1
|
Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway. J Neurosci 2017; 37:9000-9012. [PMID: 28821645 DOI: 10.1523/jneurosci.0118-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by the expansion of a CAG triplet in the gene encoding for huntingtin (Htt). The resulting mutant protein (mHtt) with extended polyglutamine (polyQ) sequence at the N terminus leads to neuronal degeneration both in a cell-autonomous and a non-cell-autonomous manner. Recent studies identified mHtt in the extracellular environment and suggested that its spreading contributes to toxicity, but the mechanism of mHtt release from the cell of origin remains unknown. In this study, we performed a comprehensive, unbiased analysis of secretory pathways and identified an unconventional lysosomal pathway as an important mechanism for mHtt secretion in mouse neuroblastoma and striatal cell lines, as well as in primary neurons. mHtt secretion was dependent on synaptotagmin 7, a regulator of lysosomal secretion, and inhibited by chemical ablation of late endosomes/lysosomes, suggesting a lysosomal secretory pattern. mHtt was targeted preferentially to the late endosomes/lysosomes compared with wild-type Htt. Importantly, we found that late endosomal/lysosomal targeting and secretion of mHtt could be inhibited efficiently by the phosphatidylinositol 3-kinase and neutral sphingomyelinase chemical inhibitors, Ly294002 and GW4869, respectively. Together, our data suggest a lysosomal mechanism of mHtt secretion and offer potential strategies for pharmacological modulation of its neuronal secretion.SIGNIFICANCE STATEMENT This is the first study examining the mechanism of mutant huntingtin (mHTT) secretion in an unbiased manner. We found that the protein is secreted via a late endosomal/lysosomal unconventional secretory pathway. Moreover, mHtt secretion can be reduced significantly by phosphatidylinositol 3-kinase and neutral sphingomyelinase inhibitors. Understanding and manipulating the secretion of mHtt is important because of its potentially harmful propagation in the brain.
Collapse
|
2
|
Yousuf MA, Lee JS, Zhou X, Ramke M, Lee JY, Chodosh J, Rajaiya J. Protein Kinase C Signaling in Adenoviral Infection. Biochemistry 2016; 55:5938-5946. [PMID: 27700064 DOI: 10.1021/acs.biochem.6b00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of protein kinase C (PKC), a serine/threonine protein kinase, ubiquitously influences cellular signal transduction and has been shown to play a role in viral entry. In this study, we explored a role for PKC in human adenovirus type 37 infection of primary human corneal fibroblasts, a major target cell for infection. We sought evidence for an interaction between PKC activation and two potential downstream targets: cSrc kinase, shown previously to play a critical role in adenovirus signaling in these cells, and caveolin-1, reported earlier to be important to entry of adenovirus type 37. Infection of fibroblasts increased PKCα phosphorylation and translocation of PKCα from the cytosol to caveolin-1 containing vesicles. Virus-induced phosphorylation of both cSrc and AKT was abolished in cell lysates pretreated with calphostin C, a chemical inhibitor of PKC. Inhibition of PKC also reduced virus associated phosphorylation of caveolin-1, while inhibition of cSrc by the chemical inhibitor PP2 reduced only caveolin-1 phosphorylation, but not PKCα phosphorylation, in lipid rafts. These results suggest a role for PKCα upstream to both cSrc and caveolin-1. Phosphorylated PKCα was found in the same endosomal fractions as phosphorylated cSrc, and PKCα was present to a greater degree in caveolin-1 pull downs from virus infected than mock infected cell lysates. Calphostin C also reduced early viral gene expression, indicating that PKCα activity may be required for viral entry. PKCα plays a central role in adenovirus infection of corneal fibroblasts and regulation of downstream molecules, including the important lipid raft component caveolin-1.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ji Sun Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiaohong Zhou
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Mirja Ramke
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - James Chodosh
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jaya Rajaiya
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
3
|
Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 2010; 35:2110-9. [PMID: 20571483 PMCID: PMC2922423 DOI: 10.1038/npp.2010.87] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 01/01/2023]
Abstract
Several lines of evidence point to alterations of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor trafficking in schizophrenia. Multiple proteins, including synapse-associated protein 97 (SAP97), glutamate receptor-interacting protein 1 (GRIP1), and N-ethylmaleimide sensitive factor (NSF), facilitate the forward trafficking of AMPA receptors toward the synapse. Once localized to the synapse, AMPA receptors are trafficked in a complex endosomal system. We hypothesized that alterations in the expression of these proteins and alterations in the subcellular localization of AMPA receptors in endosomes may contribute to the pathophysiology of schizophrenia. Accordingly, we measured protein expression of SAP97, GRIP1, and NSF in the dorsolateral prefrontal cortex and found an increase in the expression of SAP97 and GRIP1 in schizophrenia. To determine the subcellular localization of AMPA receptor subunits, we developed a technique to isolate early endosomes from post-mortem tissue. We found increased GluR1 receptor subunit protein in early endosomes in subjects with schizophrenia. Together, these data suggest that there is an alteration of forward trafficking of AMPA receptors as well as changes in the subcellular localization of an AMPA receptor subunit in schizophrenia.
Collapse
Affiliation(s)
- John C Hammond
- Department of Neurobiology, University of Alabama Birmingham, 35294-0021, USA.
| | | | | | | | | |
Collapse
|