1
|
Lu J, Zamaratskaia G, Langton M, Röhnisch HE, Karkehabadi S. Minimizing anti-nutritional factors in wet protein extraction from Swedish faba beans through the application of response surface methodology. Food Chem 2024; 460:140700. [PMID: 39094337 DOI: 10.1016/j.foodchem.2024.140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Faba beans, rich in protein and ideal for Swedish cultivation, are limited in food industry use due to anti-nutritional factors (ANFs) that hinder nutrient absorption. An extraction method was developed in our study to mitigate ANFs in faba beans, using aqueous alkaline methods and isoelectric precipitation with differential salt concentration. This method yielded 15.8 g of protein per 100 g of flour, with a protein concentration exceeding 83% of the total extract. It reduced ANFs like phytic acid (28.0%), lectins (87.5%), vicine (98.5%), and convicine (99.7%). Extraction conditions were optimized using response surface methodology, identifying pH 6, 2 h, and 20 °C as the most effective parameters, achieving an 86% reduction in phytic acid, closely matched the model's predictions (R2 = 0.945). This method effectively reduced ANFs, offering a sustainable approach for producing proteins suitable for diverse food products, including plant-based alternatives.
Collapse
Affiliation(s)
- Jing Lu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Hanna Eriksson Röhnisch
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| |
Collapse
|
2
|
Chen Y, Zhang R, Zhang W, Xu Y. Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes soy protein to small peptides and free amino acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Franco LFM, Pessoa Filho PDA. Mathematical Description of the Enzymatic Activity of Proteins with Ionizable Groups Exhibiting Deviations from the Henderson-Hasselbalch Equation. Appl Biochem Biotechnol 2022; 194:1221-1234. [PMID: 34652586 DOI: 10.1007/s12010-021-03700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
The ionization equilibrium implied in the calculation of the specific activity is classically described through the Henderson-Hasselbalch equation. An extension for the description of anomalous ionization profiles using the Hill equation is presented in this communication. The proposed framework was applied to the description of the specific enzymatic activity curve as a function of pH of five enzymes presenting different ionization states in their active site. The developed equation improves the description of relative enzymatic curves that deviate from the bell curve predicted by the application of the Henderson-Hasselbalch equation, regardless of the ionization scheme related to the active site.
Collapse
Affiliation(s)
| | - Pedro de Alcantara Pessoa Filho
- Department of Chemical Engineering, Engineering School, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Bl. 20, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Chen G, Huang S, Shen Y, Kou X, Ma X, Huang S, Tong Q, Ma K, Chen W, Wang P, Shen J, Zhu F, Ouyang G. Protein-directed, hydrogen-bonded biohybrid framework. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Rico D, Cano AB, Martín-Diana AB. Pulse-Cereal Blend Extrusion for Improving the Antioxidant Properties of a Gluten-Free Flour. Molecules 2021; 26:5578. [PMID: 34577047 PMCID: PMC8467424 DOI: 10.3390/molecules26185578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Extrusion is an interesting technological tool that facilitates pulse formulation into flour mixtures, with tailored fibre content, total antioxidant capacity (TAC) and glycemic index (GI) among other components in final formulas. The gluten-free (GF) market has significantly grown during the last years. GF products have evolved from specialty health foods to products targeted to the general population and not only associated to celiac consumers. This study evaluates how temperature, cereal base (rice/corn) and pulse concentration affect extruded flour properties and which conditions are more efficient to develop a gluten-free flour with high TAC and low GI. Additionally, it evaluated the effect of this optimal formula after the baking process. The results showed an increase of total phenol (TP) and antioxidant activity with extrusion, with a temperature-dependent effect (130 °C ≥ 120 °C ≥ 110 °C), which may imply an enhanced bioaccessibility of phenolics compounds after extraction. Extrusion increased GI in comparison to native flour; however, a dough temperature of 130 °C resulted in a significantly (p ≤ 0.05) lower GI than that observed for 110-120 °C doughs, probably associated to the pastification that occurred at higher temperatures, which would decrease the degree of gelatinization of the starches and therefore a significant (p ≤ 0.05) GI reduction. Corn-lentil flour showed higher antioxidant properties and lower GI index in comparison with rice-lentil blends. The formulation of the optimal blend flour into a baked product (muffin) resulted in a significant loss of antioxidant properties, with the exception of the reducing power (FRAP), although the final antioxidant values of the baked product were in the range of the original native flour blend before any process.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47171 Valladolid, Spain;
| | | | - Ana Belén Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47171 Valladolid, Spain;
| |
Collapse
|
6
|
Savizi ISP, Motamedian E, E Lewis N, Jimenez Del Val I, Shojaosadati SA. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Biotechnol J 2021; 16:e2100019. [PMID: 34021707 DOI: 10.1002/biot.202100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Monoclonal antibodies (mABs) have emerged as one of the most important therapeutic recombinant proteins in the pharmaceutical industry. Their immunogenicity and therapeutic efficacy are influenced by post-translational modifications, specifically the glycosylation process. Bioprocess conditions can influence the intracellular process of glycosylation. Among all the process conditions that have been recognized to affect the mAB glycoforms, the detailed mechanism underlying how ammonium could perturb glycosylation remains to be fully understood. It was shown that ammonium induces heterogeneity in protein glycosylation by altering the sialic acid content of glycoproteins. Hence, understanding this mechanism would aid pharmaceutical manufacturers to ensure consistent protein glycosylation. METHODS Three different mechanisms have been proposed to explain how ammonium influences the sialylation process. In the first, the inhibition of CMP-sialic acid transporter, which transports CMP-sialic acid (sialylation substrate) into the Golgi, by an increase in UDP-GlcNAc content that is brought about by the augmented incorporation of ammonium into glucosamine formation. In the second, ammonia diffuses into the Golgi and raises its pH, thereby decreasing the sialyltransferase enzyme activity. In the third, the reduction of sialyltransferase enzyme expression level in the presence of ammonium. We employed these mechanisms in a novel integrated modular platform to link dynamic alteration in mAB sialylation process with extracellular ammonium concentration to elucidate how ammonium alters the sialic acid content of glycoproteins. RESULTS Our results show that the sialylation reaction rate is insensitive to the first mechanism. At low ammonium concentration, the second mechanism is the controlling mechanism in mAB sialylation and by increasing the ammonium level (< 8 mM) the third mechanism becomes the controlling mechanism. At higher ammonium concentrations (> 8 mM) the second mechanism becomes predominant again. CONCLUSION The presented model in this study provides a connection between extracellular ammonium and the monoclonal antibody sialylation process. This computational tool could help scientists to develop and formulate cell culture media. The model illustrated here can assist the researchers to select culture media that ensure consistent mAB sialylation.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA.,School of Medicine, Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, California, USA.,Department of Pediatrics, School of Medicine, University of California, La Jolla, California, USA
| | | | - Seyed Abbas Shojaosadati
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Single step immobilization of CMCase within agarose gel matrix: Kinetics and thermodynamic studies. Colloids Surf B Biointerfaces 2021; 200:111583. [PMID: 33548892 DOI: 10.1016/j.colsurfb.2021.111583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
In the current study, CMCase from Bacillus licheniformis KIBGE-IB2 was immobilized within the matrix of agarose gel through entrapment technique. Maximum immobilization yield (%) of the enzyme was obtained when 2.0 % agarose was used. The activation energy (Ea) of the enzyme increased from 16.38 to 44.08 kJ mol-1 after immobilization. Thermodynamic parameters such as activation energy of deactivation (ΔGd), enthalpy (ΔHd) and entropy (ΔSd) of deactivation, deactivation rate constant (Kd), half-life (t1/2), D-value and z-value were calculated for native/free and immobilized CMCase. The maximum reaction rate (Vmax) of the native enzyme was found to be 8319.47 U ml-1 min-1, which reduced to 7218.1 U ml-1 min-1after immobilization process. However, the Michaelis-Menten constant (Km) value of the enzyme increased from 1.236 to 2.769 mg ml-1 min-1 after immobilization. Immobilized enzyme within agarose gel matrix support can be reuse up to eight reaction cycles. Broad stability profile and improved catalytic properties of the immobilized CMCase indicated that this enzyme can be a plausible candidate to be used in various industrial processes.
Collapse
|
8
|
Jiménez-Villota DS, Acosta-Pavas JC, Betancur-Ramírez KJ, Ruiz-Colorado AA. Modeling and Kinetic Parameter Estimation of the Enzymatic Hydrolysis Process of Lignocellulosic Materials for Glucose Production. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Sebastián Jiménez-Villota
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Juan Camilo Acosta-Pavas
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Kelly Johana Betancur-Ramírez
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Angela Adriana Ruiz-Colorado
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| |
Collapse
|
9
|
My PLT, My HTK, Phuong NTX, Dat TD, Thanh VH, Nam HM, Thanh Phong M, Hieu NH. Optimization of enzyme-assisted extraction of ginsenoside Rb1 from Vietnamese Panax notoginseng (BURK.) F.H. Chen roots and anticancer activity examination of the extract. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1795676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Huynh Thi Kieu My
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Tran Xuan Phuong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
- Department of Chemistry, Hong Bang International University, Ho Chi Minh City, Vietnam
| | - Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Hoang Minh Nam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Mai Thanh Phong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Morales Urrea DA, Haure PM, García Einschlag FS, Contreras EM. Horseradish peroxidase-mediated decolourization of Orange II: modelling hydrogen peroxide utilization efficiency at different pH values. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19989-20002. [PMID: 29744778 DOI: 10.1007/s11356-018-2134-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Enzymatic decolourization of azo-dyes could be a cost-competitive alternative compared to physicochemical or microbiological methods. Stoichiometric and kinetic features of peroxidase-mediated decolourization of azo-dyes by hydrogen peroxide (P) are central for designing purposes. In this work, a modified version of the Dunford mechanism of peroxidases was developed. The proposed model takes into account the inhibition of peroxidases by high concentrations of P, the substrate-dependant catalatic activity of peroxidases (e.g. the decomposition of P to water and oxygen), the generation of oxidation products (OP) and the effect of pH on the decolourization kinetics of the azo-dye Orange II (OII). To obtain the parameters of the proposed model, two series of experiments were performed. In the first set, the effects of initial P concentration (0.01-0.12 mM) and pH (5-10) on the decolourization degree were studied at a constant initial OII concentration (0.045 mM). Obtained results showed that at pH 9-10 and low initial P concentrations, the consumption of P was mainly to oxidize OII. From the proposed model, an expression for the decolourization degree was obtained. In the second set of experiments, the effect of the initial concentrations of OII (0.023-0.090 mM), P (0.02-4.7 mM), HRP (34-136 mg/L) and pH (5-10) on the initial specific decolourization rate (q0) was studied. As a general rule, a noticeable increase in q0 was observed for pHs higher than 7. For a given pH, q0 increased as a function of the initial OII concentration. Besides, there was an inhibitory effect of high P concentrations on q0. To asses the possibility of reusing the enzyme, repeated additions of OII and P were performed. Results showed that the enzyme remained active after six reuse cycles. A satisfactory accordance between the change of the absorbance during these experiments and absorbances calculated using the proposed model was obtained. Considering that this set of data was not used during the fitting procedure of the model, the agreement between predicted and experimental absorbances provides a powerful validation of the model developed in the present work.
Collapse
Affiliation(s)
- Diego Alberto Morales Urrea
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CCT - Mar del Plata CONICET, Av. Juan B. Justo 4302 (7600), Mar del Plata, Argentina
| | - Patricia Mónica Haure
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CCT - Mar del Plata CONICET, Av. Juan B. Justo 4302 (7600), Mar del Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Av. Juan B. Justo 4302 (7600), Mar del Plata, Argentina
| | - Fernando Sebastián García Einschlag
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT - La Plata - CONICET, Diag 113 y 64 (1900), La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Av. 1 #750 (1900), La Plata, Argentina
| | - Edgardo Martín Contreras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CCT - Mar del Plata CONICET, Av. Juan B. Justo 4302 (7600), Mar del Plata, Argentina.
| |
Collapse
|
11
|
Goh K, Li H, Lam K. Urease catalytic behaviors induced by both urea and salt concentrations in ion-exchange hydrogels as dialysis membranes. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Hidalgo A, Melo A, Romero F, Hidalgo V, Villanueva J, Fonseca-Salamanca F. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock. Exp Parasitol 2018; 186:10-16. [PMID: 29407715 DOI: 10.1016/j.exppara.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/24/2018] [Indexed: 11/25/2022]
Abstract
The extraction of DNA in taeniid eggs shows complications attached to the composition of stool samples and the high resistance of eggs to degradation. The objective of this study was to test a method of DNA extraction in taeniid eggs by applying a thermal shock to facilitate the chemical-enzymatic degradation of these elements. A group of six tubes containing 1 ml of dog stool sample was spiked with eggs of Echinococcus granulosus and another group of six with Taenia pisiformis. Samples were floated with supersaturated sugar solution and centrifuged. The upper portion of each tube (500 μl) was aspirated and deposited in 1.5 ml tubes. Three tubes from each group were incubated at -20 °C and then at 90 °C, the remaining three from each group, incubated at room temperature. Proteinase K and lysis buffer were added to each tube and incubated for 12 h at 58 °C. The lysis effect was evaluated by microscopy at 3, 6 and 12 h and integrity by electrophoresis in 1% agarose gels. With the same experimental scheme, the thermal shock effect was evaluated in extractions of 1, 2, 3 and 4 eggs of each species and the DNA was quantified. Additionally, the protocol was applied in samples of 4 dogs diagnosed with natural infection by Taeniidae worms. Finally, all the extractions were tested by PCR amplification. Both E. granulosus and T. pisiformis eggs showed a similar response in the tests. In samples without treatment, the lysis effect was poor and showed no differences over time, but in those subjected to thermal shock, eggs degradation increased with time. In both treatments, there was no DNA loss integrity. The protocol applied to limited amounts of eggs yielded PCR products in 100% of the samples exposed to thermal shock, allowing PCR amplifications up to 1 egg. In non-exposed samples, the results were not replicable. However, DNA quantification showed low values in both treatments. In turn, DNA extractions with thermal shock in infected dog samples finally yielded PCR amplifications in 100%. It was concluded that thermal shock facilitates the DNA extraction for molecular analysis in taeniid eggs. The technique is effective extracting DNA even from a single egg and also to analyze natural infections samples with a relatively simple implementation.
Collapse
Affiliation(s)
- Alejandro Hidalgo
- Department of Preclinic Sciences, Laboratory of Molecular Immunoparasitology, Center of Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Program of Doctorate in Science, Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Angélica Melo
- Department of Preclinic Sciences, Laboratory of Molecular Immunoparasitology, Center of Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Fernando Romero
- Program of Doctorate in Science, Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Víctor Hidalgo
- Department of Preclinic Sciences, Laboratory of Molecular Immunoparasitology, Center of Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - José Villanueva
- Department of Preclinic Sciences, Laboratory of Molecular Immunoparasitology, Center of Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Department of Preclinic Sciences, Laboratory of Molecular Immunoparasitology, Center of Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Program of Doctorate in Science, Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
13
|
Maruthamuthu M, van Elsas JD. Molecular cloning, expression, and characterization of four novel thermo-alkaliphilic enzymes retrieved from a metagenomic library. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:142. [PMID: 28588643 PMCID: PMC5457731 DOI: 10.1186/s13068-017-0808-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. RESULTS Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either pNP-β-d-galactopyranoside, pNP-β-d-xylopyranoside, pNP-α-l-arabinopyranoside or pNP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the pNP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both pNP-Xyl and pNP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. CONCLUSION Using a rational screening approach, we identified and characterized four thermo-alkaliphilic glycosyl hydrolases that have the potential to serve as constituents of enzyme cocktails that produce sugars from lignocellulosic plant remains.
Collapse
Affiliation(s)
- Mukil Maruthamuthu
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
14
|
Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor. Biosens Bioelectron 2017; 91:673-679. [DOI: 10.1016/j.bios.2017.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 11/23/2022]
|
15
|
Mitrophanov AY, Rosendaal FR, Reifman J. Mechanistic Modeling of the Effects of Acidosis on Thrombin Generation. Anesth Analg 2015; 121:278-88. [PMID: 25839182 PMCID: PMC4885548 DOI: 10.1213/ane.0000000000000733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supplemental Digital Content is available in the text. Published ahead of print April 2, 2015 BACKGROUND: Acidosis, a frequent complication of trauma and complex surgery, results from tissue hypoperfusion and IV resuscitation with acidic fluids. While acidosis is known to inhibit the function of distinct enzymatic reactions, its cumulative effect on the blood coagulation system is not fully understood. Here, we use computational modeling to test the hypothesis that acidosis delays and reduces the amount of thrombin generation in human blood plasma. Moreover, we investigate the sensitivity of different thrombin generation parameters to acidosis, both at the individual and population level. METHODS: We used a kinetic model to simulate and analyze the generation of thrombin and thrombin–antithrombin complexes (TAT), which were the end points of this study. Large groups of temporal thrombin and TAT trajectories were simulated and used to calculate quantitative parameters, such as clotting time (CT), thrombin peak time, maximum slope of the thrombin curve, thrombin peak height, area under the thrombin trajectory (AUC), and prothrombin time. The resulting samples of parameter values at different pH levels were compared to assess the acidosis-induced effects. To investigate intersubject variability, we parameterized the computational model using the data on clotting factor composition for 472 subjects from the Leiden Thrombophilia Study. To compare acidosis-induced relative parameter changes in individual (“virtual”) subjects, we estimated the probabilities of relative change patterns by counting the pattern occurrences in our virtual subjects. Distribution overlaps for thrombin generation parameters at distinct pH levels were quantified using the Bhattacharyya coefficient. RESULTS: Acidosis in the range of pH 6.9 to 7.3 progressively increased CT, thrombin peak time, AUC, and prothrombin time, while decreasing maximum slope of the thrombin curve and thrombin peak height (P < 10–5). Acidosis delayed the onset and decreased the amount of TAT generation (P < 10–5). As a measure of intrasubject variability, maximum slope of the thrombin curve and CT displayed the largest and second-largest acidosis-induced relative changes, and AUC displayed the smallest relative changes among all thrombin generation parameters in our virtual subject group (1-sided 95% lower confidence limit on the fraction of subjects displaying the patterns, 0.99). As a measure of intersubject variability, the overlaps between the maximum slope of the thrombin curve distributions at acidotic pH levels with the maximum slope of the thrombin curve distribution at physiological pH level systematically exceeded analogous distribution overlaps for CT, thrombin peak time, and prothrombin time. CONCLUSIONS: Acidosis affected all quantitative parameters of thrombin and TAT generation. While maximum slope of the thrombin curve showed the highest sensitivity to acidosis at the individual-subject level, it may be outperformed by CT, thrombin peak time, and prothrombin time as an indicator of acidosis at the subject-group level.
Collapse
Affiliation(s)
- Alexander Y Mitrophanov
- From the *DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI); †Telemedicine and Advanced Technology Research Center; U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD; and Departments of ‡Clinical Epidemiology and §Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Albarracín M, José González R, Drago SR. Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bio-accessibility of whole rice grain. Int J Food Sci Nutr 2015; 66:210-5. [PMID: 25666413 DOI: 10.3109/09637486.2014.986070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A combination of soaking and extrusion processes of whole rice grain was studied. The effects of temperature (35-55 °C) and time (24-48 h) of soaking treatment on phytic acid (PA), protein and ashes losses using a factorial design were evaluated. Taking into account ash, protein and PA losses, whole rice was soaked 24 h at 45 °C and extruded using a Brabender single screw extruder. Effects of extrusion temperature (160-190 °C) and moisture content (14-19 g/100 g) on product characteristics were evaluated using surface response methodology. Values corresponding to the different responses were: Expansion (1.64-3.28), Specific Volume (5.68-11.06 cm(3)/g), Water absorption (3.41-4.43 mL/g) and Solubility (45.44-66.20 g/100 g). The content of PA was reduced from 740.09 to 163.47 mg/100 g (77%) after both processes, resulting in a higher mineral bio-accessibility, and a 7.3% decrease of protein digestibility. Total soluble phenolics and trolox equivalent antioxidant capacity (TEAC) were affected according to the treatment. Both treatments were important to obtain a nutritionally improved whole grain product.
Collapse
Affiliation(s)
- Micaela Albarracín
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral , Santa Fe , Argentina and
| | | | | |
Collapse
|
17
|
Prieto MA, Vazquez JA, Murado MA. A new and general model to describe, characterize, quantify and classify the interactive effects of temperature and pH on the activity of enzymes. Analyst 2015; 140:3587-602. [DOI: 10.1039/c4an02136c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The common approachvs.the modern approach to analyze the effects of temperature and pH on the activity of enzymes.
Collapse
Affiliation(s)
- M. A. Prieto
- Superior de Investigaciones Científicas
- Instituto de Investigaciones Marinas (IIM-CSIC)
- Spain
| | - J. A. Vazquez
- Superior de Investigaciones Científicas
- Instituto de Investigaciones Marinas (IIM-CSIC)
- Spain
| | - M. A. Murado
- Superior de Investigaciones Científicas
- Instituto de Investigaciones Marinas (IIM-CSIC)
- Spain
| |
Collapse
|
18
|
Grubecki I, Politowska D. Mathematical Analysis of Enzyme Savings in a Process Operated in a Batch Bioreactor with the Optimal Temperature Control under Temperature Constraints. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2014. [DOI: 10.1252/jcej.13we161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ireneusz Grubecki
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences
| | - Dagmara Politowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences
| |
Collapse
|
19
|
Melikoglu M, Lin CSK, Webb C. Kinetic studies on the multi-enzyme solution produced via solid state fermentation of waste bread by Aspergillus awamori. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Ariff RM, Fitrianto A, Abd Manap MY, Ideris A, Kassim A, Suhairin A, Hussin ASM. Cultivation Conditions for Phytase Production from Recombinant Escherichia coli DH5α. Microbiol Insights 2013; 6:17-28. [PMID: 24826071 PMCID: PMC3987752 DOI: 10.4137/mbi.s10402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Response surface methodology (RSM) was used to optimize the cultivation conditions for the production of phytase by recombinant Escherichia coli DH5α. The optimum predicted cultivation conditions for phytase production were at 3 hours seed age, a 2.5% inoculum level, an L-arabinose concentration of 0.20%, a cell concentration of 0.3 (as measured at 600 nm) and 17 hours post-induction time with a predicted phytase activity of 4194.45 U/mL. The model was validated and the results showed no significant difference between the experimental and the predicted phytase activity (P = 0.305). Under optimum cultivation conditions, the phytase activity of the recombinant E. coli DH5α was 364 times higher compared to the phytase activity of the wild-type producer, Enterobacter sakazakii ASUIA279. Hence, optimization of the cultivation conditions using RSM positively increased phytase production from recombinant E. coli DH5α.
Collapse
Affiliation(s)
- Rafidah Mohd Ariff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anwar Fitrianto
- Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Yazid Abd Manap
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Department of Science Clinical Study, Faculty of Veterinary Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azhar Kassim
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Afinah Suhairin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Prieto MA, Vázquez JA, Murado MA. Comparison of several mathematical models for describing the joint effect of temperature and ph on glucanex activity. Biotechnol Prog 2011; 28:372-81. [DOI: 10.1002/btpr.733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/13/2011] [Indexed: 11/06/2022]
|
22
|
Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, de la Luz Mora M. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. BIORESOURCE TECHNOLOGY 2011; 102:9360-9367. [PMID: 21856150 DOI: 10.1016/j.biortech.2011.07.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity.
Collapse
Affiliation(s)
- Daniel Menezes-Blackburn
- Chile-Italy International Doctorate in Environmental Resources Science, Universidad de La Frontera, Temuco, Chile, and Università di Napoli Federico II, Portici, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Chang MY, Kao HC, Juang RS. Thermal inactivation and reactivity of β-glucosidase immobilized on chitosan–clay composite. Int J Biol Macromol 2008; 43:48-53. [DOI: 10.1016/j.ijbiomac.2007.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/29/2007] [Accepted: 10/04/2007] [Indexed: 12/01/2022]
|
24
|
Esawy MA, Mahmoud DAR, Fattah AFA. Immobilisation of Bacillus subtilis NRC33a levansucrase and some studies on its properties. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2008. [DOI: 10.1590/s0104-66322008000200003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M. A. Esawy
- National Research Center, Egypt; Universités de Provence et de la Méditerranée, France
| | | | | |
Collapse
|
25
|
Grubecki I, Wójcik M. Analytical determination of the optimal temperature profiles for the reactions occurring in the presence of microorganism cells. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00221-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Ghadge R, Sawant S, Joshi J. Enzyme deactivation in a bubble column, a stirred vessel and an inclined plane. Chem Eng Sci 2003. [DOI: 10.1016/j.ces.2003.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Modelling of the kinetics of thermal inactivation of glucoamylase from Aspergillus niger. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00197-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Seyhan F, Tijskens L, Evranuz O. Modelling temperature and pH dependence of lipase and peroxidase activity in Turkish hazelnuts. J FOOD ENG 2002. [DOI: 10.1016/s0260-8774(01)00130-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Vohra A, Satyanarayana T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem 2002. [DOI: 10.1016/s0032-9592(01)00308-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Tijskens L, Barringer S, Biekman E. Modelling the effect of pH on the colour degradation of blanched broccoli. INNOV FOOD SCI EMERG 2001. [DOI: 10.1016/s1466-8564(01)00048-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|