1
|
Mole SE, Schulz A, Badoe E, Berkovic SF, de Los Reyes EC, Dulz S, Gissen P, Guelbert N, Lourenco CM, Mason HL, Mink JW, Murphy N, Nickel M, Olaya JE, Scarpa M, Scheffer IE, Simonati A, Specchio N, Von Löbbecke I, Wang RY, Williams RE. Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients. Orphanet J Rare Dis 2021; 16:185. [PMID: 33882967 PMCID: PMC8059011 DOI: 10.1186/s13023-021-01813-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Background CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. Methods An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. Results Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). Conclusion This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01813-5.
Collapse
Affiliation(s)
| | - Angela Schulz
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Eben Badoe
- Korle Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Samuel F Berkovic
- Austin Health Victoria, University of Melbourne, Heidelberg, VIC, Australia
| | | | - Simon Dulz
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Gissen
- University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Charles M Lourenco
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Riberirao Preto, Brazil
| | | | - Jonathan W Mink
- Golisano Childrens' Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Noreen Murphy
- Batten Disease Support and Research Association (BDSRA), Columbus, OH, USA
| | - Miriam Nickel
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Joffre E Olaya
- Children's Hospital of Orange County, Orange County, CA, USA
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Ingrid E Scheffer
- Austin Health Victoria, University of Melbourne, Heidelberg, VIC, Australia.,Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, Australia
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine, Verona, Italy
| | | | | | - Raymond Y Wang
- Children's Hospital of Orange County, Orange County, CA, USA
| | | |
Collapse
|
4
|
Kuizon S, DiMaiuta K, Walus M, Jenkins EC, Kuizon M, Kida E, Golabek AA, Espinoza DO, Pullarkat RK, Junaid MA. A critical tryptophan and Ca2+ in activation and catalysis of TPPI, the enzyme deficient in classic late-infantile neuronal ceroid lipofuscinosis. PLoS One 2010; 5:e11929. [PMID: 20689811 PMCID: PMC2914745 DOI: 10.1371/journal.pone.0011929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca2+. Methodology Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme. Principal Findings NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI. Conclusions/Significance We propose that W542 and Ca2+ are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca2+ is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis.
Collapse
Affiliation(s)
- Salomon Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Kathleen DiMaiuta
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Edmund C. Jenkins
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Marisol Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Adam A. Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel O. Espinoza
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Raju K. Pullarkat
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Mohammed A. Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tian Y, Sohar I, Taylor JW, Lobel P. Determination of the Substrate Specificity of Tripeptidyl-peptidase I Using Combinatorial Peptide Libraries and Development of Improved Fluorogenic Substrates. J Biol Chem 2006; 281:6559-72. [PMID: 16339154 DOI: 10.1074/jbc.m507336200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease caused by mutations in CLN2, the gene encoding the lysosomal protease tripeptidyl-peptidase I (TPP I). The natural substrates for TPP I and the pathophysiological processes associated with lysosomal storage and disease progression are not well understood. Detailed characterization of TPP I substrate specificity should provide insights into these issues and also aid in the development of improved clinical and biochemical assays. To this end, we constructed fluorogenic and standard combinatorial peptide libraries and analyzed them using fluorescence and mass spectrometry-based activity assays. The fluorogenic group 7-amino-4-carbamoylmethylcoumarin was incorporated into a series of 7-amino-4-carbamoylmethylcoumarin tripeptide libraries using a design strategy that allowed systematic evaluation of the P1, P2, and P3 positions. TPP I digestion of these substrates liberates the fluorescence group and results in a large increase in fluorescence that can be used to calculate kinetic parameters and to derive the substrate specificity constant kcat/KM. In addition, we implemented a mass spectrometry-based assay to measure the hydrolysis of individual peptides in peptide pools and thus expand the scope of the analysis. Nonfluorogenic tetrapeptide and pentapeptide libraries were synthesized and analyzed to evaluate P1' and P2' residues. Together, this analysis allowed us to predict the relative specificity of TPP I toward a wide range of potential biological substrates. In addition, we evaluated a variety of new fluorogenic peptides with a P3 Arg residue, and we demonstrated their superiority compared with the widely used substrate Ala-Ala-Phe-AMC for selectively measuring TPP I activity in biological specimens.
Collapse
Affiliation(s)
- Yu Tian
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
6
|
Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poët M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 2005; 24:1079-91. [PMID: 15706348 PMCID: PMC554126 DOI: 10.1038/sj.emboj.7600576] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 01/14/2005] [Indexed: 01/26/2023] Open
Abstract
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis.
Collapse
Affiliation(s)
- Dagmar Kasper
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Rosa Planells-Cases
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Jens C Fuhrmann
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Olaf Scheel
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Oliver Zeitz
- Augenklinik, Universtitätsklinikum Eppendorf, Hamburg, Germany
| | - Klaus Ruether
- Augenklinik, Universtitätsklinikum Eppendorf, Hamburg, Germany
- Charité-Virchow-Augenklinik, Berlin, Germany
| | - Anja Schmitt
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Mallorie Poët
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Robert Steinfeld
- Department of Pediatrics, University of Goettingen, Goettingen, Germany
| | - Michaela Schweizer
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Uwe Kornak
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
| | - Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Hamburg, Germany
- Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Falkenried 94, 20246 Hamburg, Germany. Tel.: +49 40 42803 4741; Fax: +49 40 42803 4839; E-mail:
| |
Collapse
|