1
|
Alfonso C, Sobrinos-Sanguino M, Luque-Ortega JR, Zorrilla S, Monterroso B, Nuero OM, Rivas G. Studying Macromolecular Interactions of Cellular Machines by the Combined Use of Analytical Ultracentrifugation, Light Scattering, and Fluorescence Spectroscopy Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:89-107. [PMID: 38507202 DOI: 10.1007/978-3-031-52193-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Carlos Alfonso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Monterroso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
2
|
Ma J, Metrick M, Ghirlando R, Zhao H, Schuck P. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium. Biophys J 2016; 109:827-37. [PMID: 26287634 DOI: 10.1016/j.bpj.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022] Open
Abstract
Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments.
Collapse
Affiliation(s)
- Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Michael Metrick
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A 2016; 113:E1006-15. [PMID: 26869717 DOI: 10.1073/pnas.1519894113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Collapse
|
4
|
Froelich CA, Nourse A, Enemark EJ. MCM ring hexamerization is a prerequisite for DNA-binding. Nucleic Acids Res 2015; 43:9553-63. [PMID: 26365238 PMCID: PMC4627082 DOI: 10.1093/nar/gkv914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings by showing that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.
Collapse
Affiliation(s)
- Clifford A Froelich
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Amanda Nourse
- Molecular Interaction Analysis Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Feldmann EA, De Bona P, Galletto R. The wrapping loop and Rap1 C-terminal (RCT) domain of yeast Rap1 modulate access to different DNA binding modes. J Biol Chem 2015; 290:11455-66. [PMID: 25805496 DOI: 10.1074/jbc.m115.637678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
Budding yeast Rap1 is a specific double-stranded DNA-binding protein involved in repression and activation of gene transcription and in the establishment of the nucleoprotein complex formed at telomeres. The DNA-binding domain (DBD) of Rap1 forms a high affinity complex with DNA where both Myb-like domains bind to the recognition site. However, we recently showed that the DBD can also access an alternative, lower affinity DNA-binding mode where a single Myb-like domain binds. This results in Rap1-DNA complexes with stoichiometry higher than previously anticipated. In this work, we show that the ability of the DBD to form higher stoichiometry complexes on DNA is maintained also in larger Rap1 constructs. This indicates that transition between at least two DNA-binding modes is a general property of the protein and not a specific feature of the DBD in isolation. The transition between binding modes is modulated by the C-terminal wrapping loop within the DBD, consistent with the proposed model in which the transient opening of this region allows a switch between binding modes. Finally, we provide evidence that the Rap1 C terminus interacts with the DNA-binding domain, suggesting a complex network of interactions that couples changes in conformation of the protein to the binding of its DNA recognition sequence.
Collapse
Affiliation(s)
- Erik A Feldmann
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Paolo De Bona
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Roberto Galletto
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
6
|
Feldmann EA, Galletto R. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes. Biochemistry 2014; 53:7471-83. [PMID: 25382181 PMCID: PMC4263426 DOI: 10.1021/bi501049b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Saccharomyces cerevisiae repressor-activator protein
1 (Rap1) is an essential protein involved in multiple steps of DNA
regulation, as an activator in transcription, as a repressor at silencer
elements, and as a major component of the shelterin-like complex at
telomeres. All the known functions of Rap1 require the known high-affinity
and specific interaction of the DNA-binding domain with its recognition
sequences. In this work, we focus on the interaction of the DNA-binding
domain of Rap1 (Rap1DBD) with double-stranded DNA substrates.
Unexpectedly, we found that while Rap1DBD forms a high-affinity
1:1 complex with its DNA recognition site, it can also form lower-affinity
complexes with higher stoichiometries on DNA. These lower-affinity
interactions are independent of the presence of the recognition sequence,
and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity
binding mode, Rap1DBD likely binds in the conformation
observed in the available crystal structures. In the other alternative
lower-affinity binding mode, we propose that a single Myb-like domain
of the Rap1DBD makes interactions with DNA, allowing for
more than one protein molecule to bind to the DNA substrates. Our
findings suggest that the Rap1DBD does not simply target
the protein to its recognition sequence but rather it might be a possible
point of regulation.
Collapse
Affiliation(s)
- Erik A Feldmann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
7
|
Chao KL, Gorlatova NV, Eisenstein E, Herzberg O. Structural basis for the binding specificity of human Recepteur d'Origine Nantais (RON) receptor tyrosine kinase to macrophage-stimulating protein. J Biol Chem 2014; 289:29948-60. [PMID: 25193665 DOI: 10.1074/jbc.m114.594341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recepteur d'origine nantais (RON) receptor tyrosine kinase and its ligand, serum macrophage-stimulating protein (MSP), play important roles in inflammation, cell growth, migration, and epithelial to mesenchymal transition during tumor development. The binding of mature MSPαβ (disulfide-linked α- and β-chains) to RON ectodomain modulates receptor dimerization, followed by autophosphorylation of tyrosines in the cytoplasmic receptor kinase domains. Receptor recognition is mediated by binding of MSP β-chain (MSPβ) to the RON Sema. Here we report the structure of RON Sema-PSI-IPT1 (SPI1) domains in complex with MSPβ at 3.0 Å resolution. The MSPβ serine protease-like β-barrel uses the degenerate serine protease active site to recognize blades 2, 3, and 4 of the β-propeller fold of RON Sema. Despite the sequence homology between RON and MET receptor tyrosine kinase and between MSP and hepatocyte growth factor, it is well established that there is no cross-reactivity between the two receptor-ligand systems. Comparison of the structure of RON SPI1 in complex with MSPβ and that of MET receptor tyrosine kinase Sema-PSI in complex with hepatocyte growth factor β-chain reveals the receptor-ligand selectivity determinants. Analytical ultracentrifugation studies of the SPI1-MSPβ interaction confirm the formation of a 1:1 complex. SPI1 and MSPαβ also associate primarily as a 1:1 complex with a binding affinity similar to that of SPI1-MSPβ. In addition, the SPI1-MSPαβ ultracentrifuge studies reveal a low abundance 2:2 complex with ∼ 10-fold lower binding affinity compared with the 1:1 species. These results support the hypothesis that the α-chain of MSPαβ mediates RON dimerization.
Collapse
Affiliation(s)
- Kinlin L Chao
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 and
| | - Natalia V Gorlatova
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 and
| | - Edward Eisenstein
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 and the Fischell Department of Bioengineering and
| | - Osnat Herzberg
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850 and the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
8
|
Vanarotti MS, Miller DJ, Guibao CD, Nourse A, Zheng JJ. Structural and mechanistic insights into the interaction between Pyk2 and paxillin LD motifs. J Mol Biol 2014; 426:3985-4001. [PMID: 25174335 DOI: 10.1016/j.jmb.2014.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) subfamily of cytoplasmic tyrosine kinases. The C-terminal Pyk2-focal adhesion targeting (FAT) domain binds to paxillin, an adhesion molecule. Paxillin has five leucine-aspartate (LD) motifs (LD1-LD5). Here, we show that the second LD motif of paxillin, LD2, interacts with Pyk2-FAT, similar to the known Pyk2-FAT/LD4 interaction. Both LD motifs can target two ligand binding sites on Pyk2-FAT. Interestingly, they also share similar binding affinity for Pyk2-FAT with preferential association to one site relative to the other. Nevertheless, the LD2-LD4 region of paxillin (paxillin(133-290)) binds to Pyk2-FAT as a 1:1 complex. However, our data suggest that the Pyk2-FAT and paxillin complex is dynamic and it appears to be a mixture of two distinct conformations of paxillin that almost equally compete for Pyk2-FAT binding. These studies provide insight into the underlying selectivity of paxillin for Pyk2 and FAK that may influence the differing behavior of these two closely related kinases in focal adhesion sites.
Collapse
Affiliation(s)
- Murugendra S Vanarotti
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amanda Nourse
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Zhao H, Chen Y, Rezabkova L, Wu Z, Wistow G, Schuck P. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins. Protein Sci 2013; 23:88-99. [PMID: 24282025 DOI: 10.1002/pro.2394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022]
Abstract
Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B₁ could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland, 20892
| | | | | | | | | | | |
Collapse
|
10
|
Wallen JR, Majka J, Ellenberger T. Discrete interactions between bacteriophage T7 primase-helicase and DNA polymerase drive the formation of a priming complex containing two copies of DNA polymerase. Biochemistry 2013; 52:4026-36. [PMID: 23675753 DOI: 10.1021/bi400284j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.
Collapse
Affiliation(s)
- Jamie R Wallen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
11
|
Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR. BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 2013; 20:589-97. [PMID: 23604079 PMCID: PMC3683554 DOI: 10.1038/nsmb.2563] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
The BCL-2 family protein BAK is responsible for mitochondrial outer membrane permeabilization (MOMP), which leads to apoptosis. The BCL-2 homology (BH) 3-only protein BID activates BAK to perform this function. We report the NMR solution structure of the human BID BH3–BAK complex, which identified the activation site at the canonical BH3-binding groove of BAK. Mutating the BAK BH1 in the groove prevented activation and MOMP but not the binding of BID. BAK BH3 mutations allowed BID binding and activation but blunted function by blocking BAK oligomerization. BAK activation follows a “hit-and-run” mechanism whereby BID dissociates from the trigger site allowing BAK oligomerization at an overlapping interface. In contrast, the BH3-only proteins NOXA and BAD are predicted to clash with the trigger site, and are not activators of BAK. These findings provide insights into the early stages of BAK activation.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pedersen JT, Heegaard NHH. Analysis of Protein Aggregation in Neurodegenerative Disease. Anal Chem 2013; 85:4215-27. [DOI: 10.1021/ac400023c] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeppe T. Pedersen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen
Ø, Denmark
| | - Niels H. H. Heegaard
- Analytical Protein Chemistry, Department of Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
13
|
Abstract
The last two decades have led to significant progress in the field of analytical ultracentrifugation driven by instrumental, theoretical, and computational methods. This review will highlight key developments in sedimentation equilibrium (SE) and sedimentation velocity (SV) analysis. For SE, this includes the analysis of tracer sedimentation equilibrium at high concentrations with strong thermodynamic non-ideality, and for ideally interacting systems the development of strategies for the analysis of heterogeneous interactions towards global multi-signal and multi-speed SE analysis with implicit mass conservation. For SV, this includes the development and applications of numerical solutions of the Lamm equation, noise decomposition techniques enabling direct boundary fitting, diffusion deconvoluted sedimentation coefficient distributions, and multi-signal sedimentation coefficient distributions. Recently, effective particle theory has uncovered simple physical rules for the co-migration of rapidly exchanging systems of interacting components in SV. This has opened new possibilities for the robust interpretation of the boundary patterns of heterogeneous interacting systems. Together, these SE and SV techniques have led to new approaches to study macromolecular interactions across the entire the spectrum of affinities, including both attractive and repulsive interactions, in both dilute and highly concentrated solutions, which can be applied to single-component solutions of self-associating proteins as well as the study of multi-protein complex formation in multi-component solutions.
Collapse
Affiliation(s)
- Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
14
|
Inagaki S, Ghirlando R, Grisshammer R. Biophysical characterization of membrane proteins in nanodiscs. Methods 2013; 59:287-300. [PMID: 23219517 PMCID: PMC3608844 DOI: 10.1016/j.ymeth.2012.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 12/25/2022] Open
Abstract
Nanodiscs are self-assembled discoidal phospholipid bilayers surrounded and stabilized by membrane scaffold proteins (MSPs), that have become a powerful and promising tool for the study of membrane proteins. Even though their reconstitution is highly regulated by the type of MSP and phospholipid input, a biophysical characterization leading to the determination of the stoichiometry of MSP, lipid and membrane protein is essential. This is important for biological studies, as the oligomeric state of membrane proteins often correlates with their functional activity. Typically combinations of several methods are applied using, for example, modified samples that incorporate fluorescent labels, along with procedures that result in nanodisc disassembly and lipid dissolution. To obtain a comprehensive understanding of the native properties of nanodiscs, modification-free analysis methods are required. In this work we provide a strategy, using a combination of dynamic light scattering and analytical ultracentrifugation, for the biophysical characterization of unmodified nanodiscs. In this manner we characterize the nanodisc preparation in terms of its overall polydispersity and characterize the hydrodynamically resolved nanodisc of interest in terms of its sedimentation coefficient, Stokes' radius and overall protein and lipid stoichiometry. Functional and biological applications are also discussed for the study of the membrane protein embedded in nanodiscs under defined experimental conditions.
Collapse
Affiliation(s)
- Sayaka Inagaki
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, 5625 Fishers Lane, Room 4S12, Rockville, Maryland 20852, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 5, Room 208, 5 Memorial Drive, Bethesda, Maryland, 20814, USA
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, 5625 Fishers Lane, Room 4S12, Rockville, Maryland 20852, USA
| |
Collapse
|
15
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
16
|
Zhao H, Brautigam CA, Ghirlando R, Schuck P. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; Chapter 20:Unit20.12. [PMID: 23377850 PMCID: PMC3652391 DOI: 10.1002/0471140864.ps2012s71] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in sedimentation velocity (SV) size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of analytical ultracentrifugation (AUC), such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multisignal modeling and mass conservation approaches in SV and sedimentation equilibrium (SE), in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multiprotein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current unit is to describe the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
17
|
PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013; 9:163-8. [PMID: 23340338 PMCID: PMC3683295 DOI: 10.1038/nchembio.1166] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/14/2012] [Indexed: 02/01/2023]
Abstract
Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the anti-apoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique amongst BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules, BAX and BAK. Structural investigations using nuclear magnetic resonance spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the anti-apoptotic BCL-2 repertoire to sensitize for death receptor (DR)-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.
Collapse
|
18
|
Polling S, Hatters DM, Mok YF. Size analysis of polyglutamine protein aggregates using fluorescence detection in an analytical ultracentrifuge. Methods Mol Biol 2013; 1017:59-71. [PMID: 23719907 DOI: 10.1007/978-1-62703-438-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Defining the aggregation process of proteins formed by poly-amino acid repeats in cells remains a challenging task due to a lack of robust techniques for their isolation and quantitation. Sedimentation velocity methodology using fluorescence detected analytical ultracentrifugation is one approach that can offer significant insight into aggregation formation and kinetics. While this technique has traditionally been used with purified proteins, it is now possible for substantial information to be collected with studies using cell lysates expressing a GFP-tagged protein of interest. In this chapter, we describe protocols for sample preparation and setting up the fluorescence detection system in an analytical ultracentrifuge to perform sedimentation velocity experiments on cell lysates containing aggregates formed by poly-amino acid repeat proteins.
Collapse
Affiliation(s)
- Saskia Polling
- Department of Biochemistry and Molecular Biology, Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
19
|
Zhao H, Schuck P. Global multi-method analysis of affinities and cooperativity in complex systems of macromolecular interactions. Anal Chem 2012; 84:9513-9. [PMID: 23020071 PMCID: PMC3491091 DOI: 10.1021/ac302357w] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cooperativity, multisite, and multicomponent interactions are hallmarks of biological systems of interacting macromolecules. Their thermodynamic characterization is often very challenging due to the notoriously low information content of binding isotherms. We introduce a strategy for the global multimethod analysis of data from multiple techniques (GMMA) that exploits enhanced information content emerging from the mutual constraints of the simultaneous modeling of orthogonal observables from calorimetric, spectroscopic, hydrodynamic, biosensing, or other thermodynamic binding experiments. We describe new approaches to address statistical problems that arise in the analysis of dissimilar data sets. The GMMA approach can significantly increase the complexity of interacting systems that can be accurately thermodynamically characterized.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E, Laue TM, Patterson GH, Mayer ML, Schuck P. Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. J Gen Physiol 2012; 139:371-88. [PMID: 22508847 PMCID: PMC3343374 DOI: 10.1085/jgp.201210770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023] Open
Abstract
Analytical ultracentrifugation (AUC) and steady-state fluorescence anisotropy were used to measure the equilibrium dissociation constant (Kd) for formation of dimers by the amino-terminal domains (ATDs) of the GluA2 and GluA3 subtypes of AMPA receptor. Previous reports on GluA2 dimerization differed in their estimate of the monomer-dimer Kd by a 2,400-fold range, with no consensus on whether the ATD forms tetramers in solution. We find by sedimentation velocity (SV) analysis performed using absorbance detection a narrow range of monomer-dimer Kd values for GluA2, from 5 to 11 nM for six independent experiments, with no detectable formation of tetramers and no effect of glycosylation or the polypeptide linker connecting the ATD and ligand-binding domains; for GluA3, the monomer-dimer Kd was 5.6 µM, again with no detectable tetramer formation. For sedimentation equilibrium (SE) experiments, a wide range of Kd values was obtained for GluA2, from 13 to 284 nM, whereas for GluA3, the Kd of 3.1 µM was less than twofold different from the SV value. Analysis of cell contents after the ∼1-week centrifuge run by silver-stained gels revealed low molecular weight GluA2 breakdown products. Simulated data for SE runs demonstrate that the apparent Kd for GluA2 varies with the extent of proteolysis, leading to artificially high Kd values. SV experiments with fluorescence detection for GluA2 labeled with 5,6-carboxyfluorescein, and fluorescence anisotropy measurements for GluA2 labeled with DyLight405, yielded Kd values of 5 and 11 nM, consistent with those from SV with absorbance detection. However, the sedimentation coefficients measured by AUC using absorbance and fluorescence systems were strikingly different, and for the latter are not consistent with hydrodynamic protein models. Thus, for unknown reasons, the concentration dependence of sedimentation coefficients obtained with fluorescence detection SV may be unreliable, limiting the usefulness of this technique for quantitative analysis.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Anthony J. Berger
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Patrick H. Brown
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Janesh Kumar
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Andrea Balbo
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - Ernesto Casillas
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - George H. Patterson
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Mark L. Mayer
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| |
Collapse
|
21
|
Doran J, Mohanty A, Fox T. Resolving the Challenge of Measuring Ligand Binding to Membrane Proteins by Combining Analytical Ultracentrifugation and Light Scattering Photometry. J Pharm Sci 2012; 101:92-101. [DOI: 10.1002/jps.22755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/22/2011] [Accepted: 08/19/2011] [Indexed: 11/06/2022]
|
22
|
Malaria vaccine candidate: design of a multivalent subunit α-helical coiled coil poly-epitope. Vaccine 2011; 29:7090-9. [PMID: 21803099 DOI: 10.1016/j.vaccine.2011.06.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 11/22/2022]
Abstract
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Collapse
|
23
|
Abstract
Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a novel phase as far as NMR is concerned. NMR of transiently sedimented molecules under fast magic angle spinning has the advantage of overcoming protein size limitations of solution NMR without the need of sample crystallization/precipitation required by solid-state NMR.
Collapse
|
24
|
Histidine-tag-directed chromophores for tracer analyses in the analytical ultracentrifuge. Methods 2010; 54:31-8. [PMID: 21187151 DOI: 10.1016/j.ymeth.2010.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022] Open
Abstract
Many recombinant proteins carry an oligohistidine (His(X))-tag that allows their purification by immobilized metal affinity chromatography (IMAC). This tag can be exploited for the site-specific attachment of chromophores and fluorophores, using the same metal ion-nitrilotriacetic acid (NTA) coordination chemistry that forms the basis of popular versions of IMAC. Labeling proteins in this way can allow their detection at wavelengths outside of the absorption envelopes of un-modified proteins and nucleic acids. Here we describe use of this technology in tracer sedimentation experiments that can be performed in a standard analytical ultracentrifuge equipped with absorbance or fluorescence optics. Examples include sedimentation velocity in the presence of low molecular weight chromophoric solutes, sedimentation equilibrium in the presence of high concentrations of background protein and selective labeling to simplify the assignment of species in a complex interacting mixture.
Collapse
|
25
|
Ghirlando R. The analysis of macromolecular interactions by sedimentation equilibrium. Methods 2010; 54:145-56. [PMID: 21167941 DOI: 10.1016/j.ymeth.2010.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/27/2010] [Accepted: 12/03/2010] [Indexed: 11/29/2022] Open
Abstract
The study of macromolecular interactions by sedimentation equilibrium is a highly technical method that requires great care in both the experimental design and data analysis. The complexity of the interacting system that can be analyzed is only limited by the ability to deconvolute the exponential contributions of each of the species to the overall concentration gradient. This is achieved in part through the use of multi-signal data collection and the implementation of soft mass conservation. We illustrate the use of these constraints in SEDPHAT through the study of an A+B+B⇌AB+B⇌ABB system and highlight some of the technical challenges that arise. We show that both the multi-signal analysis and mass conservation result in a precise and robust data analysis and discuss improvements that can be obtained through the inclusion of data from other methods such as sedimentation velocity and isothermal titration calorimetry.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA.
| |
Collapse
|
26
|
Pemble CW, Mehta PK, Mehra S, Li Z, Nourse A, Lee RE, White SW. Crystal structure of the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase•dihydropteroate synthase bifunctional enzyme from Francisella tularensis. PLoS One 2010; 5:e14165. [PMID: 21152407 PMCID: PMC2994781 DOI: 10.1371/journal.pone.0014165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022] Open
Abstract
The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) enzymes catalyze sequential metabolic reactions in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes represent validated targets for the development of novel anti-microbial therapies. We report herein that the genes which encode FtHPPK and FtDHPS from the biowarfare agent Francisella tularensis are fused into a single polypeptide. The potential of simultaneously targeting both modules with pterin binding inhibitors prompted us to characterize the molecular details of the multifunctional complex. Our high resolution crystallographic analyses reveal the structural organization between FtHPPK and FtDHPS which are tethered together by a short linker. Additional structural analyses of substrate complexes reveal that the active sites of each module are virtually indistinguishable from those of the monofunctional enzymes. The fused bifunctional enzyme therefore represents an excellent vehicle for finding inhibitors that engage the pterin binding pockets of both modules that have entirely different architectures. To demonstrate that this approach has the potential of producing novel two-hit inhibitors of the folate pathway, we identify and structurally characterize a fragment-like molecule that simultaneously engages both active sites. Our study provides a molecular framework to study the enzyme mechanisms of HPPK and DHPS, and to design novel and much needed therapeutic compounds to treat infectious diseases.
Collapse
Affiliation(s)
- Charles W. Pemble
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Perdeep K. Mehta
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Smriti Mehra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Amanda Nourse
- The Hartwell Center, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard E. Lee
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (SWW); (REL)
| | - Stephen W. White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (SWW); (REL)
| |
Collapse
|
27
|
Aguilar-Yáñez JM, Portillo-Lara R, Mendoza-Ochoa GI, García-Echauri SA, López-Pacheco F, Bulnes-Abundis D, Salgado-Gallegos J, Lara-Mayorga IM, Webb-Vargas Y, León-Angel FO, Rivero-Aranda RE, Oropeza-Almazán Y, Ruiz-Palacios GM, Zertuche-Guerra MI, DuBois RM, White SW, Schultz-Cherry S, Russell CJ, Alvarez MM. An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS One 2010; 5:e11694. [PMID: 20661476 PMCID: PMC2908544 DOI: 10.1371/journal.pone.0011694] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/09/2010] [Indexed: 11/28/2022] Open
Abstract
Background The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy. Methodology/Principal Findings We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model. Conclusions/Significance Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy.
Collapse
Affiliation(s)
- José M. Aguilar-Yáñez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | - Roberto Portillo-Lara
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | | | | | - Felipe López-Pacheco
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | - David Bulnes-Abundis
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | | | - Itzel M. Lara-Mayorga
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | - Yenny Webb-Vargas
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | - Felipe O. León-Angel
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
| | | | | | | | | | - Rebecca M. DuBois
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen W. White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Mario M. Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México
- * E-mail:
| |
Collapse
|
28
|
Zhi L, Mans J, Paskow MJ, Brown PH, Schuck P, Jonjić S, Natarajan K, Margulies DH. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms. Biochemistry 2010; 49:2443-53. [PMID: 20166740 DOI: 10.1021/bi902130j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytomegaloviruses (CMVs) are ubiquitous species-specific viruses that establish acute, persistent, and latent infections. Both human and mouse CMVs encode proteins that inhibit the activation of natural killer (NK) cells by downregulating cellular ligands for the NK cell activating receptor, NKG2D. The MCMV glycoprotein m152/gp40 downregulates the surface expression of RAE-1 to prevent NK cell control in vivo. So far, it is unclear if there is a direct interaction between m152 and RAE-1 and, if so, if m152 interacts differentially with the five identified RAE-1 isoforms, which are expressed as two groups in MCMV-susceptible or -resistant mouse strains. To address these questions, we expressed and purified the extracellular domains of RAE-1 and m152 and performed size exclusion chromatography binding assays as well as analytical ultracentrifugation and isothermal titration calorimetry to characterize these interactions quantitatively. We further evaluated the role of full-length and naturally glycosylated m152 and RAE-1 in cotransfected HEK293T cells. Our results confirmed that m152 binds RAE-1 directly, relatively tightly (K(d) < 5 microM), and with 1:1 stoichiometry. The binding is quantitatively different depending on particular RAE-1 isoforms, corresponding to the susceptibility to downregulation by m152. A PLWY motif found in RAE-1beta, although contributing to its affinity for m152, does not influence the affinity of RAE-1gamma or RAE-1delta, suggesting that other differences contribute to the RAE-1-m152 interaction. Molecular modeling of the different RAE-1 isoforms suggests a potential site for the m152 interaction.
Collapse
Affiliation(s)
- Li Zhi
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J, Vendome J, Ahlsen G, Carroll KJ, Price SR, Honig B, Shapiro L. Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 2010; 17:348-57. [PMID: 20190754 DOI: 10.1038/nsmb.1784] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 02/02/2010] [Indexed: 11/09/2022]
Abstract
Crystal structures of classical cadherins have revealed two dimeric configurations. In the first, N-terminal beta-strands of EC1 domains 'swap' between partner molecules. The second configuration (the 'X dimer'), also observed for T-cadherin, is mediated by residues near the EC1-EC2 calcium binding sites, and N-terminal beta-strands of partner EC1 domains, though held adjacent, do not swap. Here we show that strand-swapping mutants of type I and II classical cadherins form X dimers. Mutant cadherins impaired for X-dimer formation show no binding in short-time frame surface plasmon resonance assays, but in long-time frame experiments, they have homophilic binding affinities close to that of wild type. Further experiments show that exchange between monomers and dimers is slowed in these mutants. These results reconcile apparently disparate results from prior structural studies and suggest that X dimers are binding intermediates that facilitate the formation of strand-swapped dimers.
Collapse
Affiliation(s)
- Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Balbo A, Zhao H, Brown PH, Schuck P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. J Vis Exp 2009:1530. [PMID: 19893484 PMCID: PMC3157848 DOI: 10.3791/1530] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The analytical ultracentrifuge (AUC) is a powerful biophysical tool that allows us to record macromolecular sedimentation profiles during high speed centrifugation. When properly planned and executed, an AUC sedimentation velocity or sedimentation equilibrium experiment can reveal a great deal about a protein in regards to size and shape, sample purity, sedimentation coefficient, oligomerization states and protein-protein interactions. This technique, however, requires a rigorous level of technical attention. Sample cells hold a sectored center piece sandwiched between two window assemblies. They are sealed with a torque pressure of around 120-140 in/lbs. Reference buffer and sample are loaded into the centerpiece sectors and then after sealing, the cells are precisely aligned into a titanium rotor so that the optical detection systems scan both sample and reference buffer in the same radial path midline through each centerpiece sector while rotating at speeds of up to 60, 000 rpm and under very high vacuum Not only is proper sample cell assembly critical, sample cell components are very expensive and must be properly cared for to ensure they are in optimum working condition in order to avoid leaks and breakage during experiments. Handle windows carefully, for even the slightest crack or scratch can lead to breakage in the centrifuge. The contact between centerpiece and windows must be as tight as possible; i.e. no Newton s rings should be visible after torque pressure is applied. Dust, lint, scratches and oils on either the windows or the centerpiece all compromise this contact and can very easily lead to leaking of solutions from one sector to another or leaking out of the centerpiece all together. Not only are precious samples lost, leaking of solutions during an experiment will cause an imbalance of pressure in the cell that often leads to broken windows and centerpieces. In addition, plug gaskets and housing plugs must be securely in place to avoid solutions being pulled out of the centerpiece sector through the loading holes by the high vacuum in the centrifuge chamber. Window liners and gaskets must be free of breaks and cracks that could cause movement resulting in broken windows. This video will demonstrate our procedures of sample cell assembly, torque, loading and rotor alignment to help minimize component damage, solution leaking and breakage during the perfect AUC experiment.
Collapse
Affiliation(s)
- Andrea Balbo
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Dynamics of Macromolecular Assembly, Laboratory of Bioengineering and Physical Science, USA.
| | | | | | | |
Collapse
|
31
|
Kumar J, Schuck P, Jin R, Mayer ML. The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nat Struct Mol Biol 2009; 16:631-8. [PMID: 19465914 PMCID: PMC2729365 DOI: 10.1038/nsmb.1613] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/30/2009] [Indexed: 01/07/2023]
Abstract
The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs. This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|