1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Bonilla PA, Shrestha R. FLIM-FRET Protein-Protein Interaction Assay. Methods Mol Biol 2024; 2797:261-269. [PMID: 38570466 DOI: 10.1007/978-1-0716-3822-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fluorescence lifetime imaging performed under FRET conditions between two interacting molecules is a sensitive and robust way to quantify intermolecular interactions in cells. The fluorescence lifetime, an inherent property of the fluorophore, remains unaffected by factors such as concentration, laser intensity, and other photophysical artifacts. In the context of FLIM-FRET, the focus lies on measuring the fluorescence lifetime of the donor molecule, which diminishes upon interaction with a neighboring acceptor molecule. In this study, we present a step-by-step experimental protocol for applying FLIM-FRET to investigate protein-protein interactions involving various RAS isoforms and RAS effectors at the live cell's plasma membrane. By utilizing the FRET pair comprising enhanced green fluorescent protein (eGFP) and fluorescent mCherry, we demonstrate that the proximity and possible nanoclustering of eGFP-tagged KRAS4b G12D and mCherry-tagged KRAS4b WT led to a reduction in the donor eGFP's fluorescence lifetime. The donor lifetime of eGFP-tagged KRAS decreases even further when treated with a dimer-inducing small molecule, or in the presence of RAF proteins, suggesting a greater FRET efficiency, and thus less distance, between donor and acceptor.
Collapse
Affiliation(s)
- Pedro Andrade Bonilla
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
3
|
Gottlieb D, Asadipour B, Kostina P, Ung TPL, Stringari C. FLUTE: A Python GUI for interactive phasor analysis of FLIM data. BIOLOGICAL IMAGING 2023; 3:e21. [PMID: 38487690 PMCID: PMC10936343 DOI: 10.1017/s2633903x23000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 03/17/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique used to probe the local environment of fluorophores. The fit-free phasor approach to FLIM data is increasingly being used due to its ease of interpretation. To date, no open-source graphical user interface (GUI) for phasor analysis of FLIM data is available in Python, thus limiting the widespread use of phasor analysis in biomedical research. Here, we present Fluorescence Lifetime Ultimate Explorer (FLUTE), a Python GUI that is designed to fill this gap. FLUTE simplifies and automates many aspects of the analysis of FLIM data acquired in the time domain, such as calibrating the FLIM data, performing interactive exploration of the phasor plot, displaying phasor plots and FLIM images with different lifetime contrasts simultaneously, and calculating the distance from known molecular species. After applying desired filters and thresholds, the final edited datasets can be exported for further user-specific analysis. FLUTE has been tested using several FLIM datasets including autofluorescence of zebrafish embryos and in vitro cells. In summary, our user-friendly GUI extends the advantages of phasor plotting by making the data visualization and analysis easy and interactive, allows for analysis of large FLIM datasets, and accelerates FLIM analysis for non-specialized labs.
Collapse
Affiliation(s)
- Dale Gottlieb
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Bahar Asadipour
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Polina Kostina
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Esposito A. How many photons are needed for FRET imaging? BIOMEDICAL OPTICS EXPRESS 2020; 11:1186-1202. [PMID: 32133242 PMCID: PMC7041441 DOI: 10.1364/boe.379305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/15/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Förster resonance energy transfer (FRET) imaging is an essential analytical method in biomedical research. The limited photon-budget experimentally available, however, imposes compromises between spatiotemporal and biochemical resolutions, photodamage and phototoxicity. The study of photon-statistics in biochemical imaging is thus important in guiding the efficient design of instrumentation and assays. Here, we show a comparative analysis of photon-statistics in FRET imaging demonstrating how the precision of FRET imaging varies vastly with imaging parameters. Therefore, we provide analytical and numerical tools for assay optimization. Fluorescence lifetime imaging microscopy (FLIM) is a very robust technique with excellent photon-efficiencies. However, we show that also intensity-based FRET imaging can reach high precision by utilizing information from both donor and acceptor fluorophores.
Collapse
Affiliation(s)
- Alessandro Esposito
- MRC Cancer Unit, University of Cambridge, Biomedical Campus, Cambridge, CB20XY, UK
| |
Collapse
|
5
|
Eder D, Basler K, Aegerter CM. Challenging FRET-based E-Cadherin force measurements in Drosophila. Sci Rep 2017; 7:13692. [PMID: 29057959 PMCID: PMC5651909 DOI: 10.1038/s41598-017-14136-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 10/09/2017] [Indexed: 11/10/2022] Open
Abstract
Mechanical forces play a critical role during embryonic development. Cellular and tissue wide forces direct cell migration, drive tissue morphogenesis and regulate organ growth. Despite the relevance of mechanics for these processes, our knowledge of the dynamics of mechanical forces in living tissues remains scarce. Recent studies have tried to address this problem with the development of tension sensors based on Förster resonance energy transfer (FRET). These sensors are integrated into force bearing proteins and allow the measurement of mechanical tensions on subcellular structures. Here, we developed such a FRET-based sensor to measure E-Cadherin tensions in different Drosophila tissues in and ex vivo. Similar to previous studies, we integrated the sensor module into E-cadherin. We assessed the sensitivity of the sensor by measuring dynamic, developmental processes and mechanical modifications in three Drosophila tissues: the wing imaginal disc, the amnioserosa cells and the migrating border cells. However, these assays revealed that the sensor is not functional to measure the magnitude of tensions occurring in any of the three tissues. Moreover, we encountered technical problems with the measurement of FRET, which might represent more general pitfalls with FRET sensors in living tissues. These insights will help future studies to better design and control mechano-sensing experiments.
Collapse
Affiliation(s)
- Dominik Eder
- Institute of Molecular Life Sciences, University of Zurich, Zurich, CH-8057, Switzerland
- Institute of Physics, University of Zurich, Zurich, CH-8057, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, CH-8057, Switzerland
| | - Christof M Aegerter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, CH-8057, Switzerland.
- Institute of Physics, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
6
|
Bertolin G, Sizaire F, Herbomel G, Reboutier D, Prigent C, Tramier M. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat Commun 2016; 7:12674. [PMID: 27624869 PMCID: PMC5027284 DOI: 10.1038/ncomms12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation.
Collapse
Affiliation(s)
- Giulia Bertolin
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Florian Sizaire
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - Gaëtan Herbomel
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
| | - David Reboutier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Claude Prigent
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Equipe labéllisée Ligue Contre Le Cancer 2014–2016, Rennes 35043, France
| | - Marc Tramier
- CNRS, UMR 6290, Rennes 35043, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes 35043, France
- Microscopy Rennes Imaging Centre, Biosit, Université de Rennes 1, Rennes 35043, France
| |
Collapse
|
7
|
Shi J, Zhou M, Gong A, Li Q, Wu Q, Cheng GJ, Yang M, Sun Y. Fluorescence Lifetime Imaging of Nanoflares for mRNA Detection in Living Cells. Anal Chem 2016; 88:1979-83. [PMID: 26813157 DOI: 10.1021/acs.analchem.5b03689] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression level of tumor-related mRNA can reveal significant information about tumor progression and prognosis, so specific mRNA in cells provides an important approach for biological and disease studies. Here, fluorescence lifetime imaging of nanoflares in living cells was first employed to detect specific intracellular mRNA. We characterized the lifetime changes of the prepared nanoflares before and after the treatment of target mRNA and also compared the results with those of fluorescence intensity-based measurements both intracellularly and extracellularly. The nanoflares released the cy5-modified oligonucleotides and bound to the targets, resulting in a fluorescence lifetime lengthening. This work puts forward another dimension of detecting specific mRNA in cells and can also open new ways for detection of many other biomolecules.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Ming Zhou
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China.,Department of Industrial Engineering, Purdue University , 225 South University Street, West Lafayette, Indiana 47907, United States
| | - Aihua Gong
- School of Medicine, Jiangsu University , Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Qijun Li
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Qian Wu
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Gary J Cheng
- Department of Industrial Engineering, Purdue University , 225 South University Street, West Lafayette, Indiana 47907, United States
| | - Mingyang Yang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Yaocheng Sun
- School of Medicine, Jiangsu University , Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
8
|
Guigas G, Weiss M. Effects of protein crowding on membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:2441-2450. [PMID: 26724385 DOI: 10.1016/j.bbamem.2015.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Cellular membranes are typically decorated with a plethora of embedded and adsorbed macromolecules, e.g. proteins, that participate in numerous vital processes. With typical surface densities of 30,000 proteins per μm(2) cellular membranes are indeed crowded places that leave only few nanometers of private space for individual proteins. Here, we review recent advances in our understanding of protein crowding in membrane systems. We first give a brief overview on state-of-the-art approaches in experiment and simulation that are frequently used to study crowded membranes. After that, we review how crowding can affect diffusive transport of proteins and lipids in membrane systems. Next, we discuss lipid and protein sorting in crowded membrane systems, including effects like protein cluster formation, phase segregation, and lipid droplet formation. Subsequently, we highlight recent progress in uncovering crowding-induced conformational changes of membranes, e.g. membrane budding and vesicle formation. Finally, we give a short outlook on potential future developments in the field of crowded membrane systems. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Gernot Guigas
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany.
| |
Collapse
|
9
|
Ebrecht R, Don Paul C, Wouters FS. Fluorescence lifetime imaging microscopy in the medical sciences. PROTOPLASMA 2014; 251:293-305. [PMID: 24390249 DOI: 10.1007/s00709-013-0598-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
The steady improvement in the imaging of cellular processes in living tissue over the last 10-15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- René Ebrecht
- Department of Neuro- and Sensory Physiology, University Medicine Göttingen, 37073, Göttingen, Germany
| | | | | |
Collapse
|
10
|
Esposito A, Popleteeva M, Venkitaraman AR. Maximizing the biochemical resolving power of fluorescence microscopy. PLoS One 2013; 8:e77392. [PMID: 24204821 PMCID: PMC3810478 DOI: 10.1371/journal.pone.0077392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems.
Collapse
Affiliation(s)
- Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, United Kingdom
| | - Marina Popleteeva
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Wessels JT, Pliquett U, Wouters FS. Light-emitting diodes in modern microscopy--from David to Goliath? Cytometry A 2012; 81:188-97. [PMID: 22290727 DOI: 10.1002/cyto.a.22023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 01/04/2023]
Abstract
Proper illumination is essential for light microscopy. Whereas in early years incandescent light was the only illumination, today, more and more specialized light sources, such as lasers or arc lamps are used. Because of the high efficiency and brightness that light-emitting diodes (LED) have reached today, they have become a serious alternative for almost all kinds of illumination in light microscopy. LED have a high durability, do not need expensive electronics, and they can be switched in nanoseconds. Besides this, they are available throughout the UV/Vis/NIR-spectrum with a narrow bandwidth. This makes them ideal light sources for fluorescence microscopy. The white LED, with a color temperature ranging from 2,600 up to 5,000 K is an excellent choice for bright-field illumination with the additional advantage of simple brightness adjustments without changing the spectrum. This review discusses the different LED types, their use in the fluorescence microscope, and discusses LED as specialized illumination sources for Förster resonance energy transfer and fluorescent lifetime imaging microscopy.
Collapse
Affiliation(s)
- Johannes T Wessels
- Central Core Facility Molecular & Optical Live Cell Imaging (MOLCI), University Medicine Göttingen, Germany.
| | | | | |
Collapse
|
12
|
Abstract
The atomic force microscope (AFM) is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years, but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. The advantages of both methods may be exploited by combining and synchronizing them. In this paper, the biological applications of AFM, fluorescence, and their combinations are briefly reviewed, and the assembly and utilization of a spatially and temporally synchronized AFM and total internal reflection fluorescence microscope are described. The application of the method is demonstrated on a fluorescently labeled cell culture.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Schleifenbaum F, Elgass K, Sackrow M, Caesar K, Berendzen K, Meixner AJ, Harter K. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion-proteins. MOLECULAR PLANT 2010; 3:555-562. [PMID: 20038550 DOI: 10.1093/mp/ssp110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorescent studies of living plant cells such as confocal microscopy and fluorescence lifetime imaging often suffer from a strong autofluorescent background contribution that significantly reduces the dynamic image contrast and the quantitative access to sub-cellular processes at high spatial resolution. Here, we present a novel technique--fluorescence intensity decay shape analysis microscopy (FIDSAM)--to enhance the dynamic contrast of a fluorescence image of at least one order of magnitude. The method is based on the analysis of the shape of the fluorescence intensity decay (fluorescence lifetime curve) and benefits from the fact that the decay patterns of typical fluorescence label dyes strongly differ from emission decay curves of autofluorescent sample areas. Using FIDSAM, we investigated Arabidopsis thaliana hypocotyl cells in their tissue environment, which accumulate an eGFP fusion of the plasma membrane marker protein LTI6b (LTI6b-eGFP) to low level. Whereas in conventional confocal fluorescence images, the membranes of neighboring cells can hardly be optically resolved due to the strong autofluorescence of the cell wall, FIDSAM allows for imaging of single, isolated membranes at high spatial resolution. Thus, FIDSAM will enable the sub-cellular analysis of even low-expressed fluorophore-tagged proteins in living plant cells. Furthermore, the combination of FIDSAM with fluorescence lifetime imaging provides the basis to study the local physico-chemical environment of fluorophore-tagged biomolecules in living plant cells.
Collapse
Affiliation(s)
- Frank Schleifenbaum
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS One 2008; 3:e3780. [PMID: 19023444 PMCID: PMC2582953 DOI: 10.1371/journal.pone.0003780] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45). In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the concentration of substantial amounts of parasite-exported material.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|