1
|
Morales-González JA, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega MDC, Álvarez-González I, Morales-González Á, Madrigal-Santillán E. Garlic ( Allium sativum L.): A Brief Review of Its Antigenotoxic Effects. Foods 2019; 8:foods8080343. [PMID: 31412555 PMCID: PMC6722787 DOI: 10.3390/foods8080343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional Medicine/Complementary and Alternative Medicine is a practice that incorporates medicine based on plants, animals, and minerals for diagnosing, treating, and preventing certain diseases, including chronic degenerative diseases such as obesity, diabetes, hypertension, atherosclerosis, and cancer. Different factors generate its continued acceptance, highlighting its diversity, easy access, low cost, and the presence of relatively few adverse effects and, importantly, a high possibility of discovering antigenotoxic agents. In this regard, it is known that the use of different antigenotoxic agents is an efficient alternative to preventing human cancer and that, in general, these can act by means of a combination of various mechanisms of action and against one or various mutagens and/or carcinogens. Therefore, it is relevant to confirm its usefulness, efficacy, and its spectrum of action through different assays. With this in mind, the present manuscript has as its objective the compilation of different investigations carried out with garlic that have demonstrated its genoprotective capacity, and that have been evaluated by means of five of the most outstanding tests (Ames test, sister chromatid exchange, chromosomal aberrations, micronucleus, and comet assay). Thus, we intend to provide information and bibliographic support to investigators in order for them to broaden their studies on the antigenotoxic spectrum of action of this perennial plant.
Collapse
Affiliation(s)
- José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas", Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - María Del Carmen Valadez-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Juan de Dios Bátiz. Col., Lindavista, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas", Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|
2
|
Dungrawala H, Bhat KP, Le Meur R, Chazin WJ, Ding X, Sharan SK, Wessel SR, Sathe AA, Zhao R, Cortez D. RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks. Mol Cell 2017; 67:374-386.e5. [PMID: 28735897 PMCID: PMC5548441 DOI: 10.1016/j.molcel.2017.06.023] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023]
Abstract
RAD51 promotes homology-directed repair (HDR), replication fork reversal, and stalled fork protection. Defects in these functions cause genomic instability and tumorigenesis but also generate hypersensitivity to cancer therapeutics. Here we describe the identification of RADX as an RPA-like, single-strand DNA binding protein. RADX is recruited to replication forks, where it prevents fork collapse by regulating RAD51. When RADX is inactivated, excessive RAD51 activity slows replication elongation and causes double-strand breaks. In cancer cells lacking BRCA2, RADX deletion restores fork protection without restoring HDR. Furthermore, RADX inactivation confers chemotherapy and PARP inhibitor resistance to cancer cells with reduced BRCA2/RAD51 pathway function. By antagonizing RAD51 at forks, RADX allows cells to maintain a high capacity for HDR while ensuring that replication functions of RAD51 are properly regulated. Thus, RADX is essential to achieve the proper balance of RAD51 activity to maintain genome stability.
Collapse
Affiliation(s)
- Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kamakoti P Bhat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rémy Le Meur
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aditya A Sathe
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
3
|
Abstract
Chromosome analysis is one of the first approaches to genetic testing and remains a key component of genetic analysis of constitutional and somatic genetic disorders. Numerical or unbalanced structural chromosome abnormalities usually lead to multiple congenital anomalies. Sometimes these are compatible with live birth, usually resulting in severe cognitive and physical handicaps; other times they result in miscarriage or stillbirth. Chromosome rearrangements also occur as somatic changes in malignancies. Identification of constitutional chromosomal anomalies (anomalies present in most or all cells of the body and/or the germline) can provide important information for genetic counseling. In this unit, we introduce chromosomal microarray analysis (CMA), which is a relatively recent addition to cytogenetic technologies, and has become the recommended first-tier testing method for patients with developmental delay, intellectual disability, autism, and/or multiple congenital anomalies. We also discuss non-invasive prenatal testing/screening (NIPTS), which uses circulating cell-free fetal DNA (cfDNA) from maternal plasma to rapidly screen for autosomal and sex-chromosome aneuploidies. Cytogenetic analysis of tumors is helpful in diagnosis and in monitoring the effects of treatment. The protocols in this chapter cover the clinical study of chromosomes in nonmalignant tissues.
Collapse
Affiliation(s)
- Patrick R Gonzales
- Cytogenetics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew J Carroll
- Cytogenetics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Wójcik E, Andraszek K, Smalec E, Knaga S, Witkowski A. Identification of chromosome instability in Japanese quail (Coturnix japonica). Br Poult Sci 2014; 55:435-41. [PMID: 24898539 DOI: 10.1080/00071668.2014.929637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. A study of the incidence of chromosome instability in the Japanese quail as assessed by sister chromatid exchange (SCE) and fragile site identification in chromosomes was conducted in two parent breeds and their F1 and F2 generations. 2. The mean incidence of SCEs was 6.02 ± 0.45 and the frequency of fragile sites was 1.17 ± 0.79. 3. There were moderately negative correlations of 0.51-0.64 between chromosome instability and fertility in the F1 and 0.10-0.23 in the F2. The hatch of fertilised eggs was negatively correlated with the number of SCE in male (0.31) and female (0.33) F1 and was lower in P (0.18 and 0.19, respectively), whereas the correlations were similar for the number of fragile sites in both generations (0.51-0.62).
Collapse
Affiliation(s)
- E Wójcik
- a Department of Animal Genetics and Horse Breeding , Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | | | | | | | | |
Collapse
|
5
|
Juhasz S, Balogh D, Hajdu I, Burkovics P, Villamil MA, Zhuang Z, Haracska L. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res 2012; 40:10795-808. [PMID: 22987070 PMCID: PMC3510514 DOI: 10.1093/nar/gks850] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork
collapse, increased mutagenesis and genomic instability. Replication through DNA lesions
depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA),
which enable translesion synthesis (TLS) and template switching, respectively. A proper
replication fork rescue is ensured by the dynamic ubiquitylation and deubiquitylation of
PCNA; however, as yet, little is known about its regulation. Here, we show that human
Spartan/C1orf124 protein provides a higher cellular level of ubiquitylated-PCNA by which
it regulates the choice of DNA damage tolerance pathways. We find that Spartan is
recruited to sites of replication stress, a process that depends on its PCNA- and
ubiquitin-interacting domains and the RAD18 PCNA ubiquitin ligase. Preferential
association of Spartan with ubiquitin-modified PCNA protects against PCNA deubiquitylation
by ubiquitin-specific protease 1 and facilitates the access of a TLS polymerase to the
replication fork. In concert, depletion of Spartan leads to increased sensitivity to DNA
damaging agents and causes elevated levels of sister chromatid exchanges. We propose that
Spartan promotes genomic stability by regulating the choice of rescue of stalled
replication fork, whose mechanism includes its interaction with ubiquitin-conjugated PCNA
and protection against PCNA deubiquitylation.
Collapse
Affiliation(s)
- Szilvia Juhasz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
6
|
Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009; 16:475-86. [PMID: 19962666 PMCID: PMC2842992 DOI: 10.1016/j.ccr.2009.10.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 10/16/2009] [Indexed: 12/22/2022]
Abstract
Genetic alterations that promote chromosome missegregation have been proposed to drive tumorigenesis through loss of whole chromosomes containing key tumor suppressor genes. To test this unproven idea, we bred Bub1 mutant mice that inaccurately segregate their chromosomes onto p53(+/-), Apc(Min/+), Rb(+/-), or Pten(+/-) backgrounds. Bub1 insufficiency predisposed p53(+/-) mice to thymic lymphomas and Apc(Min/+) mice to colonic tumors. These tumors consistently lacked the nonmutated tumor suppressor allele but had gained a copy of the mutant allele. In contrast, Bub1 insufficiency had no impact on tumorigenesis in Rb(+/-) mice and inhibited prostatic intraepithelial neoplasia formation in Pten(+/-) mice. Thus, Bub1 insufficiency can drive tumor formation through tumor suppressor gene loss of heterozygosity, but only in restricted genetic and cellular contexts.
Collapse
Affiliation(s)
- Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Fang Jin
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Molecular Biology and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
- Address correspondence to Jan van Deursen Mayo Clinic, 200 First Street SW, Rochester, MN 55905 Tel: 507-284-2524
| |
Collapse
|
7
|
Ergun S, Warnakulasuriya S, Duman N, Saruhanoğlu A, Sevinç B, Öztürk, Özel S, Çefle K, Palanduz, Tanyeri H. Micronuclear and sister chromatid exchange analyses in peripheral lymphocytes of patients with oral lichen planus - a pilot study. Oral Dis 2009; 15:499-504. [DOI: 10.1111/j.1601-0825.2009.01576.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|