1
|
Dwivedi S, D'Souza LC, Shetty NG, Raghu SV, Sharma A. Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118484. [PMID: 34774861 DOI: 10.1016/j.envpol.2021.118484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nidhi Ganesh Shetty
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India; Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Farghaly AM, AboulWafa OM, Baghdadi HH, Abd El Razik HA, Sedra SMY, Shamaa MM. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Bioorg Chem 2021; 115:105208. [PMID: 34365057 DOI: 10.1016/j.bioorg.2021.105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
An array of newly synthesized thieno[3,2-d]pyrimidine-based derivatives and thienotriazolopyrimidines hybridized with some pharmacophoric anticancer fragments were designed, synthesized and assessed for their in vitro antiproliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using erlotinib and pictilisib as reference standards in the MTT assay. In general, many compounds were endowed with considerable antiproliferative activity (IC50 = 0.43-1.31 µM). Some of the tested compounds, namely 3c, 5b, 5c, 9d, 10, 11b and 13 displayed remarkable antiproliferative activity against both cell lines. Meanwhile, compounds 2c-e, 3b, 4a, 5a, 9c and 15b showed noticeable selectivity against MCF-7 cells while compounds 2b, 3a, 4b, 6a-c, 7, 8, 9b and 12 exhibited considerable selectivity against MDA-MB-231 cells. Further mechanistic evidences for their anticancer activities were provided by screening the most potent compounds against MCF-7 and/or MDA-MB-231 cells for EGFR and ARO inhibitory activities using erlotinib and letrozole as reference standards respectively. Results proved that, in general, tested compounds were better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed for all tested compounds with the 4-fluorophenylhydrazone derivative 2d exhibiting the highest activation. In treated MDA-MB-231 breast cell line samples, 11b was found to highly induce caspase-9 level thereby inducing apoptosis. Cell cycle analysis and Annexin V-FITC/PI assay were also assessed for active compounds where results indicated that all tested compounds induced preG1 apoptosis and cell cycle arrest at G2/M phase. Compound 9d, as an inhibitor of ARO, was observed to downregulate the downstream signaling proteins HSP27 and p-ERK in MCF-7 cells. Furthermore, compound 11b downregulated EGFR expression as well as the downstream signaling protein p-AKT. Docking experiments on EGFR and ARO enzymes supported their in vitro results. Thus, the thienotriazolopyrimidines 11b and 12 showing good EGFR inhibition and the thieno[3,2-d]-pyrimidine derivatives 3b and 9d, eliciting the best ARO inhibition activity, can be considered as new candidates as anti-breast cancer agents that necessitate further development.
Collapse
Affiliation(s)
- Ahmed M Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Samir M Y Sedra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marium M Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
3
|
Kaigorodova EV, Zavyalova MV, Bychkov VA, Perelmuter VM, Choynzonov EL. Functional state of the Hsp27 chaperone as a molecular marker of an unfavorable course of larynx cancer. Cancer Biomark 2017; 17:145-53. [PMID: 27540972 DOI: 10.3233/cbm-160625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The small heat shock protein 27 kDA (Hsp27) acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. OBJECTIVE To study the intracellular localization of phosphorylated and non-phosphorylated forms of Hsp27 in squamous cell carcinoma of the larynx (SCCL) and to evaluate their relationship with regional lymphatic metastasis and overall five-year survival. METHODS Tumor biopsies of larynx tissue were collected from 50 patients who were between the ages of 30 to 80 years and had a confirmed diagnosis of squamous cell carcinoma of the larynx. Immunohistochemistry was used to determine the intracellular localization of the phosphorylated and non-phosphorylated forms of Hsp27. RESULTS The study revealed that the Hsp27 chaperone was expressed in both the cytoplasm and the nucleus of tumor cells in SCCL. The biopsies of patients with lymph node metastases showed significantly higher expression of the phosphorylated and unphosphorylated forms of Hsp27 in the nucleus compared to those of patients without lymph node metastases. At the same time, the cytoplasmic expression of Hsp27 in these patients did not differ statistically. Analysis of the overall five-year survival rates showed that negative Hsp27 expression in the nucleus of tumor cells is associated with the survival rate of patients with SCCL. CONCLUSION The nuclear expression of phosphorylated and unphosphorylated forms of Hsp27 is a molecular marker of unfavorable squamous cell carcinoma of the larynx associated with lymphogenous metastasis and decreased total five-year survival.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Marina V Zavyalova
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | | | - Vladimir M Perelmuter
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Evgenii L Choynzonov
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
4
|
Canine heat shock protein 27 promotes proliferation, migration, and doxorubicin resistance in the canine cell line DTK-F. Vet J 2015; 205:254-62. [PMID: 25882637 DOI: 10.1016/j.tvjl.2015.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/23/2022]
Abstract
Canine mammary tumors (CMTs) are the most common type of tumors in female dogs. Heat shock proteins are highly expressed in many cancers and are involved in tumor progression and chemoresistance in CMTs; however, the biological role of canine heat shock protein 27 (cHSP27) in CMTs has not been thoroughly characterized. This study investigated the roles of cHSP27 in cell growth, migration, anchorage, and resistance to doxorubicin (DOX) using DTK-F cells, a CMT cell line that does not express cHSP27. DTK-F cells were transfected with cHSP27 and stable overexpression was established. A mouse monoclonal antibody against cHSP27 was also produced. The biological functions of cHSP27 in DTK-F cells were then evaluated using a variety of assays. Overexpression of cHSP27 was associated with increased cell proliferation, clone formation, migration, and decreased DOX sensitivity. In conclusion, these data provide evidence that cHSP27 overexpression can promote anchorage-independent growth, migration, and increased DOX resistance in CMT cells.
Collapse
|
5
|
Lao C, Brown C, Rouse P, Edlin R, Lawrenson R. Economic evaluation of prostate cancer screening: a systematic review. Future Oncol 2015; 11:467-77. [DOI: 10.2217/fon.14.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT This review, based on published papers, aims to describe the costs of prostate cancer screening and to examine whether prostate cancer screening is cost effective. The estimated cost per cancer detected ranged from €1299 in The Netherlands to US$44,355 in the USA. The estimated cost per life-year saved ranged from US$3000 to US$729,000, while the cost per quality-adjusted life year (QALY) was AU$291,817 and Can$371,100. The most appropriate data for economic evaluation of prostate cancer screening should be the cost per QALY gained. The estimated costs per QALY gained by prostate cancer screening were significantly higher than the cost–effectiveness threshold, suggesting that even when based on favorable randomized controlled trials in younger age groups, prostate cancer screening is still not cost effective.
Collapse
Affiliation(s)
- Chunhuan Lao
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Charis Brown
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Paul Rouse
- University of Auckland Business School, University of Auckland, Auckland, New Zealand
| | - Richard Edlin
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Ross Lawrenson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| |
Collapse
|
6
|
Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE, Sun D. Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharm 2010; 7:1283-90. [PMID: 20540527 DOI: 10.1021/mp100073s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The small heat shock protein 27 (Hsp27) is a molecular chaperone that is involved in a variety of cellular functions in cancer cells. The purpose of this research is to study Hsp27 in vitro metastatic behaviors of head and neck squamous cell carcinoma cells (HNSCC). The expression of Hsp27 in primary and metastatic cell lines derived from the primary HNSCC and a synchronous lymph node metastasis in the same patient was determined using real-time PCR and Western blotting. Proliferation of the primary and metastatic HNSCC cell lines was evaluated using the MTS proliferation assay. Metastatic behavior was assessed using migration and invasion assays. SiRNA knockdown of Hsp27 was performed in the highly migratory metastatic HNSCC cell line. MTS assays showed that the primary (UM-SCC-22A) and metastatic (UM-SCC-22B) HNSCC have similar proliferation rates. However, UM-SCC-22B derived from the metastasis showed 2.3- to 3.6-fold higher migration ability and 2-fold higher invasion ability than UM-SCC-22A. Real-time PCR demonstrated that Hsp27 mRNA is 22.4-fold higher in metastatic UM-SCC-22B than primary UM-SCC-22A. Similarly, Western blotting showed that Hsp27 is rarely detectable in UM-SCC-22A whereas UM-SCC-22B expresses a 25-fold higher level of Hsp27 protein. SiRNA-mediated knockdown of Hsp27 in UM-SCC-22B reduced Hsp27 mRNA expression by nearly 6-fold and protein expression by 23-fold. Furthermore, siRNA knockdown of Hsp27 decreased metastatic behaviors of UM-SCC-22B by 3- to 4-fold in migration and 2-fold in cell invasion reducing cell invasion and migration to levels similar to the primary HNSCC UM-SCC-22A. These data indicate that Hsp27 may regulate metastatic potential of HNSCC cancer cells. Targeting Hsp27 may decrease metastasis in head and neck squamous cell cancer cells.
Collapse
Affiliation(s)
- Zhenkun Zhu
- College of Stomatology, Key Lab of Oral Biomedicine of Shandong Province, Shandong University, Jinan, P. R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
Moon A, Bacchini P, Bertoni F, Olvi LG, Santini-Araujo E, Kim YW, Park YK. Expression of heat shock proteins in osteosarcomas. Pathology 2010; 42:421-5. [PMID: 20632817 DOI: 10.3109/00313025.2010.493866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Heat shock proteins (HSPs) protect cells against stress-associated injuries and are overexpressed in several malignant tumours. We investigated the potential roles of HSP27, HSP60, and HSP70 in conventional and low grade central osteosarcoma. METHODS Expressions of HSP27, HSP60, and HSP70 were analysed using immunohistochemistry on tissue sections from 52 cases of conventional osteosarcoma and 21 cases of low grade central osteosarcoma. We evaluated the expression of each protein and examined its relationship with clinicopathological parameters. RESULTS We found significantly different expressions of HSP27 and HSP70 between conventional and low grade central osteosarcoma [34.6% versus 4.8% (p = 0.008), 88.5% versus 14.3% (p < 0.001)]. However, HSP60 was highly expressed in both kinds of osteosarcoma (92.3% versus 85.7%). In conventional osteosarcoma, a higher expression of HSP27 was significantly related to distant metastasis (p = 0.034) and histological subtype [osteoblastic versus non-osteoblastic (p = 0.041)]. The expressions of HSP60 and HSP70 were not significantly related to any tested clinicopathological parameter. CONCLUSIONS HSP27 and HSP70 may be used as differential markers to distinguish conventional and low grade central osteosarcoma. HSP27 may be used as a possible prognostic marker in conventional osteosarcoma cases.
Collapse
Affiliation(s)
- Ahrim Moon
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
You J, Cozzi P, Walsh B, Willcox M, Kearsley J, Russell P, Li Y. Innovative biomarkers for prostate cancer early diagnosis and progression. Crit Rev Oncol Hematol 2010; 73:10-22. [DOI: 10.1016/j.critrevonc.2009.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 02/05/2009] [Accepted: 02/25/2009] [Indexed: 02/07/2023] Open
|
9
|
Zhu YS, Imperato-McGinley JL. 5alpha-reductase isozymes and androgen actions in the prostate. Ann N Y Acad Sci 2009; 1155:43-56. [PMID: 19250191 DOI: 10.1111/j.1749-6632.2009.04115.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Androgens acting via the androgen receptor play critical roles in prostate development, growth, and pathogenesis. There are two potent androgens, testosterone and dihydrotestosterone (DHT), in humans and mammals. DHT is converted from testosterone by 5alpha-reductase isozymes. Two 5alpha-reductase isozymes have been identified. Although both isozymes are expressed, 5alpha-reductase-2 is the predominant isozyme in the human prostate. Mutations in 5alpha-reductase-2 gene cause the 5alpha-reductase-2 deficiency syndrome. Affected 46, XY individuals have a small, nonpalpable, and rudimentary prostate in adulthood. Neither benign prostate hyperplasia (BPH) nor prostate cancer has been reported in these patients. The prostate is small in animals with 5alpha-reductase-2 gene knockout or treated with specific 5alpha-reductase inhibitors. 5alpha-reductase isozymes are molecular targets for the prevention and treatment of BPH and prostate cancer. Moreover, androgen actions on prostate gene expression and cell growth are directly modulated by estrogen receptor ligands via protein-protein interactions. The studies of 5alpha-reductases and androgen actions highlight the importance of 5alpha-reductase isozymes in male sexual differentiation and prostate physiology and pathophysiology.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
| | | |
Collapse
|
10
|
Chen H, Hewison M, Adams JS. Control of estradiol-directed gene transactivation by an intracellular estrogen-binding protein and an estrogen response element-binding protein. Mol Endocrinol 2007; 22:559-69. [PMID: 18096692 DOI: 10.1210/me.2007-0297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
New World primates exhibit a form of resistance to estrogens that is associated with overexpression of an estrogen response element (ERE)-binding protein (ERE-BP) and an intracellular estradiol (E(2))-binding protein (IEBP). Both proteins suppress E(2)-mediated transcription when overexpressed in estrogen receptor-alpha (ERalpha)-positive cells. Although ERE-BP acts as a competitor for ERE occupancy by liganded ERalpha, the function of IEBP and its human homolog, heat-shock protein 27 (hsp27), is less clear. In data presented here, we have used E(2)-responsive human MCF-7 breast cancer cells to show that IEBP/hsp27 can regulate estrogen signaling as a cytosolic decoy for E(2) and as a protein chaperone for ERalpha. Furthermore, co-immunoprecipitation, colocalization, yeast two-hybrid, and glutathione S-transferase pull-down analyses indicate that IEBP/hsp27 also interacts with ERE-BP to form a dynamic complex that appears to cycle between the cytoplasm and nucleus during normal estrogen signaling. Overexpression of either IEBP/hsp27 or ERE-BP in MCF-7 cells resulted in abnormal subcellular distribution of the IEBP/hsp27 and ERE-BP, with concomitant dysregulation of ERE occupancy as determined by chromatin immunoprecipitation. We hypothesize that IEBP/hsp27 and ERE-BP not only cause hormone resistance in New World primates but are also crucial to normal estrogen signaling in human cells. This appears to involve a physical association between the two proteins to form a complex that is able to interact with both E(2) and ERalpha in cytosolic and nuclear compartments.
Collapse
Affiliation(s)
- Hong Chen
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
11
|
Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 2007; 6:299-308. [PMID: 17218637 DOI: 10.1158/1535-7163.mct-06-0417] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heat shock protein 27 (Hsp27) is a cytoprotective chaperone that is phosphoactivated during cell stress that prevents aggregation and/or regulate activity and degradation of certain client proteins. Recent evidence suggests that Hsp27 may be involved in tumor progression and the development of treatment resistance in various tumors, including bladder cancer. The purpose of this study was to examine, both in vitro and in vivo, the effects of overexpression of Hsp27 and, correspondingly, the down-regulation of Hsp27 using small interfering (si) RNA and OGX-427, a second-generation antisense oligonucleotide targeting Hsp27. Hsp27 overexpression increased UMUC-3 cell growth and resistance to paclitaxel. Both OGX-427 and Hsp27 siRNA decreased Hsp27 protein and mRNA levels by >90% in a dose- and sequence-specific manner in human bladder cancer UMUC-3 cells. OGX-427 or Hsp27 siRNA treatment induced apoptosis and enhanced sensitivity to paclitaxel in UMUC-3 cells. In vivo, OGX-427 significantly inhibited tumor growth in mice, enhanced sensitivity to paclitaxel, and induced significantly higher levels of apoptosis compared with xenografts treated with control oligonucleotides. Collectively, these findings suggest that Hsp27 knockdown with OGX-427 and combined therapy with paclitaxel could be a novel strategy to inhibit the progression of bladder cancer.
Collapse
Affiliation(s)
- Masayuki Kamada
- The Prostate Centre, University of Columbia, Vancouver Hospital, 2660-Oak Street, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Rowland JG, Robson JL, Simon WJ, Leung HY, Slabas AR. Evaluation of anin vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics 2007; 7:47-63. [PMID: 17152098 DOI: 10.1002/pmic.200600697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins responsive to androgen and anti-androgen may be involved in the development and progression of prostate cancer and the ultimate failure of androgen-ablation therapy. These proteins represent potential diagnostic and therapeutic targets for improved management of prostate cancer. We have investigated the effect of androgen (R1881) and anti-androgen (bicalutamide) on the androgen-responsive prostate cancer LNCaP cell line using a quantitative gel-based proteomic approach. Prior to analysis, the in vitro system was evaluated for reproducibility and validated by appropriate molecular responses to treatment. Six replicate samples were independently generated and analysed by 2-D DIGE. According to strict statistical criteria, 197 spots were differentially expressed, of which we have successfully identified 165 spots corresponding to 125 distinct proteins. Following androgen supplementation, 108 spots (68 proteins) were increased and 57 spots (39 proteins) were decreased. Essentially no difference was observed between control and anti-androgen-treated samples, confirming the absence of "off-target" effects of bicalutamide. Identified proteins were involved in diverse processes including the stress response and intracellular signalling. The potential contribution to disease of these processes and identified constituent proteins are discussed. This rigorous, statistically supported study of androgen responses has provided a number of potential candidates for development as diagnostic/prognostic markers and drug targets.
Collapse
Affiliation(s)
- John G Rowland
- Northern Institute for Cancer Research, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In this paper, we will review the recent advances in antisense oligonucleotide therapy in the treatment of superficial bladder cancer. Bladder cancer has an exciting potential as a model to study antisense oligonucleotide therapy because of the ease of accessibility of treatment, ease of diagnosis through biopsy and urine cytology, and direct observation of treatment efficacy through cystoscopy and posttreatment biopsy. RECENT FINDINGS We will elaborate on the recent developments in the delivery of antisense oligonucleotide and the implications of these results on the use of antisense oligonucleotide intravesically. We will also discuss recent preclinical in-vitro results of antisense oligonucleotide therapy in different bladder cancer cell lines. SUMMARY Recent developments of the in-vitro and animal in-vivo effectiveness of antisense treatment in bladder cancer provide the foundation to pursue future phase I clinical trials. Antisense oligonucleotide technology is a promising tool that may become an effective method of treating bladder cancer.
Collapse
Affiliation(s)
- Alan So
- The Prostate Centre at Vancouver General Hospital, University of British Columbia, Canada.
| | | | | |
Collapse
|
14
|
Bonkhoff H, Fixemer T. [Implications of estrogens and their receptors for the development and progression of prostate cancer]. DER PATHOLOGE 2005; 26:461-8. [PMID: 16220300 DOI: 10.1007/s00292-005-0790-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent discovery of the estrogen receptors alpha and beta (ERalpha, ERbeta) and the progesterone receptor (PR) in human prostate tissue offers new insights into the role of estrogens and their receptors in prostate cancer development and tumor progression. The differentiation compartment of the prostatic epithelium (secretory luminal cells) expresses high levels of ERbeta, while the ERalpha is restricted to the proliferation compartment (basal cells). In high grade prostatic intraepithelial neoplasia (HGPIN), ERalpha gene expression extends to luminal cells and thus may mediate cancerogenic effects of estrogens on the dysplastic epithelium. Conversely, the ERbeta is downregulated in HGPIN indicating that the chemopreventive effects of phytoestrogens mediated by the ERbeta are partially lost. Irrespective of grades and stages, prostate cancer retains high levels of the ERbeta which is partially lost in androgen-insensitive stages of the disease. In contrast with breast cancer, the presence of the ERalpha and the PR is a late event in prostate cancer progression. At least 30% of metastatic and androgen-insensitive tumors express high levels of the PR indicating that these tumors harbor a functional ERalpha. The antiestrogen Raloxifene has growth-inhibitory effects on androgen-insensitive prostate cancer cells in vitro and induces the apoptotic cell death in a dose-dependent fashion. These data provide a rational for clinical trials to study the efficiency of antiestrogens in the medical treatment of advanced prostate cancer.
Collapse
|
15
|
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
16
|
Affiliation(s)
- Yuan-Shan Zhu
- Associate Professor of Medicine, Department of Medicine/Endocrinology, Weill Medical College of Cornell University, 1300 York Avenue, Box 149, New York, New York 10021
| |
Collapse
|
17
|
Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, Hurtado-Coll A, Yamanaka K, Gleave M. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 2004; 64:6595-602. [PMID: 15374973 DOI: 10.1158/0008-5472.can-03-3998] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat shock protein 27 (Hsp27) is a chaperone implicated as an independent predictor of clinical outcome in prostate cancer. Our aim was to characterize changes in Hsp27 after androgen withdrawal and during androgen-independent progression in prostate xenografts and human prostate cancer to assess the functional significance of these changes using antisense inhibition of Hsp27. A tissue microarray was used to measure changes in Hsp27 protein expression in 232 specimens from hormone naive and posthormone-treated cancers. Hsp27 expression was low or absent in untreated human prostate cancers but increased beginning 4 weeks after androgen-ablation to become uniformly highly expressed in androgen-independent tumors. Androgen-independent human prostate cancer PC-3 cells express higher levels of Hsp27 mRNA in vitro and in vivo, compared with androgen-sensitive LNCaP cells. Phosphorothioate Hsp27 antisense oligonucleotides (ASOs) and small interference RNA potently inhibit Hsp27 expression, with increased caspase-3 cleavage and PC3 cell apoptosis and 87% decreased PC3 cell growth. Hsp27 ASO and small interference RNA also enhanced paclitaxel chemosensitivity in vitro, whereas in vivo, systemic administration of Hsp27 ASO in athymic mice decreased PC-3 tumor progression and also significantly enhanced paclitaxel chemosensitivity. These findings suggest that increased levels of Hsp27 after androgen withdrawal provide a cytoprotective role during development of androgen independence and that ASO-induced silencing can enhance apoptosis and delay tumor progression.
Collapse
Affiliation(s)
- Palma Rocchi
- The Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, and Division of Urology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bonkhoff H, Motherby H, Fixemer T. [New insights into the role of estogens and their receptors in prostate cancer]. Urologe A 2004; 42:1594-601. [PMID: 14668987 DOI: 10.1007/s00120-003-0438-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present review gives a survey on the differential expression of estrogen receptors alpha and beta (ERalpha, ERbeta) and the progesterone receptor (PR) in human prostate tissue and discusses their potential implications for normal and abnormal prostatic growth. The differentiation compartment of the prostatic epithelium (secretory luminal cells) expresses high levels of ERbeta, while the ERalpha is restricted to the proliferation compartment (basal cells). In high-grade prostatic intraepithelial neoplasia (HGPIN), ERalpha gene expression extends to luminal cells and thus may mediate cancerogenic effects of estrogens on the dysplastic epithelium. Conversely, the ERbeta is downregulated in HGPIN indicating that the chemopreventive effects of phytoestrogens mediated by the ERbeta are partially lost. Irrespective of grades and stages, prostate cancer retains high levels of the ERbeta, which is partially lost in androgen-insensitive stages of the disease. In contrast with breast cancer, the presence of the ERalpha and the progesterone receptor (PR) is a late event in prostate cancer progression. At least 30% of metastatic and androgen-insensitive tumors express high levels of the PR indicating that these tumors harbor a functional ERalpha. The antiestrogen raloxifene has growth-inhibitory effects on androgen-insensitive prostate cancer cells in vitro and induces apoptotic cell death in a dose-dependent fashion. These data provide a rationale for clinical trials to study the efficiency of antiestrogens in the medical treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- H Bonkhoff
- Gemeinschaftspraxis für Pathologie, Frankfurt/M.
| | | | | |
Collapse
|
19
|
Bonkhoff H. Morphogenetic Aspects of Prostate Cancer. Prostate Cancer 2003. [DOI: 10.1007/978-3-642-56321-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Aldrian S, Trautinger F, Fröhlich I, Berger W, Micksche M, Kindas-Mügge I. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro. Cell Stress Chaperones 2002; 7:177-85. [PMID: 12380685 PMCID: PMC514815 DOI: 10.1379/1466-1268(2002)007<0177:oohatm>2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 12/11/2001] [Accepted: 12/11/2001] [Indexed: 11/24/2022] Open
Abstract
Overexpression of the small heat shock protein Hsp27 has been shown by us to inhibit the in vitro proliferation rate and to delay tumor development of a human melanoma cell line (A375) in nude mice. We hypothesized that Hsp27 may influence the neoplastic phenotype. In the present study Hsp27 transfectants from this cell line were analyzed for various cellular aspects associated with the metastatic process. We found that Hsp27-overexpressing clones exhibited an altered cellular morphology as compared with control transfected cells. The Hsp27-positive cells tended to develop an epithelial-like phenotype growing in clusters and were characterized by a loss of transcytoplasmic stressfibers. In parallel, Hsp27-expressing cells lost the ability to form colonies in soft agar. The invasive potential was studied in vitro by the use of a reconstituted extracellular matrix-coated filter (Matrigel). Compared with controls, Hsp27-overexpressing cells showed decreased cell invasiveness through Matrigel. A correlation between invasion and activation of matrix metalloproteinases (MMPs) has been shown in several cell models. Secretion of MMPs (MMP-2 and MMP-9) was studied by gelatin-substrate zymogram analysis, as well as by a sensitive gelatinase activity assay. The Hsp27-transfected A375 melanoma cell line showed decreased secretion of MMP-2 and MMP-9 as compared with the control transfected cells. Integrins are adhesion receptors and function in cell invasion by mediating cell movement on matrix molecules and by regulating the expression of MMPs. Both fluorescence-activated cell sorter analysis and immunofluorescence analysis revealed a loss of alpha(v)beta3 integrin in Hsp27-transfected cell colonies. Our results demonstrate that Hsp27 overexpression has a profound impact on several parameters regulating the invasive and metastatic potential of melanoma cells in vitro.
Collapse
Affiliation(s)
- Silke Aldrian
- Institute of Cancer Research, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Kumar AP, Garcia GE, Slaga TJ. 2-methoxyestradiol blocks cell-cycle progression at G(2)/M phase and inhibits growth of human prostate cancer cells. Mol Carcinog 2001; 31:111-24. [PMID: 11479920 DOI: 10.1002/mc.1046] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
2-Methoxyestradiol (2-ME), an endogenous metabolite of 17beta-estradiol, is present in human blood and urine. Here we show for the first time that 2-ME significantly inhibited the growth of normal prostate epithelial cells and androgen-dependent LNCaP and androgen-independent DU145 prostate cancer cells. This growth inhibition was accompanied by a twofold increase in the G(2)/M population, with a concomitant decrease in the G(1) population, as shown by cell-cycle analysis. 2-ME treatment affected the cell-cycle progression of prostate cancer cells specifically by blocking cells in the G(2) phase. Immunoblot analysis of the key cell-cycle regulatory proteins in the G(2)/M phase showed a 14-fold increase in the expression of p21 and an eightfold increase in the expression of p34 cell division cycle 2 (cdc2). We also found an accumulation of phosphorylated cdc2 after 2-ME treatment. Furthermore, Wee 1 kinase was detectable after 2-ME treatment. 2-ME treatment also led to an increase in the activity of caspase-3, followed by apoptosis, as shown by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate-biotin nick end-labeling and fluorescein isothiocyanate-poly(ADP-ribose) polymerase assay. Estrogen receptor levels did not change after treatment with 2-ME. Examination of the signaling pathways that mediate 2-ME-induced apoptosis showed reduction in the level of p53 expression and its DNA-binding activity. Given the fact that p53 mutations are common in patients with metastatic prostate cancer, our finding that 2-ME-mediated growth inhibition of human prostate cancer cells occurred in a p53-independent manner has considerable clinical significance. These findings, combined with the limited toxicity of 2-ME, may have significant implications for alternative treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- A P Kumar
- Center for Cancer Causation and Prevention, AMC Cancer Research Center and University of Colorado Comprehensive Cancer Center, Denver, Colorado 80214, USA
| | | | | |
Collapse
|