1
|
Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10:26. [PMID: 38218739 PMCID: PMC10787834 DOI: 10.1038/s41420-024-01809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This "neutrophil cannibalism" is accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Wang R, Wang Y, Liu X, Liu M, Sun L, Pan X, Hu H, Jiang B, Zou Y, Liu Q, Gong Y, Wang M, Sun G. Anastasis enhances metastasis and chemoresistance of colorectal cancer cells through upregulating cIAP2/NFκB signaling. Cell Death Dis 2023; 14:388. [PMID: 37391410 PMCID: PMC10313691 DOI: 10.1038/s41419-023-05916-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Chemotherapy is a common strategy to treat cancer. However, acquired resistance and metastasis are the major obstacles to successful treatment. Anastasis is a process by which cells survive executioner caspase activation when facing apoptotic stress. Here we demonstrate that colorectal cancer cells can undergo anastasis after transient exposure to chemotherapeutic drugs. Using a lineage tracing system to label and isolate cells that have experienced executioner caspase activation in response to drug treatment, we show that anastasis grants colorectal cancer cells enhanced migration, metastasis, and chemoresistance. Mechanistically, treatment with chemotherapeutic drugs induces upregulated expression of cIAP2 and activation of NFκB, which are required for cells to survive executioner caspase activation. The elevated cIAP2/NFκB signaling persists in anastatic cancer cells to promote migration and chemoresistance. Our study unveils that cIAP2/NFκB-dependent anastasis promotes acquired resistance and metastasis after chemotherapy.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohe Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Menghao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
4
|
Sun L, Yao C, Li X, Wang Y, Wang R, Wang M, Liu Q, Montell DJ, Shao C, Gong Y, Sun G. Anastasis confers ovarian cancer cells increased malignancy through elevated p38 MAPK activation. Cell Death Differ 2023; 30:809-824. [PMID: 36447048 PMCID: PMC9984481 DOI: 10.1038/s41418-022-01081-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Activation of executioner caspases was once considered as a point of no return in apoptosis. However, in recent years, accumulating evidence has demonstrated that cells can survive executioner caspase activation in response to apoptotic stimuli through a process called anastasis. In this study, we developed a reporter system, mCasExpress, to track mammalian cells that survive executioner caspase activation. We demonstrate that anastatic ovarian cancer cells acquire enhanced migration following their transient exposure to apoptotic stimulus TRAIL or Paclitaxel. Moreover, anastatic cancer cells secrete more pro-angiogenic factors that enable tumor angiogenesis, growth and metastasis. Mechanistically, we demonstrate that activation of p38 MAPK, which occurs in a caspase-dependent manner in response to apoptotic stress to promote anastasis, persists at a higher level in anastatic cancer cells even after removal of apoptotic stimuli. Importantly, p38 is essential for the elevated migratory and angiogenic capacity in the anastatic cells. Our work unveils anastasis as a potential driver of tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Yao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaojiao Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, 215123, Jiangsu, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci 2022; 23:ijms23031328. [PMID: 35163253 PMCID: PMC8836235 DOI: 10.3390/ijms23031328] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer growth represents a dysregulated imbalance between cell gain and cell loss, where the rate of proliferating mutant tumour cells exceeds the rate of those that die. Apoptosis, the most renowned form of programmed cell death, operates as a key physiological mechanism that limits cell population expansion, either to maintain tissue homeostasis or to remove potentially harmful cells, such as those that have sustained DNA damage. Paradoxically, high-grade cancers are generally associated with high constitutive levels of apoptosis. In cancer, cell-autonomous apoptosis constitutes a common tumour suppressor mechanism, a property which is exploited in cancer therapy. By contrast, limited apoptosis in the tumour-cell population also has the potential to promote cell survival and resistance to therapy by conditioning the tumour microenvironment (TME)-including phagocytes and viable tumour cells-and engendering pro-oncogenic effects. Notably, the constitutive apoptosis-mediated activation of cells of the innate immune system can help orchestrate a pro-oncogenic TME and may also effect evasion of cancer treatment. Here, we present an overview of the implications of cell death programmes in tumour biology, with particular focus on apoptosis as a process with "double-edged" consequences: on the one hand, being tumour suppressive through deletion of malignant or pre-malignant cells, while, on the other, being tumour progressive through stimulation of reparatory and regenerative responses in the TME.
Collapse
|
7
|
Haak VM, Huang S, Panigrahy D. Debris-stimulated tumor growth: a Pandora's box? Cancer Metastasis Rev 2021; 40:791-801. [PMID: 34665387 PMCID: PMC8524220 DOI: 10.1007/s10555-021-09998-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell “debris” which can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically linked to treatment by stimulating resolution of tumor-promoting debris.
Collapse
Affiliation(s)
- Victoria M Haak
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Abstract
Cancer therapy, such as chemotherapy, induces tumor cell death (“debris”), which can stimulate metastasis. Chemotherapy-generated debris upregulates soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4), which triggers a macrophage-derived storm of proinflammatory and proangiogenic lipid autacoid and cytokine mediators. Although sEH inhibitors and EP4 antagonists are in clinical development for multiple inflammatory diseases, their combined role in cancer is unknown. Here, we show that the synergistic antitumor activity of sEH and EP4 inhibition suppresses hepato-pancreatic tumor growth, without overt toxicity, via macrophage phagocytosis of debris and counterregulation of a debris-stimulated cytokine storm. Thus, stimulating the resolution of inflammation via combined inhibition of sEH and EP4 may be an approach for preventing metastatic progression driven by cancer therapy. Cancer therapy reduces tumor burden via tumor cell death (“debris”), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.
Collapse
|
9
|
Khodavirdipour A, Piri M, Jabbari S, Keshavarzi S, Safaralizadeh R, Alikhani MY. Apoptosis Detection Methods in Diagnosis of Cancer and Their Potential Role in Treatment: Advantages and Disadvantages: a Review. J Gastrointest Cancer 2021; 52:422-430. [PMID: 33392962 DOI: 10.1007/s12029-020-00576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Interruption of regulation of apoptosis can play a leading role in cancers where elevated apoptosis causes neurodegeneration, autoimmunity, AIDS, and ischemia. One famous example can be p53's downregulation, which is a tumor suppressor gene, which consequently can cause a decrease in apoptosis rate and intense tumor growth and progression and development and inactivation of 53; it can be extended to many cancers in human. Anyhow, apoptosis is a double-edge sword. There are many trials and studies are going on observation and understanding of different steps involved in apoptosis. Apoptosis has a very major role in carcinogenesis and the treatment of cancer. AIM In this updated-cum-comprehensive review, we would like to cover what is apoptosis and cancer and also, will discuss all known methods of apoptosisdetection, their applicability in the treatment of cancer, and their advantages, disadvantages, and limitations. MATERIAL AND METHODS Published articles on indexing sources such as PubMed, Scopus from 2000 to date. RESULT By considering all above information including each methods pros and cons, these routine methods could be great tool with distinctive qualities in treatmentwhich can be great help from patient perspective and as well from government ad health care system point of view. CONCLUSION Accurate diagnosis of cell apoptotic biopathways at different stages assists in evaluating near to exact apoptotic index, which is the perfect sign andindicator for metastasis and also prognosis, thus foreseeing treatment outcome.
Collapse
Affiliation(s)
- Amir Khodavirdipour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Division of Human Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Motahareh Piri
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Sarvin Jabbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shiva Keshavarzi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
10
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
11
|
Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proc Natl Acad Sci U S A 2020; 117:21576-21587. [PMID: 32801214 DOI: 10.1073/pnas.2007412117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.
Collapse
|
12
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
14
|
Ye Y, Scheff NN, Bernabé D, Salvo E, Ono K, Liu C, Veeramachaneni R, Viet CT, Viet DT, Dolan JC, Schmidt BL. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology 2018; 139:182-193. [PMID: 30009833 DOI: 10.1016/j.neuropharm.2018.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/23/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022]
Abstract
Oral cancer is often painful and lethal. Oral cancer progression and pain may result from shared pathways that involve unresolved inflammation and elevated levels of pro-inflammatory cytokines. Resolvin D-series (RvDs) are endogenous lipid mediators derived from omega-3 fatty acids that exhibit pro-resolution and anti-inflammatory actions. These mediators have recently emerged as a novel class of therapeutics for diseases that involve inflammation; the specific roles of RvDs in oral cancer and associated pain are not defined. The present study investigated the potential of RvDs (RvD1 and RvD2) to treat oral cancer and alleviate oral cancer pain. We found down-regulated mRNA levels of GPR18 and GPR32 (which code for receptors RvD1 and RvD2) in oral cancer cells. Both RvD1 and RvD2 inhibited oral cancer proliferation in vitro. Using two validated mouse oral squamous cell carcinoma xenograft models, we found that RvD2, the more potent anti-inflammatory lipid mediator, significantly reduced tumor size. The mechanism of this action might involve suppression of IL-6, C-X-C motif chemokine 10 (CXCL10), and reduction of tumor necrosis. RvD2 generated short-lasting analgesia in xenograft cancer models, which coincided with decreased neutrophil infiltration and myeloperoxidase activity. Using a cancer supernatant model, we demonstrated that RvD2 reduced cancer-derived cytokines/chemokines (TNF-α, IL-6, CXCL10, and MCP-1), cancer mediator-induced CD11b+Ly6G- myeloid cells, and nociception. We infer from our results that manipulation of the endogenous pro-resolution pathway might provide a novel approach to improve oral cancer and cancer pain treatment.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA.
| | - Nicole N Scheff
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Daniel Bernabé
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Kentaro Ono
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - Cheng Liu
- Head and Neck Pathology, Langone Medical Center, USA
| | | | - Chi T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| | - Dan T Viet
- Bluestone Center for Clinical Research, College of Dentistry, USA
| | - John C Dolan
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Orthodontics, New York University, New York, NY, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, College of Dentistry, USA; Department of Oral and Maxillofacial Surgery, College of Dentistry, USA
| |
Collapse
|
15
|
Chang J, Bhasin SS, Bielenberg DR, Sukhatme VP, Bhasin M, Huang S, Kieran MW, Panigrahy D. Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin. FASEB J 2018; 33:114-125. [PMID: 29957058 PMCID: PMC6355061 DOI: 10.1096/fj.201800019rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Colon cancer recurrence after therapy, such as 5-fluorouracil (5-FU), remains a challenge in the clinical setting. Chemotherapy reduces tumor burden by inducing cell death; however, the resulting dead tumor cells, or debris, may paradoxically stimulate angiogenesis, inflammation, and tumor growth. Here, we demonstrate that 5-FU–generated colon carcinoma debris stimulates the growth of a subthreshold inoculum of living tumor cells in subcutaneous and orthotopic models. Debris triggered the release of osteopontin (OPN) by tumor cells and host macrophages. Both coinjection of debris and systemic treatment with 5-FU increased plasma OPN levels in tumor-bearing mice. RNA expression levels of secreted phosphoprotein 1, the gene that encodes OPN, correlate with poor prognosis in patients with colorectal cancer and are elevated in chemotherapy-treated patients who experience tumor recurrence vs. no recurrence. Pharmacologic and genetic ablation of OPN inhibited debris-stimulated tumor growth. Systemic treatment with a combination of a neutralizing OPN antibody and 5-FU dramatically inhibited tumor growth. These results demonstrate a novel mechanism of tumor progression mediated by OPN released in response to chemotherapy-generated tumor cell debris. Neutralization of debris-stimulated OPN represents a potential therapeutic strategy to overcome the inherent limitation of cytotoxic therapies as a result of the generation of cell debris.—Chang, J., Bhasin, S. S., Bielenberg, D. R., Sukhatme, V. P., Bhasin, M., Huang, S., Kieran, M. W., Panigrahy, D. Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin.
Collapse
Affiliation(s)
- Jaimie Chang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati S Bhasin
- Division of Interdisciplinary Medicine and Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Vikas P Sukhatme
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Abstract
Within an organism, environmental stresses can trigger cell death, particularly apoptotic cell death. Apoptotic cells, themselves, are potent regulators of their cellular environment, involved primarily in effecting homeostatic control. Tumors, especially, exist in a dynamic balance of cell proliferation and cell death. This special feature of the tumorous microenvironment—namely, the prominence and persistence of cell death—necessarily entails a magnification of the extrinsic, postmortem effects of dead cells. In both normal and malignant tissues, apoptotic regulation is exerted through immune as well as non-immune mechanisms. Apoptotic cells suppress the repertoire of immune reactivities, both by attenuating innate (especially inflammatory) responses and by abrogating adaptive responses. In addition, apoptotic cells modulate multiple vital cell activities, including survival, proliferation (cell number), and growth (cell size). While the microenvironment of the tumor may contribute to apoptosis, the postmortem effects of apoptotic cells feature prominently in the reciprocal acclimatization between the tumor and its environment. In much the same way that pathogens evade the host’s defenses through exploitation of key aspects of innate and adaptive immunity, cancer cells subvert several normal homeostatic processes, in particular wound healing and organ regeneration, to transform and overtake their environment. In understanding this subversion, it is crucial to view a tumor not simply as a clone of malignant cells, but rather as a complex and highly organized structure in which there exists a multidirectional flow of information between the cancer cells themselves and the multiple other cell types and extracellular matrix components of which the tumor is comprised. Apoptotic cells, therefore, have the unfortunate consequence of facilitating tumorigenesis and tumor survival.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, United States
| | - Jerrold S Levine
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
17
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ 2017; 24:971-983. [PMID: 28157210 PMCID: PMC5442466 DOI: 10.1038/cdd.2016.132] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 11/08/2022] Open
Abstract
In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters – typically antitumor – in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3 drive key oncogenic mechanisms in NHL. These findings have important implications for anticancer therapeutic approaches aimed at polarizing macrophages towards an antitumor state and identify galectin-3 as a potentially important novel target in aggressive NHL.
Collapse
|
19
|
Abstract
Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.
Collapse
Affiliation(s)
- Gabriel Ichim
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
20
|
Gregory CD, Ford CA, Voss JJLP. Microenvironmental Effects of Cell Death in Malignant Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:51-88. [PMID: 27558817 DOI: 10.1007/978-3-319-39406-0_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Christopher D Gregory
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
| | - Catriona A Ford
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Jorine J L P Voss
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
21
|
Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: An insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype. Tumour Biol 2015; 37:5609-20. [PMID: 26577856 DOI: 10.1007/s13277-015-4415-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common human malignancy. According to World Health Organization, oral cancer has been reported to have the highest morbidity and mortality and a survival rate of approximately 50 % at 5 years from diagnosis. This is attributed to the subjectivity in TNM staging and histological grading which may result in less than optimum treatment outcomes including tumour recurrence. One of the hallmarks of cancer is aerobic glycolysis also known as the Warburg effect. This glycolytic phenotype (hypoxic state) not only confers immortality to cancer cells, but also correlates with the belligerent behaviour of various malignancies and is reflected as an increase in the expression of lactate dehydrogenase 5 (LDH-5), the main isoform of LDH catalysing the conversion of pyruvate to lactate during glycolysis. The diagnostic role of salivary LDH in assessing the metabolic phenotype of oral cancer has not been studied. Since salivary LDH is mainly sourced from oral epithelial cells, any pathological changes in the epithelium should reflect diagnostically in saliva. Thus in our current research, we made an attempt to ascertain the biological behaviour and aggressiveness of OSCC by appraising its metabolic phenotype as indirectly reflected in salivary LDH activity. We found that salivary LDH can be used to assess the aggressiveness of different histological grades of OSCC. For the first time, an evidence of differing metabolic behaviour in similar histologic tumour grade is presented. Taken together, our study examines the inclusion of salivary LDH as potential diagnostic parameter and therapeutic index in OSCC.
Collapse
|
22
|
Ford CA, Petrova S, Pound JD, Voss JJLP, Melville L, Paterson M, Farnworth SL, Gallimore AM, Cuff S, Wheadon H, Dobbin E, Ogden CA, Dumitriu IE, Dunbar DR, Murray PG, Ruckerl D, Allen JE, Hume DA, van Rooijen N, Goodlad JR, Freeman TC, Gregory CD. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Curr Biol 2015; 25:577-88. [PMID: 25702581 PMCID: PMC4353688 DOI: 10.1016/j.cub.2014.12.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022]
Abstract
Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Apoptotic lymphoma cells promote tumor growth, angiogenesis, and TAM accumulation Unbiased “in situ transcriptomics” analysis shows TAMs promote pro-tumor pathways Apoptotic tumor cells express and process matrix remodeling proteins The oncogenic potential of apoptotic tumor cells extends beyond lymphoma
Collapse
Affiliation(s)
- Catriona A Ford
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sofia Petrova
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John D Pound
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jorine J L P Voss
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lynsey Melville
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Margaret Paterson
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah L Farnworth
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Awen M Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simone Cuff
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow G12 0XB, UK
| | - Edwina Dobbin
- University of Edinburgh Departments of Haematology and Pathology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Carol Anne Ogden
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ingrid E Dumitriu
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Donald R Dunbar
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paul G Murray
- Cancer Research United Kingdom (CRUK) Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Dominik Ruckerl
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - David A Hume
- The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Nico van Rooijen
- Department of Molecular and Cell Biology, Free University Medical Centre, P.O. Box 7057, 1007 MB Amsterdam, the Netherlands
| | - John R Goodlad
- University of Edinburgh Departments of Haematology and Pathology, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Tom C Freeman
- The Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Christopher D Gregory
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
23
|
Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 2014; 9:86-97. [PMID: 25431113 DOI: 10.1002/prca.201400091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the worldwide concerned cancer. In spite of the advances in treatment, the 5-year survival rate has only increased subtly during the past two decades, which is largely due to the advanced stages of disease at diagnosis and the frequent development of relapse and second primary tumors. Therefore, the identification of underlying OSCC protein biomarker during cancer initiation and progression could aid the diagnosis and treatment of OSCC. In this review, recent researches on proteomics analysis of tissue, saliva, and serum for early detection and evaluation aggressiveness and occurrence of OSCC were summarized. The emphasis is placed on early detection by tissues, saliva, and serum of patients with histologically defined OSCC patients. Although lots of researches for searching OSCC protein biomarker have done, few common protein biomarkers have been detected. Low-redundant protein in tissues, saliva, and serum from OSCC may more accurately reflected the progression of OSCC, so novel approach for the depth research strategy and the sample choice for proteomics are of importance in OSCC biomarker discovery.
Collapse
Affiliation(s)
- Yan-hong Ni
- Nanjing Stomatological Hospital and the State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology, Nanjing University, Nanjing, P. R. China
| | | | | | | |
Collapse
|
24
|
Schaper FLWVJ, Reutelingsperger CP. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies. Cancers (Basel) 2013; 5:550-68. [PMID: 24216991 PMCID: PMC3730331 DOI: 10.3390/cancers5020550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/13/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022] Open
Abstract
Evaluation of efficacy of anti-cancer therapy is currently performed by anatomical imaging (e.g., MRI, CT). Structural changes, if present, become apparent 1-2 months after start of therapy. Cancer patients thus bear the risk to receive an ineffective treatment, whilst clinical trials take a long time to prove therapy response. Both patient and pharmaceutical industry could therefore profit from an early assessment of efficacy of therapy. Diagnostic methods providing information on a functional level, rather than a structural, could present the solution. Recent technological advances in molecular imaging enable in vivo imaging of biological processes. Since most anti-cancer therapies combat tumors by inducing apoptosis, imaging of apoptosis could offer an early assessment of efficacy of therapy. This review focuses on principles of and clinical experience with molecular imaging of apoptosis using Annexin A5, a widely accepted marker for apoptosis detection in vitro and in vivo in animal models. 99mTc-HYNIC-Annexin A5 in combination with SPECT has been probed in clinical studies to assess efficacy of chemo- and radiotherapy within 1-4 days after start of therapy. Annexin A5-based functional imaging of apoptosis shows promise to offer a personalized medicine approach, now primarily used in genome-based medicine, applicable to all cancer patients.
Collapse
Affiliation(s)
- Frédéric L W V J Schaper
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, MUMC, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
25
|
Polachini GM, Sobral LM, Mercante AMC, Paes-Leme AF, Xavier FCA, Henrique T, Guimarães DM, Vidotto A, Fukuyama EE, Góis-Filho JF, Cury PM, Curioni OA, Michaluart Jr P, Silva AMA, Wünsch-Filho V, Nunes FD, Leopoldino AM, Tajara EH. Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One 2012; 7:e50517. [PMID: 23227181 PMCID: PMC3515627 DOI: 10.1371/journal.pone.0050517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022] Open
Abstract
The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.
Collapse
Affiliation(s)
- Giovana M. Polachini
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Lays M. Sobral
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Adriana F. Paes-Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Flávia C. A. Xavier
- Departamento de Propedêutica e Clínica Integrada, Faculdade de Odontologia da Universidade Federal da Bahia, Salvador,BA, Brazil
| | - Tiago Henrique
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Douglas M. Guimarães
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandra Vidotto
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Erica E. Fukuyama
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - José F. Góis-Filho
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - Patricia M. Cury
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Otávio A. Curioni
- Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital Heliópolis, São Paulo, SP, Brazil
| | - Pedro Michaluart Jr
- Divisão de Cirurgia de Cabeça e Pescoço, Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana M. A. Silva
- Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Victor Wünsch-Filho
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio D. Nunes
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andréia M. Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eloiza H. Tajara
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências da Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
26
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|
27
|
Loose D, Vermeersch H, De Vos F, Deron P, Slegers G, Van de Wiele C. Prognostic value of 99mTc-HYNIC Annexin-V imaging in squamous cell carcinoma of the head and neck. Eur J Nucl Med Mol Imaging 2007; 35:47-52. [PMID: 17906858 DOI: 10.1007/s00259-007-0577-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE The purpose of the study was to report on the prognostic value of (99m)Tc-hydrazinonicotinamide (HYNIC) Annexin-V single-photon emission computed tomography (SPECT) imaging in patients suffering from primary squamous cell carcinoma of the head and neck. METHODS Twenty-nine patients diagnosed with a primary untreated head and neck squamous cell carcinoma were included in this study. In all patients, (99m)Tc-HYNIC Annexin-V scintigraphy SPECT was performed before treatment instigation. Tumour-to-background ratios (T/N) of the primary tumour, derived from reconstructed images, as well as clinical variables were obtained in all patients and related to patient outcome. Median follow-up was 22.6 months (range 4.1-55.8 months). RESULTS On univariate as well as multivariate analysis, only the (99m)Tc-HYNIC Annexin-V T/N ratio dichotomized using the group median as cutoff value (T/N ratio of 2) was predictive of recurrence-free survival (respectively, p = 0.0000 and 0.000). On univariate analysis, only lymph node status dichotomized according to N0 vs N1-N2-N3 disease and the (99m)Tc-HYNIC Annexin-V T/N ratio dichotomized using the group median as cutoff value (T/N ratio of 2) were predictive of overall survival (p = 0.0051 and 0.0000). When both factors were included in the multivariate model, both N status and the (99m)Tc-HYNIC Annexin-V T/N ratio showed an independent association with overall survival (p = 0.001 for lymph node status and 0.000 for dichotomized (99m)Tc-HYNIC Annexin-V T/N ratio). CONCLUSION (99m)Tc-HYNIC Annexin-V T/N ratios derived from SPECT provides independent prognostic information on disease-free survival and overall survival.
Collapse
Affiliation(s)
- David Loose
- Department of Head and Neck Surgery, University Hospital Ghent, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Konstantinidou AE, Korkolopoulou P, Patsouris E. Apoptotic markers for primary brain tumor prognosis. J Neurooncol 2005; 72:151-6. [PMID: 15925995 DOI: 10.1007/s11060-004-3345-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecular studies of brain tumors have provided insights into pathogenesis, yet it is unclear how important these markers are in predicting clinical outcome and response to treatment. Quantitation of apoptosis by various techniques and the expression of several apoptotic markers have been studied in brain tumors, seeking to refine the information gained from established prognostic variables, which traditionally dictate therapeutic approaches. In the present review we discuss the role of the most extensively examined molecules involved in the apoptotic procedure, such as bcl-2, bax, fas/fasL, survivin and p53, as well as the incidence of baseline apoptosis in various brain tumors, in relation to prognosis. Summarizing current evidence, increased apoptosis and p53 genetic alterations have been advanced as adverse prognosticators in various types of central nervous system neoplasms, while bcl-2 expression appears to be deprived of any predictive value in primary brain tumors. The prognostic significance of the remaining apoptosis-related molecules remains controversial or too limited to draw any firm conclusions. The lack of unanimity of results mostly based on single-center retrospective studies underscores the necessity for large prospective randomized clinical trials, to elucidate the role of these molecular markers as determinants of clinical decision-making and as potential correlates of a pathobiologically tailored and individualized treatment strategy.
Collapse
Affiliation(s)
- A E Konstantinidou
- Department of Pathology, Faculty of Medicine, National Capodistrian University of Athens, 28, Narkisson street, Halandri, Athens, 152 33, Greece.
| | | | | |
Collapse
|
29
|
Yan Z, Wang G, Xie Z, Zhang H. Apoptosis in primary oral squamous cell carcinomas without lymph node metastases. Curr Med Sci 2005; 25:109-10. [PMID: 15934325 DOI: 10.1007/bf02831403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Indexed: 10/19/2022]
Abstract
The apoptosis in primary oral squamous cell carcinomas (OSCCs) without lymph node (IN) metastases and its relation with clinical stages and pathological grades was investigated. The terminal deoxynucleotidyl trasferase (TdT)-mediated dUTP nick end labeling (TUNEL) was used to detect the apoptotic cells in 15 cases of OSCCs. The percentage of apoptotic cells among tumor cells were calculated as apoptotic index (AI). The results showed that in all 15 cases of OSCCs, apoptotic cells could be visualized by TUNEL with AI ranging from 0.03 to 0.92 (average 0.32). AI was significantly negatively correlated with pathological grades (P < 0.05). It was concluded that the apoptotic rate was related to the malignant degree of OSCCs without LN metastases.
Collapse
Affiliation(s)
- Zhi Yan
- Medical Cosmetic Surgery Center, Wuhan First Hospital (International), Wuhan 430030, China
| | | | | | | |
Collapse
|
30
|
Abstract
Squamous cell cancer in the head and neck region (HNSC) is unique concerning its progression since it remains locoregional for long time and visceral metastases develop only in a later stage of the disease. Accordingly, molecular markers of the local invasion and the lymphatic dissemination both have critical importance. HNSC progression is associated with deregulated control of cell proliferation and apoptosis but it seems equally significant the disregulation of the proteolytic machineries. Here we outline the lymphatic metastatic cascade for HNSC to depict key molecular determinants as possible prognostic factors or therapeutic targets identifying immunological selection as a major feature. Unlike in local spreading, invasive potential of cancer cells seems to be less significant during lymphatic dissemination due to the anatomical properties of the lymphatic vessels and tissues. There is a general believe that HNSC is one disease however, data indicate that the anatomical localization of the tumor (the "soil") such as oral, lingual, glottic or pharyngeal has a significant effect on the gene expression profile and corresponding biological behavior of HNSC. Furthermore, even the endocrine milieu of the host was proved to be influential in modulating the progression of HNSC. Gene expression profiling techniques combined with proteomics could help to define and select usefull genetic and biomarkers of progression of HNSC, some of them could well be potential novel therapeutic target.
Collapse
Affiliation(s)
- József Tímár
- National Institute of Oncology, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
31
|
Kodani I, Osaki M, Shomori K, Araki K, Goto E, Ryoke K, Ito H. Minichromosome maintenance 2 expression is correlated with mode of invasion and prognosis in oral squamous cell carcinomas. J Oral Pathol Med 2003; 32:468-74. [PMID: 12901728 DOI: 10.1034/j.1600-0714.2003.00116.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study examined the immunohistochemical expression of cell-cycle related molecules as well as cell proliferation and pathologic findings in oral squamous cell carcinoma (SCC) in order to clarify their pathobiologic and prognostic significance. METHODS A total of 46 oral SCC specimens were analyzed using Ki-67, minichromosome maintenance 2 (MCM2), p53, p27, p21, and TUNEL. Aspects including tumor differentiation, mode of carcinoma invasion, tumor metastasis, and patient prognosis were compared among the specimens. RESULTS A significantly higher MCM2 labeling index (LI) was observed in the moderately differentiated SCCs when compared to the well-differentiated SCCs (P<0.05). The higher MCM2 LI was correlated with mode of invasion Grade 4 (infiltrative growth) and patient prognosis. In contrast, the LIs of Ki-67, TUNEL-signal, p53, p27, and p21 were not correlated with patient prognosis. CONCLUSION Higher MCM2 LI provides useful information for patient prognosis in oral SCCs.
Collapse
Affiliation(s)
- Isamu Kodani
- First Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Konstantinidou AE, Korkolopoulou P, Mahera H, Kotsiakis X, Hranioti S, Eftychiadis C, Patsouris E. Hormone receptors in non-malignant meningiomas correlate with apoptosis, cell proliferation and recurrence-free survival. Histopathology 2003; 43:280-90. [PMID: 12940781 DOI: 10.1046/j.1365-2559.2003.01712.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS A retrospective immunohistochemical and statistical analysis of patients with non-malignant meningiomas was undertaken to determine the correlation of steroid hormone receptor status with apoptosis, tumour cell proliferation, clinicopathological characteristics and prediction of recurrence. METHODS AND RESULTS Paraffin sections from 51 primary intracranial totally resected benign and atypical meningiomas were immunohistochemically evaluated for the expression of progesterone (PR), oestrogen (ER) and androgen (AR) receptors, apoptotic rate, Bcl-2, p53 and Ki67 antigens. In addition to the above parameters, the mitotic index and the patients' clinicopathological data were statistically correlated and entered in a recurrence-free survival analysis. A high level of apoptotic cell death was associated with loss of PR expression by logistic regression analysis (P = 0.016). An inverse correlation existed between the mitotic index and PR counts (P = 0.009), while high Ki67 values correlated with increased ARs (P = 0.041). Atypical meningiomas had a lower ER staining score (P = 0.036). Multivariate analysis indicated that the absence of PR and large tumour size were significant factors for shorter disease-free intervals. CONCLUSIONS The results suggest that ER expression is lost or reduced in atypical meningiomas, whereas loss of PR expression is an indicator of increased apoptosis and early recurrence. PRs and ARs may also influence tumour cell proliferation.
Collapse
Affiliation(s)
- A E Konstantinidou
- Department of Pathology, Faculty of Medicine, National Kapodistrian University of Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
33
|
Grabenbauer GG, Suckorada O, Niedobitek G, Rödel F, Iro H, Sauer R, Rödel C, Schultze-Mosgau S, Distel L. Imbalance between proliferation and apoptosis may be responsible for treatment failure after postoperative radiotherapy in squamous cell carcinoma of the oropharynx. Oral Oncol 2003; 39:459-69. [PMID: 12747970 DOI: 10.1016/s1368-8375(03)00005-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To assess the prognostic value of apoptosis, proliferation and clinical factors in squamous cell carcinoma of the oropharynx after radical surgery and postoperative radiotherapy (RT). Between 1985 and 1995, a total of 82 patients with 84 tumors were entered onto the study. Forty-two primary tumors (50%) involved the tonsils, 23 (27%) the soft palate, and 19 (23%) the base of the tongue. Median age was 52 years (range, 36-73 years). The pT- and pN-categories (UICC 1997) were: T1 (24), T2 (36), T3 (18), T4 (6), N0 (31), N1 (12), N2 (38), NX (8). Histologically clear margins were achieved in all patients by initial surgery. Postoperative RT to the primary and regional lymphatics was given with 60 Gy in 6 weeks and single daily fractions of 2 Gy. The expression of the nuclear Ki-67 labeling index (LI) was investigated by immunostaining using the monoclonal antibody MIB 1 and apoptotic carcinoma cells were identified using the terminal deoxynucleotidyltransferase-(TdT)-mediated dUTP nick end labeling (TUNEL) technique. Median follow-up was 43 months (range, 14-132 months). Overall survival, disease-free survival, and locoregional tumor control rates were 59, 70 and 76% at 5 years. Median values for apoptotic index and Ki-67 labeling were 1.6% (range 0-4.7%), and 20% (range, 0-79%), respectively. Apoptotic index <or=1.6% had a profound negative impact when associated with higher proliferation rates (5-year disease-free survival: 26%) as compared to all other patients with a balance between apoptosis and proliferation (5-year disease-free survival: 66-86%, P=0.003). Additional significant prognostic factors for disease-free survival were: tumor site (tonsils: 83% vs soft palate: 66% vs base of tongue: 49%, P=0.02), duration of RT (<or=47 days: 83% vs >47 days: 55%, P=0.03), Ki-67 LI (<or=20%: 84% vs >20%: 56%, P=0.006). A significant prognostic impact on locoregional control was noted for the duration of RT (P=0.01), tumor site (P=0.02), and the Ki-67 LI (P=0.02). A low apoptotic index together with higher proliferation rates led to unfavourable local control as low as 25% compared to the patients with higher apoptotic index (70-80%, P=0.009). An imbalance between apoptotic index and proliferation may identify patients with squamous cell carcinoma at high risk for local recurrence after surgery and postoperative RT. Prospective observation of these factors in clinical trials is warranted to further elucidate this phenomenon.
Collapse
Affiliation(s)
- Gerhard G Grabenbauer
- Department of Radiation Oncology, University of Erlangen, Universitätstrasse 27, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Loro LL, Vintermyr OK, Johannessen AC. Cell death regulation in oral squamous cell carcinoma: methodological considerations and clinical significance. J Oral Pathol Med 2003; 32:125-38. [PMID: 12581382 DOI: 10.1034/j.1600-0714.2003.00052.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last three decades, more work has been done on apoptosis and its role in the pathogenesis of many diseases including cancer. In almost all instances of cancer, dysregulation of cell death (apoptosis) and cell proliferation have been found to play a major role in tumourigenesis. A lot of progress has been made on understanding the molecular basis of apoptosis and its regulatory mechanisms. This review focuses on current knowledge on the regulation of apoptosis in oral squamous cell carcinoma, current methodologies and methodological consideration in estimation of cell death in tissue sections and the clinical significance of apoptosis related molecules in progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- L L Loro
- Department of Odontology-Oral Pathology and Forensic Odontology, The Gade Institute, Haukeland University Hospital, University of Bergen, N502 Bergen, Norway.
| | | | | |
Collapse
|