1
|
The Role of Circular RNAs in Cerebral Ischemic Diseases: Ischemic Stroke and Cerebral Ischemia/Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:309-325. [PMID: 30259377 DOI: 10.1007/978-981-13-1426-1_25] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral ischemic diseases including ischemic stroke and cerebral ischemia reperfusion injury can result in serious dysfunction of the brain, which leads to extremely high mortality and disability. There are no effective therapeutics for cerebral ischemic diseases to date. Circular RNAs are a kind of newly investigated noncoding RNAs. It is reported that circular RNAs are enriched in multiple organs, especially abundant in the brain, which indicates that circular RNAs may be involved in cerebral physiological and pathological processes. In this chapter, we will firstly review the pathophysiology, underlying mechanisms, and current treatments of cerebral ischemic diseases including ischemic stroke and cerebral ischemia/reperfusion injury. Secondly, the characteristics and function of circular RNAs will be outlined, and then we are going to introduce the roles circular RNAs play in human diseases. Finally, we will summarize the function of circular RNAs in cerebral ischemic diseases.
Collapse
|
2
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 779] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
3
|
Tang LL, Ye K, Yang XF, Zheng JS. Apocynin Attenuates Cerebral Infarction after Transient Focal Ischaemia in Rats. J Int Med Res 2016; 35:517-22. [PMID: 17697529 DOI: 10.1177/147323000703500411] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase attenuates cerebral infarction after transient focal ischaemia in rats. Focal ischaemia (1.5 h) was produced in male Sprague-Dawley rats (250 − 280 g) by middle cerebral artery occlusion. Some rats also received treatment with 50 mg/kg apocynin, a NADPH oxidase inhibitor, by intraperitoneal injection 30 min prior to reperfusion. Two hours after reperfusion, brains were harvested to measure NADPH oxidase activity and superoxide levels. After 24 h, the remaining brains were harvested to investigate infarct size. NADPH oxidase activity and superoxide level were all augmented 2 h after reperfusion compared with controls. Apocynin treatment significantly reduced NADPH oxidase activity and superoxide levels. Cerebral infarct size was significantly smaller in the apocynin-treated group compared with those undergoing ischaemia/reperfusion alone. These results indicate that inhibition of NADPH oxidase attenuates cerebral infarction after transient focal ischaemia in rats, suggesting that inhibition of NADPH oxidase may provide a therapeutic strategy for ischaemic stroke.
Collapse
MESH Headings
- Acetophenones/therapeutic use
- Animals
- Brain Chemistry
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Infarction, Middle Cerebral Artery/etiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Injections, Intraperitoneal
- Ischemic Attack, Transient/complications
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/pathology
- Male
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- Rats
- Rats, Sprague-Dawley
- Reperfusion Injury/etiology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Superoxides/metabolism
Collapse
Affiliation(s)
- L L Tang
- Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, The People's Republic of China
| | | | | | | |
Collapse
|
4
|
Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 2013; 11:129-40. [PMID: 23997749 PMCID: PMC3637668 DOI: 10.2174/1570159x11311020001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1 receptor antagonists, glucocorticoid, activated protein C, and baicalin mitigate preclinical heatstroke levels.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan ; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | | |
Collapse
|
5
|
Perez-Polo JR, Reilly CB, Rea HC. Oxygen resuscitation after hypoxia ischemia stimulates prostaglandin pathway in rat cortex. Int J Dev Neurosci 2011; 29:639-44. [PMID: 21514373 PMCID: PMC3158954 DOI: 10.1016/j.ijdevneu.2011.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/21/2011] [Accepted: 03/29/2011] [Indexed: 12/31/2022] Open
Abstract
Exposure to hypoxia and hyperoxia in a rodent model of perinatal ischemia results in delayed cell death and inflammation. Hyperoxia increases oxidative stress that can trigger inflammatory cascades, neutrophil activation, and brain microvascular injury. Here we show that 100% oxygen resuscitation in our rodent model of perinatal ischemia increases cortical COX-2 protein levels, S-nitrosylated COX-2cys526, PGE2, iNOS and 5-LOX, all components of the prostaglandin and leukotriene inflammatory pathway.
Collapse
|
6
|
Chen XJ, West AC, Cropek DM, Banta S. Detection of the Superoxide Radical Anion Using Various Alkanethiol Monolayers and Immobilized Cytochrome c. Anal Chem 2008; 80:9622-9. [DOI: 10.1021/ac800796b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaojun J. Chen
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Donald M. Cropek
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, and U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, Illinois 61826
| |
Collapse
|
7
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhang H. Effect of scalp acupuncture on inflammatory response in rats with acute cerebral ischemia-reperfusion injury. ACTA ACUST UNITED AC 2007; 5:686-91. [DOI: 10.3736/jcim20070617] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Chang CK, Chang CP, Liu SY, Lin MT. Oxidative stress and ischemic injuries in heat stroke. PROGRESS IN BRAIN RESEARCH 2007; 162:525-46. [PMID: 17645935 DOI: 10.1016/s0079-6123(06)62025-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
When rats were exposed to high environmental temperature (e.g., 42 or 43 degrees C), hyperthermia, hypotension, and cerebral ischemia and damage occurred during heat stroke were associated with increased production of free radicals (specifically hydroxyl radicals and superoxide anions), higher lipid peroxidation, lower enzymatic antioxidant defenses, and higher enzymatic pro-oxidants in the brain of heat stroke-affected rats. Pretreatment with conventional hydroxyl radical scavengers (e.g., mannitol or alpha-tocopherol) prevented increased production of hydroxyl radicals, increased levels of lipid peroxidation, and ischemic neuronal damage in different brain structures attenuated with heat stroke and increased subsequent survival time. Heat shock preconditioning (a mild sublethal heat exposure for 15min) or regular, daily exercise for at least 3 weeks, in addition to inducing overproduction of heat shock protein 72 in multiple organs including brain, significantly attenuated the heat stroke-induced hyperthermia, hypotension, cerebral ischemia and damage, and overproduction of hydroxyl radicals and lipid peroxidation. The precise function of heat shock protein 72 are unknown, but there is considerable evidence that these proteins are essential for survival at both normal and elevated temperatures. They also play a critical role in the development of thermotolerance and protection from oxidative damage associated with cerebral ischemia and energy depletion during heat stroke. In addition, Shengmai San or magnolol (Chinese herbal medicines) or hypervolemic hemodilution (produced by intravenous infusion of 10% human albumin) is effective for prevention and repair of ischemic and oxidative damage in the brain during heat stroke. Thus, it appears that heat shock protein 72 preconditioning induced by prior heat shock or regular exercise training, as well as pretreatment with Shengmai San or magnolol is able to prevent the oxidative damage during heat stroke. On the other hand, hypervolemic hemodilution, Shengmai San, or magnolol is able to treat the oxidative damage after heat stroke onset.
Collapse
Affiliation(s)
- Chen-Kuei Chang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
10
|
Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 2006; 291:H2210-5. [PMID: 16766636 DOI: 10.1152/ajpheart.01270.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.
Collapse
Affiliation(s)
- Hua Hong
- Depts. of Pharmacology and Neurology, B403 Life Sciences Bldg., Michigan State Univ., East Lansing, MI 48824-1317, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 2004; 24:351-71. [PMID: 15087705 DOI: 10.1097/00004647-200404000-00001] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ischemic penumbra has been documented in the laboratory animal as severely hypoperfused, nonfunctional, but still viable brain tissue surrounding the irreversibly damaged ischemic core. Saving the penumbra is the main target of acute stroke therapy, and is the theoretical basis behind the reperfusion concept. In experimental focal ischemia, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called reperfusion injury). Activated neutrophils contribute to vascular reperfusion damage, yet posthypoxic cellular injury occurs in the absence of inflammatory species. Protein synthesis inhibition occurs in neurons during reperfusion after ischemia, underlying the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain tissue. Ischemia-induced decreases in the mitochondrial capacity for respiratory activity probably contribute to the ongoing impairment of energy metabolism during reperfusion and possibly also the magnitude of changes seen during ischemia. From these experimental data, the concept of single-drug intervention cannot be effective. Further experimental research is needed, especially of the study of biochemical markers of the injury process to establish the role of several drugs.
Collapse
|
13
|
Abstract
BACKGROUND AND PURPOSE Heatstroke is associated with cerebral ischemia as well as increased levels of interleukin-1beta, dopamine, and glutamate in the brain. These factors are known to increase free radical production. This study attempted to ascertain whether an excessive accumulation of cytotoxic free radicals in the brain and oxidative stress can occur during heatstroke. METHODS Urethane-anesthetized rats underwent instrumentation for the measurement of mean arterial pressure, cerebral blood flow, neuronal damage score, and colonic temperature. Rats were exposed to heat stress (ambient temperature, 42 degrees C) until mean arterial pressure and cerebral blood flow began to decrease from their peak levels, which was arbitrarily defined as the onset of heatstroke. Controlled rats were exposed to 24 degrees C. Concentrations of dihydroxybenzoic acid, lipid peroxidation, rate of O2*- generation, superoxide dismutase, and catalase activity of the brain or other vital organs were assessed during heatstroke. RESULTS The values of mean arterial pressure and cerebral blood flow after heatstroke onset were all significantly lower than those in control rats. However, the values of colonic temperature, dihydroxybenzoic acid levels in the striatum, and neuronal damage score were greater. The extent of lipid peroxidation in the brain and the rate of O2*- generation in the brain, liver, and heart were all greater in rats after heatstroke onset. In contrast, the values of total superoxide dismutase in the brain, liver, and heart and the catalase activity in the brain were lower. CONCLUSIONS Taken together, these results indicate that hydroxyl radicals mediate cerebral ischemic injury associated with heatstroke.
Collapse
Affiliation(s)
- Chih-Ya Yang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
14
|
Kent TA, Soukup VM, Fabian RH. Heterogeneity affecting outcome from acute stroke therapy: making reperfusion worse. Stroke 2001; 32:2318-27. [PMID: 11588320 DOI: 10.1161/hs1001.096588] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stroke patients are heterogeneous not only with respect to etiology but also in terms of preexisting clinical conditions. Approximately one fifth of patients with acute stroke are hyperglycemic and/or have had a recent infectious or inflammatory condition. Summary of Review-- Experimental research indicates that these factors can alter and accelerate the evolution of stroke and reperfusion injury, although these effects are complex and some may have a favorable impact. Both conditions involve activation of inflammatory and reactive oxygen mechanisms. In addition, hyperglycemia has concomitant deleterious vascular and metabolic effects that worsen infarct size and encourage hemorrhagic transformation in reperfusion models. Clinical data are less extensive but in general support an adverse impact on outcome. CONCLUSIONS After examining these data in detail, we concluded that the presence of these clinical conditions could assist in identification of those at increased risk for complications of reperfusion therapy. Furthermore, consideration of these factors may provide a rational basis for combination therapy and improve the clinical relevance of experimental stroke models.
Collapse
Affiliation(s)
- T A Kent
- Department of Neurology, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
15
|
|