1
|
Genetic Requirement of talin1 for Proliferation of Cranial Neural Crest Cells during Palate Development. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1633. [PMID: 29707441 PMCID: PMC5908504 DOI: 10.1097/gox.0000000000001633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 01/20/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Craniofacial malformations are among the most common congenital anomalies. Cranial neural crest cells (CNCCs) form craniofacial structures involving multiple cellular processes, perturbations of which contribute to craniofacial malformations. Adhesion of cells to the extracellular matrix mediates bidirectional interactions of the cells with their extracellular environment that plays an important role in craniofacial morphogenesis. Talin (tln) is crucial in cell-matrix adhesion between cells, but its role in craniofacial morphogenesis is poorly understood. Methods: Talin gene expression was determined by whole mount in situ hybridization. Craniofacial cartilage and muscles were analyzed by Alcian blue in Tg(mylz2:mCherry) and by transmission electron microscopy. Pulse-chase photoconversion, 5-ethynyl-2’-deoxyuridine proliferation, migration, and apoptosis assays were performed for functional analysis. Results: Expression of tln1 was observed in the craniofacial cartilage structures, including the palate. The Meckel’s cartilage was hypoplastic, the palate was shortened, and the craniofacial muscles were malformed in tln1 mutants. Pulse-chase and EdU assays during palate morphogenesis revealed defects in CNCC proliferation in mutants. No defects were observed in CNCC migration and apoptosis. Conclusions: The work shows that tln1 is critical for craniofacial morphogenesis in zebrafish. Loss of tln1 leads to a shortened palate and Meckel’s cartilage along with disorganized skeletal muscles. Investigations into the cellular processes show that tln1 is required for CNCC proliferation during palate morphogenesis. The work will lead to a better understanding of the involvement of cytoskeletal proteins in craniofacial morphogenesis.
Collapse
|
2
|
Zhang Q. Genetics of Refraction and Myopia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:269-79. [PMID: 26310160 DOI: 10.1016/bs.pmbts.2015.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both genetic and environmental factors play roles in the development of refractive errors. Identification of genes involved in refractive errors may help in elucidating the underlying molecular mechanism related to both genetic defects and environmental pressure. Recent development of techniques for genome wide analysis provides unique opportunity in dissecting the genetic basis related to refractive errors. This chapter tries to give a brief overview on the recent progress of genetic study of refractive errors, especially myopia.
Collapse
Affiliation(s)
- Qingjiong Zhang
- State Key Lab of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Selective serotonin reuptake inhibitor exposure alters osteoblast gene expression and craniofacial development in mice. ACTA ACUST UNITED AC 2014; 100:912-23. [DOI: 10.1002/bdra.23323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Wolber LE, Steves CJ, Tsai PC, Deloukas P, Spector TD, Bell JT, Williams FMK. Epigenome-wide DNA methylation in hearing ability: new mechanisms for an old problem. PLoS One 2014; 9:e105729. [PMID: 25184702 PMCID: PMC4153547 DOI: 10.1371/journal.pone.0105729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 07/28/2014] [Indexed: 11/24/2022] Open
Abstract
Epigenetic regulation of gene expression has been shown to change over time and may be associated with environmental exposures in common complex traits. Age-related hearing impairment is a complex disorder, known to be heritable, with heritability estimates of 57–70%. Epigenetic regulation might explain the observed difference in age of onset and magnitude of hearing impairment with age. Epigenetic epidemiology studies using unrelated samples can be limited in their ability to detect small effects, and recent epigenetic findings in twins underscore the power of this well matched study design. We investigated the association between venous blood DNA methylation epigenome-wide and hearing ability. Pure-tone audiometry (PTA) and Illumina HumanMethylation array data were obtained from female twin volunteers enrolled in the TwinsUK register. Two study groups were explored: first, an epigenome-wide association scan (EWAS) was performed in a discovery sample (n = 115 subjects, age range: 47–83 years, Illumina 27 k array), then replication of the top ten associated probes from the discovery EWAS was attempted in a second unrelated sample (n = 203, age range: 41–86 years, Illumina 450 k array). Finally, a set of monozygotic (MZ) twin pairs (n = 21 pairs) within the discovery sample (Illumina 27 k array) was investigated in more detail in an MZ discordance analysis. Hearing ability was strongly associated with DNA methylation levels in the promoter regions of several genes, including TCF25 (cg01161216, p = 6.6×10−6), FGFR1 (cg15791248, p = 5.7×10−5) and POLE (cg18877514, p = 6.3×10−5). Replication of these results in a second sample confirmed the presence of differential methylation at TCF25 (p(replication) = 6×10−5) and POLE (p(replication) = 0.016). In the MZ discordance analysis, twins' intrapair difference in hearing ability correlated with DNA methylation differences at ACP6 (cg01377755, r = −0.75, p = 1.2×10−4) and MEF2D (cg08156349, r = −0.75, p = 1.4×10−4). Examination of gene expression in skin, suggests an influence of differential methylation on expression, which may account for the variation in hearing ability with age.
Collapse
MESH Headings
- Acid Phosphatase/blood
- Acid Phosphatase/genetics
- Aged
- Aged, 80 and over
- Aging/blood
- Aging/genetics
- Aging/pathology
- Audiometry, Pure-Tone
- Basic Helix-Loop-Helix Transcription Factors/blood
- Basic Helix-Loop-Helix Transcription Factors/genetics
- DNA Methylation
- DNA Polymerase II/blood
- DNA Polymerase II/genetics
- Epigenesis, Genetic
- Female
- Genome, Human
- Hearing Loss, Functional/blood
- Hearing Loss, Functional/genetics
- Hearing Loss, Functional/physiopathology
- Humans
- MEF2 Transcription Factors/blood
- MEF2 Transcription Factors/genetics
- Middle Aged
- Poly-ADP-Ribose Binding Proteins
- Promoter Regions, Genetic
- Quantitative Trait, Heritable
- Receptor, Fibroblast Growth Factor, Type 1/blood
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Repressor Proteins/blood
- Repressor Proteins/genetics
- Twins, Monozygotic/genetics
Collapse
Affiliation(s)
- Lisa E. Wolber
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- King Abdulaziz University, Jeddah, Saudi Arabia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Hearing impairment in Stickler syndrome: a systematic review. Orphanet J Rare Dis 2012; 7:84. [PMID: 23110709 PMCID: PMC3551705 DOI: 10.1186/1750-1172-7-84] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Background Stickler syndrome is a connective tissue disorder characterized by ocular, skeletal, orofacial and auditory defects. It is caused by mutations in different collagen genes, namely COL2A1, COL11A1 and COL11A2 (autosomal dominant inheritance), and COL9A1 and COL9A2 (autosomal recessive inheritance). The auditory phenotype in Stickler syndrome is inconsistently reported. Therefore we performed a systematic review of the literature to give an up-to-date overview of hearing loss in Stickler syndrome, and correlated it with the genotype. Methods English-language literature was reviewed through searches of PubMed and Web of Science, in order to find relevant articles describing auditory features in Stickler patients, along with genotype. Prevalences of hearing loss are calculated and correlated with the different affected genes and type of mutation. Results 313 patients (102 families) individually described in 46 articles were included. Hearing loss was found in 62.9%, mostly mild to moderate when reported. Hearing impairment was predominantly sensorineural (67.8%). Conductive (14.1%) and mixed (18.1%) hearing loss was primarily found in young patients or patients with a palatal defect. Overall, mutations in COL11A1 (82.5%) and COL11A2 (94.1%) seem to be more frequently associated with hearing impairment than mutations in COL2A1 (52.2%). Conclusions Hearing impairment in patients with Stickler syndrome is common. Sensorineural hearing loss predominates, but also conductive hearing loss, especially in children and patients with a palatal defect, may occur. The distinct disease-causing collagen genes are associated with a different prevalence of hearing impairment, but still large phenotypic variation exists. Regular auditory follow-up is strongly advised, particularly because many Stickler patients are visually impaired.
Collapse
|
6
|
Xu F, Wang HJ, Ma D. [Epigenetics--a new perspective for the study of deafness]. YI CHUAN = HEREDITAS 2012; 34:253-9. [PMID: 22425943 DOI: 10.3724/sp.j.1005.2012.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hearing loss is the most common sensory disorder in humans. The newborn morbidity is 1/1000 approximately 3/1000. In most cases, the cause comes from abnormal development of inner-ear or degeneration of the cochlear hair cells. Genetic factors make a significant contribution to hearing impairment. Some genes and chromosome locus responsible for syndromic or non-syndromic hearing loss have been identified. However, etiology of deafness still remains obscure. In addition to some hot spot mutations (GJB2, SLC26A4, mitochondrial DNA C1494T, A1555G, etc.), epigenetics may also provide a significant contribution to this sensory disease. For example, miR-96 seed region mutations can result in progressive hearing loss in humans and mice, and aberrant CpG methylation has been linked to a few inherited syndromes that can induce hearing loss, etc.. This review aims to summarize the research progress of epigenetics in the fields of hearing and deafness.
Collapse
Affiliation(s)
- Fei Xu
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, China.
| | | | | |
Collapse
|
7
|
MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mamm Genome 2009; 20:581-603. [PMID: 19876605 DOI: 10.1007/s00335-009-9230-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/30/2009] [Indexed: 01/19/2023]
Abstract
Sensorineural hearing loss is the most common sensory disorder in humans and derives, in most cases, from inner-ear defects or degeneration of the cochlear sensory neuroepithelial hair cells. Genetic factors make a significant contribution to hearing impairment. While mutations in 51 genes have been associated with hereditary sensorineural nonsyndromic hearing loss (NSHL) in humans, the responsible mutations in many other chromosomal loci linked with NSHL have not been identified yet. Recently, mutations in a noncoding microRNA (miRNA) gene, MIR96, which is expressed specifically in the inner-ear hair cells, were linked with progressive hearing loss in humans and mice. Furthermore, additional miRNAs were found to have essential roles in the development and survival of inner-ear hair cells. Epigenetic mechanisms, in particular, DNA methylation and histone modifications, have also been implicated in human deafness, suggesting that several layers of noncoding genes that have never been studied systematically in the inner-ear sensory epithelia are required for normal hearing. This review aims to summarize the current knowledge about the roles of miRNAs and epigenetic regulatory mechanisms in the development, survival, and function of the inner ear, specifically in the sensory epithelia, tectorial membrane, and innervation, and their contribution to hearing.
Collapse
|
8
|
Provenzano MJ, Domann FE. A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hear Res 2007; 233:1-13. [PMID: 17723285 PMCID: PMC2994318 DOI: 10.1016/j.heares.2007.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/26/2022]
Abstract
Epigenetics is a large and diverse field encompassing a number of different mechanisms essential to development, DNA stability and gene expression. DNA methylation and histone modifications work individually and in conjunction with each other leading to phenotypic changes. An overwhelming amount of evidence exists demonstrating the essential nature of epigenetics to human biology and pathology. This field has spawned a vast array of knowledge, techniques and pharmaceuticals designed to investigate and manipulate epigenetic phenomena. Despite its centricity to molecular biology, little work has been conducted examining how epigenetics affects hearing. In this review, we discuss both the basic tenets of epigenetics and highlight the most recent advances in this field. We discuss its importance to human development, genomic stability, gene expression, epigenetic modifying agents as well as briefly introduce the expansive field of cancer epigenetics. We then examine the evidence of a role for epigenetics in hearing related processes and hearing loss. The article concludes with a discussion of areas of epigenetic research that could be applied to hearing research.
Collapse
Affiliation(s)
- Matthew J Provenzano
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA 52242-1181, United States
| | | |
Collapse
|
9
|
Leung L, Hyland JC, Young A, Goldberg MF, Handa JT. A NOVEL MUTATION IN INTRON 11 OF THE COL2A1 GENE IN A PATIENT WITH TYPE 1 STICKLER SYNDROME. Retina 2006; 26:106-9. [PMID: 16395149 DOI: 10.1097/00006982-200601000-00019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L Leung
- Wilmer Eye Institute, Johns Hopkins Medical Institutes, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
10
|
Rose PS, Levy HP, Liberfarb RM, Davis J, Szymko-Bennett Y, Rubin BI, Tsilou E, Griffith AJ, Francomano CA. Stickler syndrome: Clinical characteristics and diagnostic criteria. Am J Med Genet A 2005; 138A:199-207. [PMID: 16152640 DOI: 10.1002/ajmg.a.30955] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to establish diagnostic criteria for Stickler syndrome. Ninety patients from 38 families had complete evaluations for possible Stickler syndrome. Molecular confirmation of COL2A1 mutation status (type I Stickler syndrome) was available on 25 patients from six families. In the remaining 65 patients, 47 from 25 families were affected with Stickler syndrome and 18 from seven families were unaffected with Stickler syndrome. A diagnostic nosology based on type I Stickler patients with known COL2A1 mutations was applied to clinically affected and unaffected patients. A diagnostic scale of 9 points evaluated molecular data or family history data and characteristic ocular, orofacial, auditory, and musculoskeletal findings. A score of > or =5 was diagnostic of Stickler syndrome. These criteria demonstrate 100% sensitivity when applied to type I Stickler syndrome patients with known COL2A1 mutations, 98% sensitivity when applied to clinically affected Stickler patients, and 86% specificity when applied to patients unaffected based on clinical and/or molecular analysis. We conclude that diagnostic criteria based on type I Stickler patients with molecularly confirmed COL2A1 mutations appear to be sensitive and specific for the diagnosis of this syndrome and should be helpful to clinicians when making the diagnosis.
Collapse
Affiliation(s)
- Peter S Rose
- Warren Magnuson Grant Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Donoso LA, Edwards AO, Frost AT, Ritter R, Ahmad N, Vrabec T, Rogers J, Meyer D, Parma S. Clinical variability of Stickler syndrome: role of exon 2 of the collagen COL2A1 gene. Surv Ophthalmol 2003; 48:191-203. [PMID: 12686304 DOI: 10.1016/s0039-6257(02)00460-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stickler syndrome (progressive arthro-ophthalmopathy) is a genetically heterogeneous disorder resulting from mutations in at least three collagen genes. The most common disease-causing gene is COL2A1, a 54-exon-containing gene coding for type II collagen. At least 17 different mutations causing Stickler syndrome have been reported in this gene. Phenotypically, it is also a variably expressed disorder in which most patients present with a wide range of eye and extraocular manifestations including auditory, skeletal, and orofacial manifestations. Some patients, however, present without clinically apparent systemic findings. This observation has led to difficulty distinguishing this Stickler phenotype from other hereditary vitreoretinal degenerations, such as Wagner syndrome and Snowflake vitreoretinal degeneration. In this regard, review of the literature indicates type II collagen exists in two forms resulting from alternative splicing of exon 2 of the COL2A1 gene. One form, designated as type IIB (short form), is preferentially expressed in adult cartilage tissue. The other form, designated as type IIA (long form), is preferentially expressed in the vitreous body of the eye. Because of this selective tissue expression, mutations in exon 2 of the COL2A1 gene have been hypothesized to produce this Stickler syndrome phenotype with minimal or absent extraocular findings. We review the evidence for families with exon 2 mutations of the collagen COL2A1 gene presenting in a distinct manner from families with mutations in the remaining 53 exons, as well as other hereditary vitreoretinal degenerations without significant systemic manifestations.
Collapse
Affiliation(s)
- Larry A Donoso
- Henry and Corinne Bower Laboratory, Eye Research Institute, Wills Eye Hospital, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liberfarb RM, Levy HP, Rose PS, Wilkin DJ, Davis J, Balog JZ, Griffith AJ, Szymko-Bennett YM, Johnston JJ, Francomano CA, Tsilou E, Rubin BI. The Stickler syndrome: genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genet Med 2003; 5:21-7. [PMID: 12544472 DOI: 10.1097/00125817-200301000-00004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate a cohort of clinically diagnosed Stickler patients in which the causative mutation has been identified, determine the prevalence of clinical features in this group as a whole and as a function of age, and look for genotype/phenotype correlations. METHODS Review of medical records, clinical evaluations, and mutational analyses of clinically diagnosed Stickler patients. RESULTS Patients with seven defined mutations had similar phenotypes, though both inter- and intrafamilial variability were apparent and extensive. The prevalence of certain clinical features was a function of age. CONCLUSION Although the molecular determination of a mutation can predict the occurrence of Stickler syndrome, the variability observed in the families described here makes it difficult to predict the severity of the phenotype on the basis of genotype.
Collapse
Affiliation(s)
- Ruth M Liberfarb
- Genetics and Teratology Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|