enzyme, APOBEC1. In support of this idea, AID shares many of the properties of RNA-editing enzymes, including nucleocytoplasmic shuttling and a dependency on de novo protein synthesis. However, it has not been shown whether AID recognizes a specific mRNA and edits it to generate an enzyme involved in CSR or SHM. Here, we examined the association between AID and polyadenylated [poly(A)(+)] RNA in vivo, using UV cross-linking coupled with a poly(A) capture method that relies on biotinylated oligo(dT) and streptavidin-conjugated beads. We found that both exogenous AID expressed in transfected CH12 cells and endogenous AID expressed in BL2 cells were associated with poly(A)(+) RNA. Similar protein-poly(A)(+) RNA complexes were formed by APOBEC1 and APOBEC3G. However, the interactions of all of these cytidine deaminase family members, including AID, with poly(A)(+) RNA were indirect. This was expected for APOBEC1, which is known to act through an RNA-interacting cofactor, APOBEC1 complementation factor (ACF). In addition, the carboxy-terminal region of AID, which is essential for class switching, was also required for its interaction with poly(A)(+) RNA. These results suggest that the CSR activity of AID requires an ACF-like cofactor that specifically interacts with the carboxy-terminal domain of AID.
Collapse
|