1
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
2
|
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT. Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study. Pharmaceutics 2021; 13:1265. [PMID: 34452226 PMCID: PMC8401837 DOI: 10.3390/pharmaceutics13081265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | | | - Mujtaba Aamir Bhat
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Mohammad Iqbal Banday
- Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Ommer Bashir
- Department of School Education, Jammu 181205, Jammu and Kashmir, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Arif Tasleem Jan
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
3
|
Neustupa J, Stastny J. Symmetry breaking of the cellular lobes closely relates to phylogenetic structure within green microalgae of the Micrasterias lineage (Zygnematophyceae). PeerJ 2018; 6:e6098. [PMID: 30568863 PMCID: PMC6287601 DOI: 10.7717/peerj.6098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022] Open
Abstract
Green microalgae of the Micrasterias lineage are unicellular microorganisms with modular morphology consisting of successively differentiated lobes. Due to their morphological diversity and peculiar morphogenesis, these species are important model systems for studies of cytomorphogenesis and cellular plasticity. Interestingly, the phylogenetic structure of the Micrasterias lineage and most other Desmidiales is poorly related to the traditional morphological characters used for delimitation of taxa. In this study, we focused on symmetry breaking between adjacent cellular lobes in relation to phylogeny of the studied species. While pronounced morphological asymmetry between the adjacent lobes is typical for some species, others have been characterized by the almost identical morphologies of these structures. We asked whether there is any detectable average shape asymmetry between the pairs of lobes and terminal lobules in 19 Micrasterias species representing all major clades of this desmidiacean lineage. Then, we evaluated whether the asymmetric patterns among species are phylogenetically structured. The analyses showed that the phylogeny was in fact strongly related to the patterns of morphological asymmetry between the adjacent cellular lobes. Thus, evolution of the asymmetric development between the adjacent lobes proved to be the key event differentiating cellular shape patterns of Micrasterias. Conversely, the phylogeny was only weakly related to asymmetry between the pairs of terminal lobules. The subsequent analyses of the phylogenetic morphological integration showed that individual hierarchical levels of cellular morphology were only weakly coordinated with regard to asymmetric variation among species. This finding indicates that evolutionary differentiation of morphogenetic processes leading to symmetry breaking may be relatively independent at different branching levels. Such modularity is probably the key to the evolvability of cellular shapes, leading to the extraordinary morphological diversity of these intriguing microalgae.
Collapse
Affiliation(s)
- Jiri Neustupa
- Department of Botany, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Jan Stastny
- Department of Botany, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Blaas K, Holzinger A. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum. Micron 2017; 98:34-38. [PMID: 28363156 DOI: 10.1016/j.micron.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.
Collapse
Affiliation(s)
- Kathrin Blaas
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Neustupa J. Asymmetry and integration of cellular morphology in Micrasterias compereana. BMC Evol Biol 2017; 17:1. [PMID: 28049419 PMCID: PMC5209845 DOI: 10.1186/s12862-016-0855-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/17/2016] [Indexed: 01/07/2023] Open
Abstract
Background Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. Results Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes. Conversely, higher covariance levels between the two lateral lobes of the same semicell indicated mutual interconnection and significant integration between these parts. Conclusions Micrasterias cells are composed of several successively disintegrated parts. These integration patterns concurred with presumed scenarios of morphological evolution within the lineage. In addition, asymmetric differentiation in the shape of the lobules involves two major patterns: asymmetry across the isthmus axis and among the adjacent lobules. Notably, asymmetry among the adjacent lobules may be related to evolutionary differentiation among species, but it may also point out developmental instability related to environmental factors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0855-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiří Neustupa
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Lütz-Meindl U. Micrasterias as a Model System in Plant Cell Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:999. [PMID: 27462330 PMCID: PMC4940373 DOI: 10.3389/fpls.2016.00999] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.
Collapse
Affiliation(s)
- Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of SalzburgSalzburg, Austria
| |
Collapse
|
7
|
Dasari B, Fufa T, Aeluri M, Gaddam J, Deora GS, Gaunitz F, Kitambi SS, Arya P. Macrocyclic Toolbox from Epothilone Fragment Identifies a Compound Showing Molecular Interactions with Actin and Novel Promoters of Apoptosis in Patient-derived Brain Tumor Cells. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhanudas Dasari
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
- Sai Advantium Pharma Ltd.; IKP Road Turkapally; Hyderabad 500078 India
| | - Temesgen Fufa
- Klinik und Poliklinik für Neurochirurgie; Universitätsklinikum Leipzig; Leipzig Germany
- Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet; 17177 Stockholm Sweden
| | - Madhu Aeluri
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
- GVK Biosciences, Nacharam; IDA Mallapur; Hyderabad 500076 India
| | - Jagan Gaddam
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
| | - Girdhar Singh Deora
- School of Pharmacy; The University of Queensland; Brisbane QLD 4072 Australia
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie; Universitätsklinikum Leipzig; Leipzig Germany
| | - Satish Srinivas Kitambi
- Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet; 17177 Stockholm Sweden
| | - Prabhat Arya
- Dr. Reddy's Institute of Life Sciences (DRILS); University of Hyderabad, Campus; Hyderabad 500046 India
| |
Collapse
|
8
|
Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis. Appl Environ Microbiol 2016; 82:1945-1957. [PMID: 26773087 DOI: 10.1128/aem.03011-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr-) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.
Collapse
|
9
|
Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. Methods Mol Biol 2016; 1365:243-61. [PMID: 26498789 DOI: 10.1007/978-1-4939-3124-8_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given.
Collapse
|
10
|
Ma C, Diraviyam K, Maier ME, Sept D, Sibley LD. Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii. JOURNAL OF NATURAL PRODUCTS 2013; 76:1565-1572. [PMID: 24020843 PMCID: PMC3787807 DOI: 10.1021/np400196w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 05/31/2023]
Abstract
Apicomplexan parasites such as Toxoplasma gondii rely on actin-based motility to cross biological barriers and invade host cells. Key structural and biochemical differences in host and parasite actins make this an attractive target for small-molecule inhibitors. Here we took advantage of recent advances in the synthesis of cyclic depsipeptide compounds that stabilize filamentous actin to test the ability of chondramides to disrupt growth of T. gondii in vitro. Structural modeling of chondramide A (2) binding to an actin filament model revealed variations in the binding site between host and parasite actins. A series of 10 previously synthesized analogues (2b-k) with substitutions in the β-tyrosine moiety blocked parasite growth on host cell monolayers with EC₅₀ values that ranged from 0.3 to 1.3 μM. In vitro polymerization assays using highly purified recombinant actin from T. gondii verified that synthetic and natural product chondramides target the actin cytoskeleton. Consistent with this, chondramide treatment blocked parasite invasion into host cells and was more rapidly effective than pyrimethamine, a standard therapeutic agent. Although the current compounds lack specificity for parasite vs host actin, these studies provide a platform for the future design and synthesis of synthetic cyclic peptide inhibitors that selectively disrupt actin dynamics in parasites.
Collapse
Affiliation(s)
- Christopher
I. Ma
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| | - Karthikeyan Diraviyam
- Department
of Biomedical Engineering and Center for Computational Medicine and
Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Martin E. Maier
- Institut
für Organische Chemie, Universität
Tübingen, 72076 Tübingen, Germany
| | - David Sept
- Department
of Biomedical Engineering and Center for Computational Medicine and
Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - L. David Sibley
- Department
of Molecular Microbiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
11
|
Johnson TA, Sohn J, Vaske YM, White KN, Cohen TL, Vervoort HC, Tenney K, Valeriote FA, Bjeldanes LF, Crews P. Myxobacteria versus sponge-derived alkaloids: the bengamide family identified as potent immune modulating agents by scrutiny of LC-MS/ELSD libraries. Bioorg Med Chem 2012; 20:4348-55. [PMID: 22705020 PMCID: PMC3417756 DOI: 10.1016/j.bmc.2012.05.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/08/2012] [Accepted: 05/17/2012] [Indexed: 12/12/2022]
Abstract
A nuclear factor-κB (NF-κB) luciferase assay has been employed to identify the bengamides, previously known for their anti-tumor activity, as a new class of immune modulators. A unique element of this study was that the bengamide analogs were isolated from two disparate sources, Myxococcus virescens (bacterium) and Jaspis coriacea (sponge). Comparative LC-MS/ELSD and NMR analysis facilitated the isolation of M. viriscens derived samples of bengamide E (8) and two congeners, bengamide E' (13) and F' (14) each isolated as an insperable mixture of diastereomers. Additional compounds drawn from the UC, Santa Cruz repository allowed expansion of the structure activity relationship (SAR) studies. The activity patterns observed for bengamide A (6), B (7), E (8), F (9), LAF 389 (12) and 13-14 gave rise to the following observations and conclusions. Compounds 6 and 7 display potent inhibition of NF-κB (at 80 and 90 nM, respectively) without cytotoxicity to RAW264.7 macrophage immune cells. Western blot and qPCR analysis indicated that 6 and 7 reduce the phosphorylation of IκBα and the LPS-induced expression of the pro-inflammatory cytokines/chemokines TNFα, IL-6 and MCP-1 but do not effect NO production or the expression of iNOS. These results suggest that the bengamides may serve as therapeutic leads for the treatment of diseases involving inflammation, that their anti-tumor activity can in part be attributed to their ability to serve as immune modulating agents, and that their therapeutic potential against cancer merits further consideration.
Collapse
Affiliation(s)
- Tyler A. Johnson
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | - Johann Sohn
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720
| | - Yvette M. Vaske
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | - Kimberly N. White
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | - Tanya L. Cohen
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | - Helene C. Vervoort
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | - Karen Tenney
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| | | | - Leonard F. Bjeldanes
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California 94720
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
12
|
Vannerum K, De Rycke R, Pollier J, Goossens A, Inzé D, Vyverman AW. CHARACTERIZATION OF A RABE (RAS GENE FROM RAT BRAIN E) GTPASE EXPRESSED DURING MORPHOGENESIS IN THE UNICELLULAR GREEN ALGA MICRASTERIAS DENTICULATA (ZYGNEMATOPHYCEAE, STREPTOPHYTA)(1). JOURNAL OF PHYCOLOGY 2012; 48:682-692. [PMID: 27011085 DOI: 10.1111/j.1529-8817.2012.01170.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rab GTPases are central regulators of cell shape in land plants by coordinating vesicle trafficking during morphogenesis. To date, relatively little is known about the role of these ubiquitous signaling proteins during cell growth in microalgae, in particular in the related charophyte algae. This article identifies the first charophyte Rab GTPase, MdRABE1, in Micrasterias denticulata Bréb., a convenient model organism for studying morphogenesis. Its expression correlated with the onset of morphogenesis, and structural analysis indicated that it belongs to the RABE (Ras gene from rat brain E) subclass. Confocal fluorescence and immunoelectron microscopy (IEM) of transiently GFP-MdRABE1 overexpressing interphase cells demonstrated that the GFP-MdRABE1 protein was localized to the endoplasmic reticulum, dictyosomes, exocytotic vesicles, the cell margin, the membranes of cell organelles, and in the isthmus zone around the nucleus. Although overexpression phenotyping of both N- and C-terminal green fluorescent protein (GFP) fusions failed to indicate additional functional evidence of the MdRABE1 protein due to mortality of those transgenic cells, its expression profile, bioinformatics, and intracellular localization suggest a role in vesicle trafficking during morphogenesis.
Collapse
Affiliation(s)
- Katrijn Vannerum
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Riet De Rycke
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Jacob Pollier
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Alain Goossens
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Dirk Inzé
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - And Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Gent, BelgiumDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, BelgiumDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| |
Collapse
|
13
|
Holzinger A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol 2010; 586:71-87. [PMID: 19768425 DOI: 10.1007/978-1-60761-376-3_4] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Jasplakinolide, a cyclo-depsipeptide is a commonly used actin filament polymerizing and stabilizing drug. The substance has originally been isolated from a marine sponge, and can now be synthesized and has become commercially available. This, together with the benefit that jasplakinolide is membrane permeable has made it a commonly used tool in cell biology, when actin filament stabilization or polymerization has to be achieved. This may either be the case in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. Its use as a potent anticancer drug is discussed. The direct action on actin filaments may have further consequences in golgi body and membrane raft protein organization. In this chapter, the visualization of jasplaklinolide effects by different fluorescent and transmission electron microscopic methods is described. As competitive binding capacities of jasplakinolide and phalloidin make the detection of actin filaments by fluorescently labeled phalloidin problematic, alternatives are given here.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Department of Physiology and Cell Physiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010; 27:1276-95. [DOI: 10.1039/c001260m] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Sashidhara KV, White KN, Crews P. A selective account of effective paradigms and significant outcomes in the discovery of inspirational marine natural products. JOURNAL OF NATURAL PRODUCTS 2009; 72:588-603. [PMID: 19209899 PMCID: PMC2837139 DOI: 10.1021/np800817y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Marine natural products continue to be a source of significant molecular structures that serve as a stimulus to seed further significant research. This account reviews some of the major advances in the study of marine biomolecules made at UC Santa Cruz over more than three decades. The continuing challenge of discovery and characterization of what we term "inspirational molecular structures" will be presented in a comprehensive fashion. Examples of privileged molecular structures and their impact on biomedicinal research will be an important theme. The three major groups of organisms explored include seaweeds, sponges, and marine-derived fungi, and the study of their active principles has greatly benefited from synergistic collaborations with both academic and biopharmaceutical groups. The concluding sections of this chronicle will touch on prospects for future outcomes involving new sources and strategies.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Kimberly N. White
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
16
|
A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 2009; 17:2121-36. [DOI: 10.1016/j.bmc.2008.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 12/16/2022]
|
17
|
Darehshouri A, Affenzeller M, Lütz-Meindl U. Cell death upon H(2)O(2) induction in the unicellular green alga Micrasterias. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:732-45. [PMID: 18950431 PMCID: PMC2923030 DOI: 10.1111/j.1438-8677.2008.00078.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction, and which morphological, molecular and physiological hallmarks characterise this. This is particularly interesting as unicellular freshwater green algae growing in shallow bog ponds are exposed to extreme environmental conditions, and the capacity to perform PCD may be an important strategy to guarantee survival of the population. The theoretically 'immortal' alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system for many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatments with low concentrations of H(2)O(2) are known to induce PCD in other organisms, resulting in severe ultrastructural changes to organelles, as observed in TEM. These include deformation and part disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, occurrence of multivesicular bodies, an increase in the number of ER compartments, and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity was detected, which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H(2)O(2) exposure, whereas pigment composition, except for a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as a hallmark of PCD in higher plants, could only be detected in dead Micrasterias cells.
Collapse
Affiliation(s)
| | | | - Ursula Lütz-Meindl
- Corresponding author: U. Lütz-Meindl, Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria, Tel.: +43 662 8044 5555; fax +43 662 8044 619,
| |
Collapse
|
18
|
Holzinger A, Wasteneys GO, Lütz C. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:400-10. [PMID: 17236103 DOI: 10.1055/s-2006-924727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria digyna, a role in metabolite exchange is possible, which may contribute to an adaptation to alpine and arctic conditions.
Collapse
Affiliation(s)
- A Holzinger
- Department of Physiology and Cell Physiology of Alpine Plants, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
19
|
Foissner I, Wasteneys GO. Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells. PLANT & CELL PHYSIOLOGY 2007; 48:585-97. [PMID: 17327257 DOI: 10.1093/pcp/pcm030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Numerous forms of cytochalasins have been identified and, although they share common biological activity, they may differ considerably in potency. We investigated the effects of cytochalasins A, B, C, D, E, H and J and dihydrocytochalasin B in an ideal experimental system for cell motility, the giant internodal cells of the characean alga Nitella pseudoflabellata. Cytochalasins D (60 microM) and H (30 microM) were found to be most suited for fast and reversible inhibition of actin-based motility, while cytochalasins A and E arrested streaming at lower concentrations but irreversibly. We observed no clear correlation between the ability of cytochalasins to inhibit motility and the actual disruption of the subcortical actin bundle tracks on which myosin-dependent motility occurs. Indeed, the actin bundles remained intact at the time of streaming cessation and disassembled only after one to several days' treatment. Even when applied at concentrations lower than that required to inhibit cytoplasmic streaming, all of the cytochalasins induced reorganization of the more labile cortical actin filaments into actin patches, swirling clusters or short rods. Latrunculins A and B arrested streaming only after disrupting the subcortical actin bundles, a process requiring relatively high concentrations (200 microM) and very long treatment periods of >1 d. Latrunculins, however, worked synergistically with cytochalasins. A 1 h treatment with 15 nM latrunculin A and 4 microM cytochalasin D induced reversible fragmentation of subcortical actin bundles and arrested cytoplasmic streaming. Our findings provide insights into the mechanisms by which cytochalasins and latrunculins interfere with characean actin to inhibit motility.
Collapse
Affiliation(s)
- Ilse Foissner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
20
|
Amagata T, Morinaka BI, Amagata A, Tenney K, Valeriote FA, Lobkovsky E, Clardy J, Crews P. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. JOURNAL OF NATURAL PRODUCTS 2006; 69:1560-5. [PMID: 17125221 PMCID: PMC3014288 DOI: 10.1021/np060178k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two novel cyclic depsipeptides, guangomides A (1) and B (2), together with a new destruxin derivative (3) were isolated from the cytotoxic extract obtained from the saltwater culture of an unidentifiable sponge-derived fungus. The new structures were elucidated on the basis of analysis of extensive 1D and 2D NMR data sets, and the absolute configurations of 2S, 9S, 13S, 19S, 24R, 28R of 1 were determined on the basis of the combined X-ray and Marfey's method structure analysis. Identical absolute configurations were assumed for 2. The cytotoxicity of the extract was found to be due to brefeldin A, while 1 and 2 showed weak antibacterial activity against Staphylococcus epidermidis and Enterococcus durans.
Collapse
Affiliation(s)
- Taro Amagata
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064
| | - Brandon I. Morinaka
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064
| | - Akiko Amagata
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064
| | - Karen Tenney
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064
| | | | | | | | - Phillip Crews
- Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064
- To whom correspondence should be addressed: Phil Crews, Tel.: (831) 459-2603. Fax: (831)-459-2935.
| |
Collapse
|
21
|
Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blöcker H, Müller R. Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. ACTA ACUST UNITED AC 2006; 13:667-81. [PMID: 16793524 DOI: 10.1016/j.chembiol.2006.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/16/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The jaspamide/chondramide family of depsipeptides are mixed PKS/NRPS natural products isolated from marine sponges and a terrestrial myxobacterium that potently affect the function of the actin cytoskeleton. As a first step to improve production in heterologous host cells and permit genetic approaches to novel analogs, we have cloned and characterized the chondramide biosynthetic genes from the myxobacterium Chondromyces crocatus Cm c5. In addition to the expected PKS and NRPS genes, the cluster encodes a rare tyrosine aminomutase for beta-tyrosine formation and a previously unknown tryptophan-2-halogenase. Conditions for gene transfer into C. crocatus Cm c5 were developed, and inactivation of several genes corroborated their proposed function and served to define the boundaries of the cluster. Biochemical characterization of the final NRPS adenylation domain confirmed the direct activation of beta-tyrosine, and fluorinated chondramides were produced through precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fujiwara H, Saito SY, Hitotsuyanagi Y, Takeya K, Ohizumi Y. RA-VII, a cyclic depsipeptide, changes the conformational structure of actin to cause G2 arrest by the inhibition of cytokinesis. Cancer Lett 2004; 209:223-9. [PMID: 15159025 DOI: 10.1016/j.canlet.2003.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 11/27/2003] [Accepted: 12/26/2003] [Indexed: 10/26/2022]
Abstract
In L1210 cells, RA-VII (0.1-100 nM) caused the concentration-dependent inhibition of the proliferation and G2 arrest. Treatment of PC12 cells with 10 nM RA-VII changed cell shape round with binucleation, suggesting the inhibition of cytokinesis. The fluorescence intensity of FITC-phalloidin bound to F-actin was enhanced by RA-VII. In surface plasmon resonance experiments, the signal of F-actin was modified by RA-VII in close agreement with a concentration of FITC-phalloidin binding to F-actin. These results suggest that RA-VII causes the conformational change of F-actin and the stabilization of actin filaments to induce G2 arrest.
Collapse
Affiliation(s)
- Hironori Fujiwara
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|