1
|
Wu JS, Li ZF, Wang HF, Yu XH, Pang X, Wu JB, Wang SS, Zhang M, Yang X, Cao MX, Tang YJ, Liang XH, Zheng M, Tang YL. Cathepsin B defines leader cells during the collective invasion of salivary adenoid cystic carcinoma. Int J Oncol 2019; 54:1233-1244. [PMID: 30968153 PMCID: PMC6411368 DOI: 10.3892/ijo.2019.4722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
Cathepsin B (CTSB) has been reported to be involved in cancer metastasis by altering extracellular matrix (ECM) remodeling and facilitating invasion. However, the contribution of CTSB to collective cell invasion in salivary adenoid cystic carcinoma (SACC) and the underlying mechanisms remain unclear. The present study demonstrated that collective cell invasion is commonly observed in SACC without a complete epithelial-mesenchymal transition signature. CTSB was found to be overexpressed in the invasive front of SACC compared to the tumor center, and was associated with a poor prognosis of patients with SACC. Subsequently, a 3D spheroid invasion assay was established in order to recapitulate the collective cell invasion of SACC and the results revealed that CTSB was only expressed in leader cells. The knockdown of CTSB by siRNA inhibited the migration and invasion of SACC-83 cells and impaired the formation of leader cells. CTSB knockdown also disrupted cytoskeletal organization, altered cell morphology and inhibited ECM remodeling by downregulating matrix metalloproteinase-9, focal adhesion kinase and Rho/ROCK function. Therefore, the present study provides evidence that CTSB may define leader cells in SACC and is required for collective cell invasion as a potential key regulator of ECM remodeling.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Zhu-Feng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang 316021, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
3
|
Tan G, Liu Q, Tang X, Kang T, Li Y, Lu J, Zhao X, Tang F. Diagnostic values of serum cathepsin B and D in patients with nasopharyngeal carcinoma. BMC Cancer 2016; 16:241. [PMID: 26995190 PMCID: PMC4799840 DOI: 10.1186/s12885-016-2283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
Background The diagnostic and prognostic significance of increased cathepsin B (CTSB) and cathepsin D (CTSD) concentration in the serum of cancer patients were evaluated for some tumor types. High expression of CTSD and CTSB was detected in biopsy tissues from nasopharyngeal carcinoma (NPC). However, whether CTSD and CTSB serve as diagnostic and prognostic markers of NPC remains unclear. Methods Serum samples were collected from 40 healthy volunteers and 80 NPC patients enrolled in the study. CTSB and CTSD in the serum samples were detected using enzyme-linked immunosorbent assay (ELISA). Concomitantly, the relationship between CTSB and CTSD concentrations and clinicopathological prognosis was assessed. The sensitivity and specificity of the two components in the diagnosis of NPC were evaluated in 80 NPC patients. Results ELISA analysis showed that in the sera obtained from NPC patients, the CTSB concentration was 12.5 ± 3.5 mg/L (median, 12.4 mg/L), and the CTSD concentration was 15.7 ± 8.7 mg/L (median, 14.7 mg/L). CTSB and CTSD levels were significantly higher in the NPC patient population compared to the healthy control population (p = 0.001; p = 0.001, respectively). The presence of CTSB and CTSD in the serum of the patients with NPC correlated with the tumor node metastasis (TNM) scores (p = 0.001). Other parameters were not identified to be of significance. Receiver operating characteristic (ROC) analysis showed that a cut off CTSB concentration of 12.4 mg/L had 61.9 % sensitivity and 63.2 % specificity in the prediction of progression-free survival (Area under the curve (AUC) = 0.525; 95 % CI, 39.7–65.2; p = 0.704); whereas a cut off CTSD concentration of 14.7 mg/L had 66.7 % sensitivity, and 58.5 % specificity (AUC = 0.552; 95 % CI, 42.3–68.1; p = 0.42). Conclusions Serum CTSB and CTSD concentrations were found to have a diagnostic value in NPC. However, the CTSB and CTSD serum levels had no prognostic role for the outcome in NPC patients.
Collapse
Affiliation(s)
- Gongjun Tan
- Department of Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Qianxu Liu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Xiaowei Tang
- Metallurgical Science and Engineering, Central South University, 21 Lushan South Road, Changsha, 410083, China
| | - Ting Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuejin Li
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Jinping Lu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Xiaoming Zhao
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory and Medical Research Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, 79 Kangning Road, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
4
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
5
|
A suggested guiding panel of seromarkers for efficient discrimination between primary and secondary human hepatocarcinoma. Tumour Biol 2015; 37:2539-46. [DOI: 10.1007/s13277-015-4025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/31/2015] [Indexed: 12/25/2022] Open
|
6
|
Özel T, White S, Nguyen E, Moy A, Brenes N, Choi B, Betancourt T. Enzymatically activated near infrared nanoprobes based on amphiphilic block copolymers for optical detection of cancer. Lasers Surg Med 2015; 47:579-594. [PMID: 26189505 DOI: 10.1002/lsm.22396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Nanotechnology offers the possibility of creating multi-functional structures that can provide solutions for biomedical problems. The nanoprobes herein described are an example of such structures, where nano-scaled particles have been designed to provide high specificity and contrast potential for optical detection of cancer. Specifically, enzymatically activated fluorescent nanoprobes (EANPs) were synthesized as cancer-specific contrast agents for optical imaging. STUDY DESIGN/MATERIALS AND METHODS EANPs were prepared by nanoprecipitation of blends of poly(lactic acid)-b-poly(ethylene glycol) and poly(lactic-co-glycolic acid)-b-poly(l-lysine). The lysine moieties were then covalently decorated with the near infrared (NIR) fluorescent molecule AlexaFluor-750 (AF750). Close proximity of the fluorescent molecules to each other resulted in fluorescence quenching, which was reversed by enzymatically mediated cleavage of poly(l-lysine) chains. EANPs were characterized by dynamic light scattering and electron microscopy. Enzymatic development of fluorescence was studied in vitro by fluorescence spectroscopy. Biocompatibility and contrast potential of EANPs were studied in cancerous and noncancerous cells. The potential of the nanoprobes as contrast agents for NIR fluorescence imaging was studied in tissue phantoms. RESULTS Spherical EANPs of ∼100 nm were synthesized via nanoprecipitation of polymer blends. Fluorescence activation of EANPs by treatment with a model protease was demonstrated with up to 15-fold optical signal enhancement within 120 minutes. Studies with MDA-MB-231 breast cancer cells demonstrated the cytocompatibility of EANPs, as well as enhanced fluorescence associated with enzymatic activation. Imaging studies in tissue phantoms confirmed the ability of a simple imaging system based on a laser source and CCD camera to image dilute suspensions of the nanoprobe at depths of up to 4 mm, as well as up to a 13-fold signal-to-background ratio for enzymatically activated EANPs compared to un-activated EANPs at the same concentration. CONCLUSION Nanoprecipitation of copolymer blends containing poly(l-lysine) was utilized as a method for preparation of highly functional nanoprobes with high potential as contrast agents for fluorescence based imaging of cancer. Lasers Surg. Med. 47:579-594, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuğba Özel
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666
| | - Sean White
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92697
| | - Elaine Nguyen
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92697.,School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Austin Moy
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92697.,The University of Texas at Austin, Austin, Texas 78712
| | - Nicholas Brenes
- The University of Texas at Austin, Austin, Texas 78712.,InnoSense LLC, Torrance, California 90505
| | - Bernard Choi
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92697.,Department of Surgery, University of California, Irvine, California 92697
| | - Tania Betancourt
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666.,InnoSense LLC, Torrance, California 90505.,Department of Chemistry and Biochemistry, Texas State University San Marcos, Texas 78666
| |
Collapse
|
7
|
Ma W, Ma L, Zhe H, Bao C, Wang N, Yang S, Wang K, Cao F, Cheng Y, Cheng Y. Detection of esophageal squamous cell carcinoma by cathepsin B activity in nude mice. PLoS One 2014; 9:e92351. [PMID: 24618814 PMCID: PMC3950293 DOI: 10.1371/journal.pone.0092351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background and Objective Despite great progress in treatment, the prognosis for patients with esophageal squamous cell carcinoma (ESCC) remains poor, highlighting the importance of early detection. Although upper endoscopy can be used for the screening of esophagus, it has limited sensitivity for early stage disease. Thus, development of new diagnosis approach to improve diagnostic capabilities for early detection of ESCC is an important need. The aim of this study was to assess the feasibility of using cathepsin B (CB) as a novel imaging target for the detection of human ESCC by near-infrared optical imaging in nude mice. Methods Initially, we examined specimens from normal human esophageal tissue, intraepithelial neoplasia lesions, tumor in situ, ESCC and two cell lines including one human ESCC cell line (Eca-109) and one normal human esophageal epithelial cell line (HET-1A) for CB expression by immunohistochemistry and western blot, respectively. Next, the ability of a novel CB activatable near-infrared fluorescence (NIRF) probe detecting CB activity presented in Eca-109 cells was confirmed by immunocytochemistry. We also performed in vivo imaging of tumor bearing mice injected with the CB probe and ex vivo imaging of resected tumor xenografts and visceral organs using a living imaging system. Finally, the sources of fluorescence signals in tumor tissue and CB expression in visceral organs were identified by histology. Results CB was absent in normal human esophageal mucosa, but it was overexpressed in ESCC and its precursor lesions. The novel probe for CB activity specifically detected ESCC xenografts in vivo and in vitro. Conclusions CB was highly upregulated in human ESCC and its precursor lesions. The elevated CB expression in ESCC allowed in vivo and in vitro detection of ESCC xenografts in nude mice. Our results support the usefulness of CB activity as a potential imaging target for the detection of human ESCC.
Collapse
Affiliation(s)
- Wei Ma
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
- Department of Radiation Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lie Ma
- Department of Cardiology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hong Zhe
- Department of Radiation Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Cihang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaoqi Yang
- Digestive System Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kai Wang
- Department of Oncology, Wendeng Center Hospital, Weihai, China
| | - Fangli Cao
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, China
| | - Yanna Cheng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
8
|
Reichenbach G, Starzinski-Powitz A, Doll M, Hrgovic I, Valesky EM, Kippenberger S, Bernd A, Kaufmann R, Meissner M. Ligand activation of peroxisome proliferator-activated receptor delta suppresses cathepsin B expression in human endothelial cells in a posttranslational manner. Exp Dermatol 2013; 21:751-7. [PMID: 23078396 DOI: 10.1111/exd.12002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) delta agonists are known to have distinct anti-inflammatory and antitumor effects; though, the knowledge regarding their mode of action has thus far been limited. Different cathepsins have been shown to be upregulated in a broad range of pathological events, such as rheumatoid arthritis, psoriasis, atherosclerosis and diverse tumor entities, for example melanoma. Recent work demonstrated that cathepsin B in particular is an important pro-angiogenic protease in various pathological conditions. We therefore analysed whether cathepsins are a valid target for PPARδ agonists. This study reveals an inhibitory effect of two commonly used PPARδ agonists, GW501516 and L-165,041, on the protein expression and enzyme activity of cathepsin B in human endothelial cells. In contrast, no inhibitory effects were observed on cathepsin L and cathepsin D protein expression after treatment with PPARδ agonists. Furthermore, the results substantiate that PPARδ activators mediate their inhibitory action in a PPARδ-dependent manner and that the underlying regulatory mechanism is not based on a transcriptional but rather on a posttranslational mode of action, via the reduction in the cathepsin B protein half-life. Mechanisms conveying the suppressive effect by 5'-alternative splicing, a 3'-UTR-dependent way or by miRNA could be excluded. The data of this study explore cathepsin B as a new valid target for PPARδ agonists in endothelial cells. The results bolster other studies demonstrating PPARδ agonists as anti-inflammatory and anticarcinogenic agents and thus might have the potential to help to develop new pharmaceutical drugs.
Collapse
Affiliation(s)
- Gabi Reichenbach
- Department of Dermatology, Venereology and Allergology, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Reichenbach G, Starzinski-Powitz A, Sloane BF, Doll M, Kippenberger S, Bernd A, Kaufmann R, Meissner M. PPARα agonist Wy14643 suppresses cathepsin B in human endothelial cells via transcriptional, post-transcriptional and post-translational mechanisms. Angiogenesis 2012; 16:223-33. [PMID: 23096928 DOI: 10.1007/s10456-012-9314-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Cathepsin B has been shown to be important in angiogenesis; therefore, understanding its regulation in endothelial cells should provide fundamental information that will aid in the development of new treatment options. Peroxisome proliferator-activated receptors (PPARs) have been shown to have anti-inflammatory, anti-angiogenic and anti-tumorigenic properties. We explored the influence of a PPARα agonist on cathepsin B expression in human endothelial cells. The PPARα agonist, Wy14643, was found to inhibit cathepsin B protein expression. Further studies demonstrated the Wy14643-dependent but PPARα-independent suppression of cathepsin B. This has been previously described for other PPAR agonists. Wy14643 suppressed the accumulation of cathepsin B mRNA, which was accompanied by the selective suppression of a 5'-alternative splice variant. Consistent with these results, luciferase promoter assays and electrophoretic mobility shift analysis demonstrated that the suppression was facilitated by reduced binding of the transcription factors USF1/2 to an E-box within the cathepsin B promoter. Additionally, Wy14643 treatment resulted in a reduction in cathepsin B half-life, suggesting a posttranslational regulatory mechanism. Overall, our results suggest that the PPARα-dependent anti-angiogenic action of Wy14643 seems to be mediated, in part, by Wy14643-dependent but PPARα-independent regulation of cathepsin B expression.
Collapse
Affiliation(s)
- Gabi Reichenbach
- Department of Dermatology, Venereology and Allergology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nanocarriers as Nanomedicines. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Chen Q, Fei J, Wu L, Jiang Z, Wu Y, Zheng Y, Lu G. Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncol Lett 2011; 2:693-699. [PMID: 22848251 DOI: 10.3892/ol.2011.302] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/17/2011] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to determine the levels of cathepsin B (cath B), cathepsin L (cath L), cystatin C, urokinase plasminogen activator (u-PA) and urokinase plasminogen activator receptor (u-PAR) in the sera of patients with lung cancer compared to healthy controls using ELISA. Concomitantly, the relationship between the components and clinicopathological prognosis was analyzed. The study included 30 healthy volunteers and 105 lung cancer patients. Blood samples were collected and cath B, cath L, cystatin C, u-PA and u-PAR measurements were made using ELISA. Results showed that the levels of cath B, cath L, cystatin C, u-PA and u-PAR were significantly higher in the patient group compared to the healthy controls. The significance was marked for cath B and mild for u-PAR in correlation with lymph node metastasis. There was no significance for other parameters. Notably, patients with a combination of high cystatin C and high cath B levels had significantly lower survival probability as compared to those with cystatin C(+)/cath B(-) or with cystatin C(-)/cath B(-). Similarly, patients with a combination of high u-PA and u-PAR experienced significantly shorter survival. Furthermore, the univariate analysis revealed that cath B, u-PAR, lymph node metastases, stage and grade were related to survival. However, findings of the multivariate Cox analysis indicated that the sera levels of cath B, u-PAR and lymph node metastases may serve as independent prognostic variables in patients with lung cancer.
Collapse
Affiliation(s)
- Qingyong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang 310013
| | | | | | | | | | | | | |
Collapse
|
12
|
Abdel-Hamid NM, El-Moselhy MA, El-Baz A. Hepatocyte Lysosomal Membrane Stabilization by Olive Leaves against Chemically Induced Hepatocellular Neoplasia in Rats. Int J Hepatol 2011; 2011:736581. [PMID: 21994869 PMCID: PMC3170841 DOI: 10.4061/2011/736581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/29/2010] [Accepted: 10/17/2010] [Indexed: 01/27/2023] Open
Abstract
Extensive efforts are exerted looking for safe and effective chemotherapy for hepatocellular carcinoma (HCC). Specific and sensitive early biomarkers for HCC still in query. Present work to study proteolytic activity and lysosomal membrane integrity by hepatocarcinogen, trichloroacetic acid (TCA), in Wistar rats against aqueous olive leaf extract (AOLE).TCA showed neoplastic changes as oval- or irregular-shaped hepatocytes and transformed, vesiculated, and binucleated liver cells. The nuclei were pleomorphic and hyperchromatic. These changes were considerably reduced by AOLE. The results added, probably for the first time, that TCA-induced HCC through disruption of hepatocellular proteolytic enzymes as upregulation of papain, free cathepsin-D and nonsignificant destabilization of lysosomal membrane integrity, a prerequisite for cancer invasion and metastasis. AOLE introduced a promising therapeutic value in liver cancer, mostly through elevating lysosomal membrane integrity. The study substantiated four main points: (1) the usefulness of proteolysis and lysosomalmembrane integrity in early prediction of HCC. (2) TCA carcinogenesis is possibly mediated by lysosomal membrane destabilization, through cathepsin-D disruption, which could be reversed by AOLE administration. (3) A new strategy for management of HCC, using dietary olive leaf system may be a helpful phytotherapeutic trend. (4) A prospective study on serum proteolytic enzyme activity may introduce novel diagnostic tools.
Collapse
Affiliation(s)
- N. M. Abdel-Hamid
- Department of Biochemistry, College of Pharmacy, Minia University, Minia, Egypt,*N. M. Abdel-Hamid:
| | - M. A. El-Moselhy
- Department of Pharmacology, College of Pharmacy, Minia University, Minia, Egypt
| | - A. El-Baz
- Department of Medical Biochemistry, College of Medicine, Mansura University, Mansura, Egypt
| |
Collapse
|
13
|
Shubin AV, Demidyuk IV, Kurinov AM, Demkin VV, Vinogradova TV, Zinovyeva MV, Sass AV, Zborovskaya IB, Kostrov SV. Cathepsin D messenger RNA is downregulated in human lung cancer. Biomarkers 2010; 15:608-13. [PMID: 20722505 DOI: 10.3109/1354750x.2010.504310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Lysosomal proteases cathepsins B and D (CB and CD) play a significant part in cancer progression. For many oncological diseases protein expression levels of CB and CD have been investigated and correlations with tumour characteristics revealed. Meanwhile, there is very little information concerning mRNA expression level. METHODS In the present work, data about mRNA levels of CB and CD in human lung cancer was obtained using reverse transcription followed by real-time polymerase chain reaction. RESULTS For the first time CD and CB mRNA in human lung cancer tumours was quantified. It was shown that CB and CD mRNA levels do not correlate with any tumour characteristics. However, in most analysed tumours, expression of CD mRNA was downregulated compared with adjacent normal tissue (p <0.0003). CONCLUSIONS The data obtained indicate CD mRNA as a potential lung cancer marker.
Collapse
Affiliation(s)
- Andrey V Shubin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Premalignant Variations in Extracellular Matrix Composition in Chemically Induced Hepatocellular Carcinoma in Rats. J Membr Biol 2009; 230:155-62. [DOI: 10.1007/s00232-009-9196-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 07/28/2009] [Indexed: 02/07/2023]
|
15
|
Cordes C, Bartling B, Simm A, Afar D, Lautenschläger C, Hansen G, Silber RE, Burdach S, Hofmann HS. Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer 2008; 64:79-85. [PMID: 18760860 DOI: 10.1016/j.lungcan.2008.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 11/16/2022]
Abstract
PURPOSE Patient survival after resection of non-small cell lung cancer (NSCLC) strongly correlated with the occurrence of distant metastasis. Cathepsins are members of the lysosomal cysteine proteases family and can support the metastatic process by degrading the extracellular matrix. The purpose of this study was to identify members of the Cathepsin family that correlate with recurrence-free and overall survival of NSCLC patients. PATIENTS AND METHODS The expression of 13 Cathepsins was examined using DNA-microarray technology in tumor tissues of 89 surgically treated NSCLC patients. All NSCLC samples were classified according to median Cathepsin expression value into either a high or a low expression group. All Cathepsin expression groups were subjected to clinical prognostic analyses regarding survival and local as well as distant recurrences. RESULTS Patients with high Cathepsin C tumor expression showed higher tumor recurrence rate compared to patients with low Cathepsin C expression (p = 0.02). The tumor expression of Cathepsins K and B significantly correlated with recurrence-free and overall survival as determined by multivariate analysis. A high expression of Cathepsin B or K was associated with a considerable reduction of recurrence-free as well as overall survival. NSCLC patients with a high expression of both Cathepsin B and K had a significantly (p = 0.001) poorer outcome (5-year survival rate: 13%) than patients with low expression of both genes (5-year survival rate: 75%). CONCLUSIONS The combined expression level of Cathepsins B and K identifies high-risk NSCLC patients. A selection of gene expression panels is theoretically superior to established clinical and pathological criteria.
Collapse
Affiliation(s)
- Colja Cordes
- Department of Cardio-Thoracic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 2008; 125:263-72. [PMID: 18053607 DOI: 10.1016/j.jconrel.2007.10.021] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 01/14/2023]
|
17
|
Reisenauer A, Eickelberg O, Wille A, Heimburg A, Reinhold A, Sloane BF, Welte T, Bühling F. Increased carcinogenic potential of myeloid tumor cells induced by aberrant TGF-beta1-signaling and upregulation of cathepsin B. Biol Chem 2007; 388:639-50. [PMID: 17552911 DOI: 10.1515/bc.2007.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The TGF-beta signaling pathways are implicated in cancer. Cysteine cathepsins can contribute to the carcinogenic potential of tumor cells. The aim of this study was to investigate the regulation of cysteine cathepsin expression by TGF-beta1 and the functional implications in tumor cells. We found an upregulation of cathepsin B (CathB, 2- to 5-fold) in different myeloid tumor cells (THP-1, MonoMac-1, MonoMac-6) after incubation with TGF-beta1. No upregulation was found in monocytes, and there was suppression of CathB expression in epithelial tumor cells (A549). Increased cathepsin B activity led to enhanced carcinogenic potential, which was reflected by increased migration and invasion of the cells and resistance to inhibitor-induced apoptosis. Analysis of the TGF-beta signaling pathways showed no alterations in TGF-beta/BMP receptor expression or SMAD2/3 phosphorylation, and no influence of MAP kinase pathways. However, a reduction in SMAD1 expression was detected. The lack of BMP action on cysteine cathepsin expression in myeloid tumor cells, but not in epithelial tumor cells, suggests a defect in the Smad1/Smad5 pathway. We located a related TGF-beta1-responsive element within the first intron of the CathB gene. In conclusion, alterations in the TGF-beta1 signaling pathway lead to upregulation of CathB, which contributes to the carcinogenic potential of tumor cells.
Collapse
|
18
|
Screening of differently expressed genes in human prostate cancer cell lines with different metastasis potentials. ACTA ACUST UNITED AC 2007; 27:582-5. [DOI: 10.1007/s11596-007-0527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Indexed: 02/04/2023]
|
19
|
Figueiredo JL, Alencar H, Weissleder R, Mahmood U. Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer. Int J Cancer 2006; 118:2672-7. [PMID: 16380983 DOI: 10.1002/ijc.21713] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Improvement in tumor detection using "smart" probes in combination with microcatheter fluorescence thoracoscopy was evaluated in a mouse model. These imaging probes increase in fluorescence intensity after protease activation; cathepsin B is a major activator of the probes used in this study. Lewis lung carcinoma cells were orthotopically implanted in the subpleural lung parenchyma. Two activatable near infrared (NIR) probes with different excitation and emission wavelength were administered intravenously to determine whether wavelength would modulate target to background ratio (TBR). Mice were selectively intubated and thoracoscopy performed. A 0.8 mm outer diameter imaging catheter was used to record simultaneous white-light (anatomic) and NIR (protease expression) images. At both wavelength pairs evaluated (680/700 and 750/780 nm excitation/emission), the intrinsic luminosity differences between tumors and normal lung in uninjected animals was low (p > 0.3 and p = 0.4, respectively and TBR near 1). In mice receiving protease probes IV, tumors were significantly more fluorescent than adjacent lung (p < 0.0005 for 680/700 and p < 0.006 for 750/780) and TBR increased to approximately 9-fold. Confirmatory fluorescence microscopy and immunohistochemistry were similar and revealed that normal lung had very low levels when compared to tumors of cathepsin B and probe fluorescence. In conclusion, protease sensitive imaging probes selective for cathepsin B, imaged with NIR microcatheters, significantly increase the TBR, making small peripheral lung tumors more readily apparent. Such an approach may be a useful adjunct in staging or restaging patients with lung cancer to find minimal disease in the pleural and subpleural space.
Collapse
Affiliation(s)
- Jose-Luiz Figueiredo
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
20
|
Hishizawa M, Imada K, Sakai T, Nishikori M, Arima N, Tsudo M, Ishikawa T, Uchiyama T. Antibody Responses Associated with the Graft-versus-Leukemia Effect in Adult T-Cell Leukemia. Int J Hematol 2006; 83:351-5. [PMID: 16757438 DOI: 10.1532/ijh97.05173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult T-cell leukemia (ATL) is a peripheral T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATL, especially the acute and lymphoma subtypes, is poor with conventional and high-dose chemotherapy. The effectiveness of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for ATL has been reported, suggesting the presence of a graft-versus-leukemia (GVL) effect against this malignancy. To identify the target antigens associated with tumor rejection, we used SEREX (serological identification of antigens by recombinant cDNA expression cloning) to screen ATL complementary DNA expression libraries with sera from an ATL patient who had a GVL response after allo-HSCT. Among the isolated clones, autocrine motility factor receptor (AMFR), which encodes a glycosylated transmembrane protein, was found to have selective reactivity with the sera obtained during tumor regression. Real-time reverse transcription polymerase chain reaction analysis for AMFR showed highest expression in the testis among normal tissues. Furthermore, aberrant AMFR expression was found in at least some ATL patients. Taken together, these findings suggest that AMFR may be one of the GVL antigens that provoke effective antitumor immunity against ATL in allogeneic settings.
Collapse
MESH Headings
- Antibody Formation/genetics
- Antibody Formation/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Gene Library
- Graft vs Leukemia Effect/genetics
- Graft vs Leukemia Effect/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Male
- Middle Aged
- Organ Specificity
- Receptors, Autocrine Motility Factor
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Transplantation, Homologous
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chu JH, Sun ZY, Meng XL, Wu JH, He GL, Liu GM, Jiang XR. Differential metastasis-associated gene analysis of prostate carcinoma cells derived from primary tumor and spontaneous lymphatic metastasis in nude mice with orthotopic implantation of PC-3M cells. Cancer Lett 2006; 233:79-88. [PMID: 15885894 DOI: 10.1016/j.canlet.2005.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/20/2005] [Accepted: 03/01/2005] [Indexed: 01/29/2023]
Abstract
The purpose of these studies was to explore the genes associated with invasion and metastasis of human prostatic carcinoma line PC-3M in nude mice. After PC-3M cells were inoculated in orthotopic site (prostate) in male nude mice for two months, tumor cells were isolated from primary tumor and lymph node metastasis in the same mouse, respectively. Cell invasion and adhesion ability in vitro were first compared between two cell lines. Then human metastasis-related genes differentially expressed between them were analyzed by utilizing cDNA microarray technique. The in vitro cell invasion and adhesion potential of tumor cells from lymph node metastasis was significantly higher than those from primary tumor, Metastasis-related genes differentially expressed between those two cell lines were identified, all of them were up-regulated in the tumor cells from lymph node metastasis and could be categorized as: (1) genes encoding cellular matrix-degrading proteolytic enzyme including cathepsin and MMP; (2) genes encoding transcription factors; (3) genes related to heterotypic adhesion of tumor cells; (4) genes encoding cell surface receptors. Moreover, Four genes were chosen for semi-quantitative RT-PCR analysis, they showed a consistent expression pattern with that of cDNA microarray analysis. We concluded that the lymph node metastasis in nude mice given an injection of PC-3M cells in the prostate is a selective process favoring the survival and growth of a special subpopulation derived from primary tumor with specific genetic alterations, which may play a pivotal role in the metastasis of prostate cancer. Identification and further characterization of these genes may allow a better understanding of lymphatic metastasis in prostate carcinoma.
Collapse
Affiliation(s)
- Jian Hong Chu
- Department of Pharmacology and Toxicology, Shanghai Institute of Planned Parenthood Research, Fudan University. National Evaluation Center for the Toxicology of Fertility and Regulating Drugs, Shanghai, 200032, P.R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Keppler D. Towards novel anti-cancer strategies based on cystatin function. Cancer Lett 2006; 235:159-76. [PMID: 15893421 DOI: 10.1016/j.canlet.2005.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 04/01/2005] [Indexed: 02/04/2023]
Abstract
Cystatins have recently emerged as important players in a multitude of physiological and patho-physiological settings that range from cell survival and proliferation, to differentiation, cell signaling and immunomodulation. This group of cysteine protease inhibitors forms a large super-family of proteins composed of one, two, three, and, in some species, more than three cystatin domains. Over the last 20 years or so, members of the cystatin super-family have been primarily explored with respect to their capacity to inhibit intracellular cysteine proteases. Yet, this classical mode of action does not fully explain their remarkably diverse biological functions. Due to the space limitations, the author will discuss here the most recent findings that suggest that some of the single-domain, cytoplasmic and cell-secreted cystatins may play important roles in the promotion or suppression of tumor growth, invasion and metastasis. Based on the present understanding of cystatin function, novel avenues for anti-cancer strategies are proposed.
Collapse
Affiliation(s)
- Daniel Keppler
- Department of Cellular Biology and Anatomy and Feist-Weiller Cancer Center, School of Medicine, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130, USA.
| |
Collapse
|
23
|
Kos J, Sekirnik A, Premzl A, Zavasnik Bergant V, Langerholc T, Turk B, Werle B, Golouh R, Repnik U, Jeras M, Turk V. Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp Cell Res 2005; 306:103-13. [PMID: 15878337 DOI: 10.1016/j.yexcr.2004.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/07/2004] [Accepted: 12/08/2004] [Indexed: 01/09/2023]
Abstract
Cathepsin X, a recently discovered lysosomal cysteine protease, shares common structural features and activity properties with cysteine protease cathepsin B. Based on its widespread mRNA distribution in primary tumors and tumor cell lines, a redundant function in tumor progression has been proposed. In this study, we have shown that these two related proteases exhibit different profiles with respect to their protein distribution in cells and tissues and to their possible roles in malignancy. Protein level of cathepsin X did not differ significantly between matched pairs of lung tumor and adjacent lung tissue obtained from patients with lung cancer whereas that of cathepsin B was 9.6-fold higher in tumor compared to adjacent lung tissue. Immunohistochemical analysis of lung tumor cathepsin X revealed very faint staining in tumor cells but positive staining in infiltrated histiocytes, alveolar macrophages, bronchial epithelial cells, and alveolar type II cells. Cathepsin X stained positive also in CD68+ cells in germinal centers of secondary follicles in lymph nodes, corresponding to tingible body macrophages. Two cell lines with proven invasive behavior, MCF-10A neoT and MDA-MB 231, showed positive staining for cathepsin B, but negative for cathepsin X. We showed that the invasive potential of MCF-10A neoT cells can be impaired by specific inhibitor of cathepsin B but not by that of cathepsin X. Cathepsin X was found in large amounts in the pro-monocytic U-937 cell line, in monocytes and in dendritic cells, generated from monocytes in vitro. Our results show that cathepsin X is not involved in degradation of extracellular matrix, a proteolytic event leading to tumor cell invasion and metastasis. Its expression, restricted to immune cells suggests a role in phagocytosis and the regulation of immune response.
Collapse
Affiliation(s)
- Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Proteases play causal roles in the malignant progression of human tumors. This review centers on the roles in this process of cysteine cathepsins, i.e., peptidases belonging to the papain family (C1) of the CA clan of cysteine proteases. Cysteine cathepsins, most likely along with matrix metalloproteases (MMPs) and serine proteases, degrade the extracellular matrix, thereby facilitating growth and invasion into surrounding tissue and vasculature. Studies on tumor tissues and cell lines have shown changes in expression, activity and distribution of cysteine cathepsins in numerous human cancers. Molecular, immunologic and pharmacological strategies to modulate expression and activity of cysteine cathepsins have provided evidence for a causal role for these enzymes in tumor progression and invasion. Clinically, the levels, activities and localization of cysteine cathepsins and their endogenous inhibitors have been shown to be of diagnostic and prognostic value. Understanding the roles that cysteine proteases play in cancer could lead to the development of more efficacious therapies.
Collapse
|
25
|
Langerholc T, Zavasnik-Bergant V, Turk B, Turk V, Abrahamson M, Kos J. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J 2005; 272:1535-45. [PMID: 15752368 DOI: 10.1111/j.1742-4658.2005.04594.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cystatin F is a recently discovered type II cystatin expressed almost exclusively in immune cells. It is present intracellularly in lysosome-like vesicles, which suggests a potential role in regulating papain-like cathepsins involved in antigen presentation. Therefore, interactions of cystatin F with several of its potential targets, cathepsins F, K, V, S, H, X and C, were studied in vitro. Cystatin F tightly inhibited cathepsins F, K and V with Ki values ranging from 0.17 nM to 0.35 nM, whereas cathepsins S and H were inhibited with 100-fold lower affinities (Ki approximately 30 nM). The exopeptidases, cathepsins C and X were not inhibited by cystatin F. In order to investigate the biological significance of the inhibition data, the intracellular localization of cystatin F and its potential targets, cathepsins B, H, L, S, C and K, were studied by confocal microscopy in U937 promonocyte cells. Although vesicular staining was observed for all the enzymes, only cathepsins H and X were found to be colocalized with the inhibitor. This suggests that cystatin F in U937 cells may function as a regulatory inhibitor of proteolytic activity of cathepsin H or, more likely, as a protection against cathepsins misdirected to specific cystatin F containing endosomal/lysosomal vesicles. The finding that cystatin F was not colocalized with cystatin C suggests distinct functions for these two cysteine protease inhibitors in U937 cells.
Collapse
Affiliation(s)
- Tomaz Langerholc
- Department of Biochemistry and Molecular Biology, JoZef Stefan Institute, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
26
|
Eiján AM, Sandes EO, Riveros MD, Thompson S, Pasik L, Mallagrino H, Celeste F, Casabé AR. High expression of cathepsin B in transitional bladder carcinoma correlates with tumor invasion. Cancer 2003; 98:262-8. [PMID: 12872343 DOI: 10.1002/cncr.11493] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cathepsin B (CB) is a lysosomal cysteine proteinase synthesized as a zymogen of 39-47 kilodaltons (kD), which is subsequently converted into an active single- chain form of 33 kD (CB33) and, by additional processing, into the active 2-chain form containing a heavy chain of 27-29 kD (CB(27-29)) and a light chain of 4-6 kD. Increased or altered CB expression has been documented in a variety of tumor cells, but to the authors' knowledge only one study published to date has reported clinicopathologic significance for CB in transitional cell carcinoma (TCC) of the bladder. METHODS In this work, CB expression was determined by Western blot analysis in TCC bladder tissue from 30 patients. Nontumor bladder tissue was also analyzed for CB expression. RESULTS The study results demonstrate higher expression of CB in TCC invasive tumors than in superficial bladder carcinoma. Furthermore, whereas normal bladder only expressed the 29-kD CB protein, tumor and peritumoral tissue demonstrated the 27- to 29-kD CB form. Immunohistochemical staining did not evidence changes in CB localization between tumor and nontumor tissue. CONCLUSIONS According to the results of the current study, bladder tumor progression appears to be associated with quantitative changes in CB protein expression, as well as with qualitative changes related to the type of CB expressed.
Collapse
Affiliation(s)
- Ana M Eiján
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Scorilas A, Fotiou S, Tsiambas E, Yotis J, Kotsiandri F, Sameni M, Sloane BF, Talieri M. Determination of cathepsin B expression may offer additional prognostic information for ovarian cancer patients. Biol Chem 2002; 383:1297-303. [PMID: 12437120 DOI: 10.1515/bc.2002.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The lysosomal cysteine proteinase cathepsin B has been implicated in the progression of various human tumors including ovarian cancer. Included in this study were 63 patients with epithelial ovarian carcinoma. Follow-up information (median follow-up period 7 years) was available for all patients, among whom 42 (66.7%) had relapsed and 32 (50.8%) had died. The immunohistochemistry method was adopted for the detection of cathepsin B using paraffin embedded specimens. Results were compared to clinico-pathological data. Statistical analysis showed cathepsin B expression to be significantly associated with the stage of disease, debulking success and interestingly, with progesterone receptors. It was also inversely related to progression-free survival (PFS) and overall survival (OS). Accordingly, cathepsin B can be regarded as unfavorable and as an independent tumor marker for progression-free survival and overall survival in ovarian cancer patients with long follow-up.
Collapse
|
28
|
Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 2002; 13:554-60. [PMID: 12009946 DOI: 10.1021/bc015555d] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of quantitative three-dimensional tomographic near-infrared fluorescence imaging techniques have recently been developed and combined with MR imaging to yield highly detailed anatomic and molecular information in living organisms (1, 2). Here we describe magnetic nanoparticle based MR contrast agents that have a near-infrared fluorescence (NIRF) that is activated by certain enzymes. The probes are prepared by conjugation of arginyl peptides to cross-linked iron oxide amine (amino-CLIO), either by a disulfide linkage or a thioether linker, followed by the attachment of the indocyanine dye Cy5.5. The NIRF of disulfide-linked conjugate was activated by DTT, while the NIRF of thioether-linked conjugate was activated by trypsin. Fluorescent quenching of the attached fluorochrome occurs in part due to the interaction with iron oxide, as evident by the activation of fluorescence with DTT when nanoparticles that have less than one dye attached per particle. With a SC injection of the probe, axillary and brachial lymph nodes were darkened on MR images and easily delineated by NIRF imaging. The probes may provide the basis for a new class of so-called smart nanoparticles, capable of pinpointing their position through their magnetic properties, while providing information on their environment by optical imaging techniques.
Collapse
Affiliation(s)
- Lee Josephson
- Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | | | | | |
Collapse
|
29
|
Turk V, Turk B, Guncar G, Turk D, Kos J. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. ADVANCES IN ENZYME REGULATION 2002; 42:285-303. [PMID: 12123721 DOI: 10.1016/s0065-2571(01)00034-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vito Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|