1
|
Younger DS. Critical illness-associated weakness and related motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:707-777. [PMID: 37562893 DOI: 10.1016/b978-0-323-98818-6.00031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Weakness of limb and respiratory muscles that occurs in the course of critical illness has become an increasingly common and serious complication of adult and pediatric intensive care unit patients and a cause of prolonged ventilatory support, morbidity, and prolonged hospitalization. Two motor disorders that occur singly or together, namely critical illness polyneuropathy and critical illness myopathy, cause weakness of limb and of breathing muscles, making it difficult to be weaned from ventilatory support, commencing rehabilitation, and extending the length of stay in the intensive care unit, with higher rates of morbidity and mortality. Recovery can take weeks or months and in severe cases, and may be incomplete or absent. Recent findings suggest an improved prognosis of critical illness myopathy compared to polyneuropathy. Prevention and treatment are therefore very important. Its management requires an integrated team approach commencing with neurologic consultation, creatine kinase (CK) measurement, detailed electrodiagnostic, respiratory and neuroimaging studies, and potentially muscle biopsy to elucidate the etiopathogenesis of the weakness in the peripheral and/or central nervous system, for which there may be a variety of causes. These tenets of care are being applied to new cases and survivors of the coronavirus-2 disease pandemic of 2019. This chapter provides an update to the understanding and approach to critical illness motor disorders.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
2
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Llano-Diez M, Cheng AJ, Jonsson W, Ivarsson N, Westerblad H, Sun V, Cacciani N, Larsson L, Bruton J. Impaired Ca(2+) release contributes to muscle weakness in a rat model of critical illness myopathy. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:254. [PMID: 27510990 PMCID: PMC5050561 DOI: 10.1186/s13054-016-1417-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Critical illness myopathy is an acquired skeletal muscle disorder with severe myosin loss and muscle weakness frequently seen in intensive care unit (ICU) patients. It is unknown if impaired excitation-contraction coupling contributes to the muscle weakness. METHODS We used a unique ICU model where rats were deeply sedated, post-synaptically pharmacologically paralyzed, mechanically ventilated and closely monitored for up to ten days. Single intact fibers from the flexor digitorum brevis muscle were isolated and used to measure force and free myoplasmic [Ca(2+)] ([Ca(2+)]i) during tetanic contractions. RESULTS Fibers from ICU rats had 80 % lower tetanic [Ca(2+)]i and produced only 15 % of the force seen in fibers from sham-operated (SHAM) rats. In the presence of 5 mM caffeine, tetanic [Ca(2+)]i was similar in fibers from ICU and SHAM rats but force was 50 % lower in fibers from ICU rats than SHAM rats. Confocal imaging showed disrupted tetanic [Ca(2+)]i transients in fibers from ICU rats compared to SHAM rats. Western blots showed similar levels of Na(+) channel and dihydropyridine receptor (DHPR) protein expression, whereas ryanodine receptor (RyR) and sarco-endoplasmic reticulum Ca(2+) ATPase 1 (SERCA1) expression was markedly lower in muscle of ICU rats than in SHAM rats. Immunohistochemical analysis showed that distribution of Na(+) channel and DHPR protein on the sarcolemma was disrupted in fibers from ICU rats compared with SHAM rats. CONCLUSIONS These results suggest that impaired SR Ca(2+) release contributes to the muscle weakness seen in patients in ICU.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Arthur J Cheng
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - William Jonsson
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Niklas Ivarsson
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Håkan Westerblad
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Vic Sun
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Nicola Cacciani
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Lars Larsson
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden
| | - Joseph Bruton
- Department of Physiology & Pharmacology, Karolinska Institutet, von Eulers väg, 8, 2 floor, Stockholm, 171 77, Sweden.
| |
Collapse
|
4
|
Capasso M, De Angelis MV, Di Muzio A, Anzellotti F, Bonanni L, Thomas A, Onofrj M. Critical Illness Neuromyopathy Complicating Akinetic Crisis in Parkinsonism: Report of 3 Cases. Medicine (Baltimore) 2015; 94:e1118. [PMID: 26181547 PMCID: PMC4617089 DOI: 10.1097/md.0000000000001118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Akinetic crisis (AC) is a life-threatening complication of parkinsonism characterized by an acute severe akinetic-hypertonic state, consciousness disturbance, hyperthermia, and muscle enzymes elevation. Injectable dopaminomimetic drugs, high-dose methylprednisolone, and dantrolene are advocated as putative specific treatments. The course of the illness is frequently complicated by infections, pulmonary embolism, renal failure, disseminated intravascular coagulation, and cardiac arrhythmias. Critical illness neuromyopathy (CINM) is an acquired neuromuscular disorder characterized by flaccid quadriparesis and muscle enzyme elevation, often occurring in intensive care units and primarily associated with inactivity, sepsis, multiorgan failure, neuromuscular blocking agents, and steroid treatment. In 3 parkinsonian patients, during the course of AC we observed disappearance of rigidity but persistent hypoactivity. In all, neurological examination showed quadriparesis with loss of tendon reflexes and laboratory investigation disclosed a second peak of muscle enzymes elevation, following the first increment due to AC. Electrophysiological studies showed absent or reduced sensory nerve action potentials and compound muscular action potentials, myopathic changes, and fibrillation potentials at electromyography recordings, and reduced excitability or inexcitability of tibialis anterior at direct muscle stimulation, leading to a diagnosis of CINM in all 3 patients. In 1 patient, the diagnosis was also confirmed by muscle biopsy. Outcome was fatal in 2 of the 3 patients. Although AC is associated with most of the known risk factors for CINM, the cooccurrence of the 2 disorders may be difficult to recognize and has never been reported. We found that CINM can occur as a severe complication of AC, and should be suspected when hypertonia-rigidity subsides despite persistent akinesia. Strict monitoring of muscle enzyme levels may help diagnosis. This finding addresses possible caveats in the use of putative treatments for AC.
Collapse
Affiliation(s)
- Margherita Capasso
- From the Neurology Clinic (MC, MVD, AD, FA, LB, MO), "SS Annunziata" Hospital; and Department of Neuroscience and Imaging (LB, AT, MO), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS One 2014; 9:e92622. [PMID: 24705179 PMCID: PMC3976271 DOI: 10.1371/journal.pone.0092622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Critical illness myopathy (CIM) is a debilitating common consequence of modern intensive care, characterized by severe muscle wasting, weakness and a decreased myosin/actin (M/A) ratio. Limb/trunk muscles are primarily affected by this myopathy while cranial nerve innervated muscles are spared or less affected, but the mechanisms underlying these muscle-specific differences remain unknown. In this time-resolved study, the cranial nerve innervated masseter muscle was studied in a unique experimental rat intensive care unit (ICU) model, where animals were exposed to sedation, neuromuscular blockade (NMB), mechanical ventilation, and immobilization for durations varying between 6 h and 14d. Gel electrophoresis, immunoblotting, RT-PCR and morphological staining techniques were used to analyze M/A ratios, myofiber size, synthesis and degradation of myofibrillar proteins, and levels of heat shock proteins (HSPs). Results obtained in the masseter muscle were compared with previous observations in experimental and clinical studies of limb muscles. Significant muscle-specific differences were observed, i.e., in the masseter, the decline in M/A ratio and muscle fiber size was small and delayed. Furthermore, transcriptional regulation of myosin and actin synthesis was maintained, and Akt phosphorylation was only briefly reduced. In studied degradation pathways, only mRNA, but not protein levels of MuRF1, atrogin-1 and the autophagy marker LC3b were activated by the ICU condition. The matrix metalloproteinase MMP-2 was inhibited and protective HSPs were up-regulated early. These results confirm that the cranial nerve innervated masticatory muscles is less affected by the ICU-stress response than limb muscles, in accordance with clinical observation in ICU patients with CIM, supporting the model' credibility as a valid CIM model.
Collapse
Affiliation(s)
- Hazem Akkad
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Rebeca Corpeno
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Argov Z, Latronico N. Neuromuscular complications in intensive care patients. HANDBOOK OF CLINICAL NEUROLOGY 2014; 121:1673-85. [PMID: 24365440 DOI: 10.1016/b978-0-7020-4088-7.00108-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased survival of critically ill patients has focused the attention on secondary complications of intensive care unit (ICU) stay, mainly ICU-acquired weakness (ICUAW). ICUAW is relatively common with significant impact on recovery. Prolonging mechanical ventilation and overall hospitalization time, increased mortality, and persistent disability are the main problems associated with ICUAW. The chapter deals mainly with the differential diagnosis of neuromuscular generalized weakness that develops in the ICU, but focal ICUAW is reviewed too. The approach to the diagnosis and the yield of various techniques (mainly electrophysiological and histological) is discussed. Possible therapeutic interventions of this condition that modify the course of this deleterious situation and lead to better rehabilitation are discussed. The current postulated mechanisms associated with ICUAW (mainly the more frequent critical illness neuropathy and myopathy) are reviewed.
Collapse
Affiliation(s)
- Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Nicola Latronico
- Department of Anesthesia Intensive Care and Postoperative Care, Division of Neuroanaesthesia and Neurocritical Care, University of Brescia, Spedali Civili, Brescia, Italy
| |
Collapse
|
7
|
Banduseela VC, Chen YW, Kultima HG, Norman HS, Aare S, Radell P, Eriksson LI, Hoffman EP, Larsson L. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics 2013; 45:477-86. [PMID: 23572537 DOI: 10.1152/physiolgenomics.00141.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Critical illness myopathy (CIM) is characterized by a preferential loss of the motor protein myosin, muscle wasting, and impaired muscle function in critically ill intensive care unit (ICU) patients. CIM is associated with severe morbidity and mortality and has a significant negative socioeconomic effect. Neuromuscular blocking agents, corticosteroids, sepsis, mechanical ventilation, and immobilization have been implicated as important risk factors, but the causal relationship between CIM and the risk factors has not been established. A porcine ICU model has been used to determine the immediate molecular and cellular cascades that may contribute to the pathogenesis prior to myosin loss and extensive muscle wasting. Expression profiles have been compared between pigs exposed to the ICU interventions, i.e., mechanically ventilated, sedated, and immobilized for 5 days, with pigs exposed to critical illness interventions, i.e., neuromuscular blocking agents, corticosteroids, and induced sepsis in addition to the ICU interventions for 5 days. Impaired autophagy as well as impaired chaperone expression and protein synthesis were observed in the skeletal muscle in response to critical illness interventions. A novel finding in this study is impaired core autophagy machinery in response to critical illness interventions, which when in concert with downregulated chaperone expression and protein synthesis may collectively affect the proteostasis in skeletal muscle and may exacerbate the disease progression in CIM.
Collapse
Affiliation(s)
- Varuna C Banduseela
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lacomis D. Electrophysiology of neuromuscular disorders in critical illness. Muscle Nerve 2013; 47:452-63. [PMID: 23386582 DOI: 10.1002/mus.23615] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neuromuscular disorders, predominantly critical illness myopathy (CIM) and critical illness polyneuropathy (CIP) occur in approximately one-third of patients in intensive care units. The aim of this study was to review the important role of electrophysiology in this setting. RESULTS In CIM, sarcolemmal inexcitability causes low amplitude compound muscle action potentials (CMAPs) that may have prolonged durations. Needle electrode examination usually reveals early recruitment of short duration motor unit potentials, often with fibrillation potentials. In CIP, the findings are usually those of a generalized axonal sensorimotor polyneuropathy. Direct muscle stimulation aids in differentiating CIP and CIM and in identifying mixed disorders along with other electrodiagnostic and histopathologic studies. Identifying evolving reductions in fibular CMAP amplitudes in intensive care unit (ICU) patients predicts development of neuromuscular weakness. CONCLUSIONS Knowledge of the various neuromuscular disorders in critically ill patients, their risk factors, and associated electrodiagnostic findings can lead to development of a rational approach to diagnosis of the cause of neuromuscular weakness in ICU patients.
Collapse
Affiliation(s)
- David Lacomis
- Department of Neurology, University of Pittsburgh School of Medicine, 200 Lothrop Street, F878, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
9
|
Llano-Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, Corpeño R, Artemenko K, Bergquist J, Larsson L. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R209. [PMID: 23098317 PMCID: PMC3682313 DOI: 10.1186/cc11841] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/22/2012] [Indexed: 02/05/2023]
Abstract
Introduction Critically ill ICU patients commonly develop severe muscle wasting and
impaired muscle function, leading to delayed recovery, with subsequent
increased morbidity and financial costs, and decreased quality of life for
survivors. Critical illness myopathy (CIM) is a frequently observed
neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid
hormone treatment and post-synaptic neuromuscular blockade have been
forwarded as the dominating triggering factors. Recent experimental results
from our group using a unique experimental rat ICU model show that the
mechanical silencing associated with CIM is the primary triggering factor.
This study aims to unravel the mechanisms underlying CIM, and to evaluate
the effects of a specific intervention aiming at reducing mechanical
silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs),
muscle membrane excitability, muscle mass measurements, and contractile
properties at the single muscle fiber level were explored in seven deeply
sedated and mechanically ventilated ICU patients (not exposed to systemic
corticosteroid hormone treatment, post-synaptic neuromuscular blockade or
sepsis) subjected to unilateral passive mechanical loading for 10 hours per
day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that
is, severe muscle wasting and a preferential myosin loss (P <
0.001). In addition, myosin PTMs specific to the ICU condition were observed
in parallel with an increased sarcolemmal expression and cytoplasmic
translocation of neuronal nitric oxide synthase. Passive mechanical loading
for 9 ± 1 days resulted in a 35% higher specific force (P <
0.001) compared with the unloaded leg, although it was not sufficient to
prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM;
that is, triggering the myosin loss, muscle wasting and myosin PTMs. The
higher neuronal nitric oxide synthase expression found in the ICU patients
and its cytoplasmic translocation are forwarded as a probable mechanism
underlying these modifications. The positive effect of passive loading on
muscle fiber function strongly supports the importance of early physical
therapy and mobilization in deeply sedated and mechanically ventilated ICU
patients.
Collapse
|
10
|
Abstract
Neuromuscular disorders that are diagnosed in the intensive care unit (ICU) usually cause substantial limb weakness and contribute to ventilatory dysfunction. Although some lead to ICU admission, ICU-acquired disorders, mainly critical illness myopathy (CIM) and critical illness polyneuropathy (CIP), are more frequent and are associated with considerable morbidity. Approximately 25% to 45% of patients admitted to the ICU develop CIM, CIP, or both. Their clinical features often overlap; therefore, nerve conduction studies and electromyography are particularly helpful diagnostically, and more sophisticated electrodiagnostic studies and histopathologic evaluation are required in some circumstances. A number of prospective studies have identified risk factors for CIP and CIM, but their limitations often include the inability to separate CIM from CIP. Animal models reveal evidence of a channelopathy in both CIM and CIP, and human studies also identified axonal degeneration in CIP and myosin loss in CIM. Outcomes are variable. They tend to be better with CIM, and some patients have longstanding disabilities. Future studies of well-characterized patients with CIP and CIM should refine our understanding of risk factors, outcomes, and pathogenic mechanisms, leading to better interventions.
Collapse
Affiliation(s)
- David Lacomis
- Department of Neurology and Pathology (Neuropathology), University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
11
|
Norman H, Zackrisson H, Hedström Y, Andersson P, Nordquist J, Eriksson LI, Libelius R, Larsson L. Myofibrillar protein and gene expression in acute quadriplegic myopathy. J Neurol Sci 2009; 285:28-38. [PMID: 19501843 DOI: 10.1016/j.jns.2009.04.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
The dramatic muscle wasting, preferential loss of myosin and impaired muscle function in intensive care unit (ICU) patients with acute quadriplegic myopathy (AQM) have traditionally been suggested to be the result of proteolysis via specific proteolytic pathways. In this study we aim to investigate the mechanisms underlying the preferential loss of thick vs. thin filament proteins and the reassembly of the sarcomere during the recovery process in muscle samples from ICU patients with AQM. Quantitative and qualitative analyses of myofibrillar protein and mRNA expression were analyzed using SDS-PAGE, confocal microscopy, histochemistry and real-time PCR. The present results demonstrate that the transcriptional regulation of myofibrillar protein synthesis plays an important role in the loss of contractile proteins, as well as the recovery of protein levels during clinical improvement, myosin in particular, presumably in concert with proteolytic pathways, but the mechanisms are specific to the different thick and thin filament proteins studied.
Collapse
Affiliation(s)
- Holly Norman
- Department of Clinical Neurophysiology, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Larsson L. Acute quadriplegic myopathy: an acquired "myosinopathy". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 642:92-8. [PMID: 19181096 DOI: 10.1007/978-0-387-84847-1_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Acquired neuromuscular disorders have been shown to be very common in critically ill patients receiving prolonged mechanical ventilation in the intensive care unit (ICU). Acute Quadriplegic Myopathy (AQM) is a specific acquired myopathy in ICU patients. Patients with AQM are characterized by severe muscle weakness and atrophy of spinal nerve innervated limb and trunk muscles, while cranial nerve innervated craniofacial muscles, sensory and cognitive functions are spared or less affected. The muscle weakness is associated with altered muscle membrane properties and a preferential loss of the motor protein myosin and myosin-associated thick filament proteins. Prolonged mechanical ventilation, muscle unloading, postsynaptic block of neuromuscular transmission, sepsis and systemic corticosteroid hormone treatment have been suggested as important triggering factors in AQM. However, the exact mechanisms underlying the loss of thick filament proteins are not known, though enhanced myofibrillar protein degradation in combination with a downregulation of protein synthesis at the transcriptional level play important roles.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Systemic inflammatory response syndrome increases immobility-induced neuromuscular weakness. Crit Care Med 2008; 36:910-6. [PMID: 18431280 DOI: 10.1097/ccm.0b013e3181659669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Inflammation and immobility are comorbid etiological factors inducing muscle weakness in critically ill patients. This study establishes a rat model to examine the effect of inflammation and immobilization alone and in combination on muscle contraction, histology, and acetylcholine receptor regulation. DESIGN Prospective, randomized, experimental study. SETTING Animal laboratory of a university hospital. SUBJECTS Sprague-Dawley rats. INTERVENTIONS To produce systemic inflammation, rats (n = 34) received three consecutive intravenous injections of Corynebacterium parvum on days 0, 4, and 8. Control rats (n = 21) received saline. Both groups were further divided to have one hind limb either immobilized by pinning of knee and ankle joints or sham-immobilized (surgical leg). The contralateral nonsurgical leg of each animal served as control (nonsurgical leg). MEASUREMENTS AND MAIN RESULTS After 12 days, body weight and muscle mass were significantly reduced in all C. parvum animals compared with saline-injected rats. Immobilization led to local muscle atrophy. Normalized to muscle mass, tetanic contraction was reduced in the surgical leg after immobilization (7.64 +/- 1.91 N/g) and after inflammation (8.71 +/- 2.0 N/g; both p < .05 vs. sham immobilization and saline injection, 11.03 +/- 2.26 N/g). Histology showed an increase in inflammatory cells in all C. parvum-injected animals. Immobilization in combination with C. parvum injection had an additive effect on inflammation. Acetylcholine receptors were increased in immobilized muscles and in all muscles of C. parvum-injected animals. CONCLUSIONS The muscle weakness in critically ill patients can be replicated in our novel rat model. Inflammation and immobilization independently lead to muscle weakness.
Collapse
|
14
|
Ochala J, Larsson L. Effects of a preferential myosin loss on Ca2+activation of force generation in single human skeletal muscle fibres. Exp Physiol 2008; 93:486-95. [DOI: 10.1113/expphysiol.2007.041798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Allen DC, Arunachalam R, Mills KR. Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy. Muscle Nerve 2008; 37:14-22. [PMID: 17763454 DOI: 10.1002/mus.20884] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent studies have demonstrated acquired muscle inexcitability in critical illness myopathy (CIM) and have used direct muscle stimulation (DMS) techniques to distinguish neuropathy from myopathy as a cause of weakness in the critically ill. The mechanisms underlying weakness in CIM are incompletely understood and DMS is only semiquantitative. We report results from a series of 32 patients with CIM and demonstrate significant slowing of muscle-fiber conduction velocity (MFCV) and muscle-fiber conduction block during the acute phase of CIM, which correlates with prolonged compound muscle action potential (CMAP) duration, clinical severity, and course. We also used a paired stimulation technique to explore the excitability of individual muscle fibers in vivo. We demonstrate altered muscle-fiber excitability in CIM patients. Serial studies help define the course of these pathophysiological changes. Parallels are made between CIM and hypokalemic periodic paralysis. Our findings provide further evidence for muscle membrane dysfunction being the principal underlying abnormality in CIM.
Collapse
Affiliation(s)
- David C Allen
- Academic Unit of Clinical Neurophysiology, Guy's, King's & St. Thomas' School of Medicine, King's College Hospital, London SE5 9RS, UK
| | | | | |
Collapse
|
16
|
Testelmans D, Maes K, Wouters P, Gosselin N, Deruisseau K, Powers S, Sciot R, Decramer M, Gayan-Ramirez G. Rocuronium exacerbates mechanical ventilation-induced diaphragm dysfunction in rats. Crit Care Med 2006; 34:3018-23. [PMID: 17012910 DOI: 10.1097/01.ccm.0000245783.28478.ad] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Nondepolarizing neuromuscular blocking agents are commonly used in the intensive care setting, but they have occasionally been associated with development of myopathy. In addition, diaphragmatic atrophy and a reduction in diaphragmatic force were reported after short-term controlled mechanical ventilation in animal models. We hypothesized that infusion of rocuronium, an aminosteroidal neuromuscular blocking agent, during 24 hrs of controlled mechanical ventilation would further alter diaphragm function and would enhance activation of the ubiquitin- proteasome pathway. DESIGN Randomized, controlled experiment. SETTING Basic animal science laboratory. SUBJECTS Male Wistar rats, 14 wks old. INTERVENTIONS Rats were divided into four groups: a control group, a group of anesthetized rats breathing spontaneously for 24 hrs, and two groups submitted to mechanical ventilation for 24 hrs, receiving a continuous infusion of either 0.9% NaCl or rocuronium. MEASUREMENTS AND MAIN RESULTS In vitro diaphragm force was decreased more significantly after 24 hrs of mechanical ventilation combined with rocuronium infusion than after mechanical ventilation alone (e.g., tetanic force, -27%; p < .001 vs. mechanical ventilation). Similarly, the decrease in diaphragm type IIx/b fiber dimensions was more pronounced after mechanical ventilation with rocuronium treatment than with saline treatment (-38% and -29%, respectively; p < .001 vs. control). Diaphragm hydroperoxide levels increased similarly in both mechanically ventilated groups. Diaphragm muscle RING-finger protein-1 (MURF-1) messenger RNA expression, an E3 ligase of the ubiquitin-proteasome pathway, increased after mechanical ventilation (+212%, p < .001 vs. control) and increased further with combination of rocuronium (+320%, p < .001 vs. control). Significant correlations were found between expression of MURF-1 messenger RNA, diaphragm force, and type IIx/b fiber dimensions. CONCLUSIONS Infusion of rocuronium during controlled mechanical ventilation leads to further deterioration of diaphragm function, additional atrophy of type IIx/b fibers, and an increase in MURF-1 messenger RNA in the diaphragm, which suggests an activation of the ubiquitin-proteasome pathway. These findings could be important with regard to weaning failure in patients receiving this drug for prolonged periods in the intensive care unit setting.
Collapse
Affiliation(s)
- Dries Testelmans
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Norman H, Kandala K, Kolluri R, Zackrisson H, Nordquist J, Walther S, Eriksson LI, Larsson L. A porcine model of acute quadriplegic myopathy: a feasibility study. Acta Anaesthesiol Scand 2006; 50:1058-67. [PMID: 16939482 DOI: 10.1111/j.1399-6576.2006.01105.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanisms underlying acute quadriplegic myopathy (AQM) are poorly understood, partly as a result of the fact that patients are generally diagnosed at a late stage of the disease. Accordingly, there is a need for relevant experimental animal models aimed at identifying underlying mechanisms. METHODS Pigs were mechanically ventilated and exposed to various combinations of agents, i.e. pharmacological neuromuscular blockade, corticosteroids and/or sepsis, for a period of 5 days. Electromyography and myofibrillar protein and mRNA expression were analysed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), confocal microscopy, histochemistry and real-time polymerase chain reaction (PCR). RESULTS A decreased compound muscle action potential, normal motor nerve conduction velocities, and intact sensory nerve function were observed. Messenger RNA expression, determined by real-time PCR, of the myofibrillar proteins myosin and actin decreased in spinal and cranial nerve innervated muscles, suggesting that the loss of myosin observed in AQM patients is not solely the result of myofibrillar protein degradation. CONCLUSION The present porcine AQM model demonstrated findings largely in accordance with results previously reported in patients and offers a feasible approach to future mechanistic studies aimed at identifying underlying mechanisms and developing improved diagnostic tests and intervention strategies.
Collapse
Affiliation(s)
- H Norman
- Department of Clinical Neurophysiology, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Iodice F, Salzano M, Prosperi M, D' Amico A, Lauri A, Bertini E. Acute quadriplegic myopathy in a 16-month-old child. Paediatr Anaesth 2005; 15:611-5. [PMID: 15960648 DOI: 10.1111/j.1460-9592.2005.01491.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a case of a 16-month old previously healthy child who was hospitalized because of an acute respiratory insufficiency most likely caused by a viral infection and who then developed a severe acute quadriplegic myopathy (AQM). Initial clinical symptoms were respiratory acidosis, dypnea, intense wheezing, and deterioration of the level of consciousness, which required orotracheal intubation and mechanical ventilation. We administered neuromuscular blocking agents, corticosteroids, and antibiotics. After 9 days the clinical picture improved. An attempt to wean from the ventilator failed. We diagnosed AQM. This paper discusses AQM and its clinical importance.
Collapse
Affiliation(s)
- Francesca Iodice
- Department of Anaesthesia and Intensive Care, Ospedale Pediatrico Bambino, Gesu-Palidoro, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neuromuscular disorders increasingly are recognized as a complication in patients in the intensive care unit (ICU) and represent a common cause of prolonged ventilator dependency. The distinct syndromes of critical illness myopathy, prolonged neuromuscular blockade, and critical illness polyneuropathy (CIP) may arise as a consequence of sepsis, multi-organ failure, and exposure to various medications--notably, intravenous corticosteroids and neuromuscular blocking agents--but the pathophysiology of these disorders remains poorly understood. More than one syndrome may occur simultaneously, and the distinctions may be difficult in a particular patient, but a specific diagnosis usually can be established after careful clinical, electrodiagnostic, and, when necessary, histological evaluation. For example, asthmatics requiring treatment with corticosteroids and neuromuscular blocking agents may develop an acute myopathy characterized by generalized weakness, preserved eye movements, elevated creatine kinase levels, and myopathic motor units on electromyography (EMG). Muscle biopsy demonstrates distinctive features of thick (myosin) filament loss on ultrastructural studies. Conversely, those with a prolonged ICU course that is complicated by episodes of sepsis with failure to wean from the ventilator, distal or generalized flaccid limb weakness, and areflexia probably have CIP. EMG in these patients demonstrates reduced or absent motor and sensory potentials with neurogenic motor units. Prolonged neuromuscular blockade most commonly occurs in patients with renal failure who have received prolonged infusions of neuromuscular blockers. There is severe flaccid, areflexic paralysis with normal sensation, facial weakness, and ophthalmoparesis that persists for days or weeks after the neuromuscular blockers have been discontinued. Repetitive nerve stimulation shows a decrement of the compound muscle action potential and, in most cases, establishes a disorder of neuromuscular transmission. With the recent epidemic of West Nile virus infection, a clinical syndrome of acute flaccid paralysis with several features indistinguishable from poliomyelitis has emerged. This article critically examines the clinical, electrophysiological, and pathological features of these and other acute neuromuscular syndromes that arise in the context of ICU care and summarizes the current understanding of the pathophysiology and treatment of these disorders.
Collapse
Affiliation(s)
- Kenneth C Gorson
- Neuromuscular Service, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| |
Collapse
|
20
|
Lacomis D, Campellone JV. PERIPHERAL NERVOUS SYSTEM COMPLICATIONS OF ORGAN TRANSPLANTATION. Continuum (Minneap Minn) 2004. [DOI: 10.1212/01.con.0000290711.18583.b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Di Giovanni S, Molon A, Broccolini A, Melcon G, Mirabella M, Hoffman EP, Servidei S. Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 2004; 55:195-206. [PMID: 14755723 DOI: 10.1002/ana.10811] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Center for Genetic Medicine, Children's National Medical Center and Genetics Program, George Washington University, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Stibler H, Edström L, Ahlbeck K, Remahl S, Ansved T. Electrophoretic determination of the myosin/actin ratio in the diagnosis of critical illness myopathy. Intensive Care Med 2003; 29:1515-27. [PMID: 12915938 DOI: 10.1007/s00134-003-1894-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 05/27/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To develop a rapid method to quantify myosin in muscle biopsy specimens from patients with critical illness myopathy (CIM). DESIGN Percutaneous muscle biopsy specimens at different stages of CIM were examined by light microscopy and transmission electron microscopy (TEM) and by horizontal pore gradient SDS electrophoresis (SDS-PAGE). The myosin/actin ratio was calculated densitometrically. Neurophysiological examinations were performed at various times during the course of CIM. SETTING All patients were treated in intensive care units at Karolinska Hospital. PATIENTS AND PARTICIPANTS We studied 11 patients with CIM, 5 patients with axonal neuropathies, and 42 control individuals. MEASUREMENTS AND RESULTS The histopathological changes included in all cases muscle fiber atrophy, degeneration, regeneration, nuclear changes, and reduction in myofibrillar ATPase activity in both type I and II fibers. In severely affected muscles fiber type differentiation was lost. On TEM preferential loss of thick filaments was the dominant finding. In some patients changes were present only in parts of the specimen. The neurophysiological examinations indicated myopathy in five patients and combined myopathy and neuropathy in five and suggested neuropathy in one. The SDS-pore PAGE used showed a technical variation of 4-5%. Quantitative results were obtained within 1 day and night. The mean value of the myosin/actin ratio in controls was 1.37+/-0.21 and in CIM patients 0.37+/-0.17, without overlapping with the control values. CONCLUSIONS Considering the diagnostic difficulty using morphological and neurophysiological methods, especially in early stages of CIM, we suggest including SDS-pore PAGE to determine the myosin/actin ratio for rapid diagnosis of CIM.
Collapse
Affiliation(s)
- Helena Stibler
- Department of Neurology, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM. Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits. J Appl Physiol (1985) 2003; 95:781-90. [PMID: 12716870 DOI: 10.1152/japplphysiol.00317.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to use the model of spinal cord isolation (SI), which blocks nearly all neuromuscular activity while leaving the motoneuron muscle-fiber connections intact, to characterize the cellular processes linked to marked muscle atrophy. Rats randomly assigned to normal control and SI groups were studied at 0, 2, 4, 8, and 15 days after SI surgery. The slow soleus muscle atrophied by approximately 50%, with the greatest degree of loss occurring during the first 8 days. Throughout the SI duration, muscle protein concentration was maintained at the control level, whereas myofibrillar protein concentration steadily decreased between 4 and 15 days of SI, and this was associated with a 50% decrease in myosin heavy chain (MHC) normalized to total protein. Actin relative to the total protein was maintained at the control level. Marked reductions occurred in total RNA and DNA content and in total MHC and actin mRNA expressed relative to 18S ribosomal RNA. These findings suggest that two key factors contributing to the muscle atrophy in the SI model are 1). a reduction in ribosomal RNA that is consistent with a reduction in protein translational capacity, and 2). insufficient mRNA substrate for translating key sarcomeric proteins comprising the myofibril fraction, such as MHC and actin. In addition, the marked selective depletion of MHC protein in the muscles of SI rats suggests that this protein is more vulnerable to inactivity than actin protein. This selective MHC loss could be a major contributor for the previously reported loss in the functional integrity of SI muscles. Collectively, these data are consistent with the involvement of pretranslational and translational processes in muscle atrophy due to SI.
Collapse
Affiliation(s)
- F Haddad
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Acute myopathy is a common problem in intensive care units. Those at highest risk for developing critical illness myopathy are exposed to intravenous corticosteroids and paralytic agents during treatment of various illnesses. Diffuse weakness and failure to wean from mechanical ventilation are the most common clinical manifestations. Serum creatine kinase levels are variable. Electrodiagnostic studies reveal findings of a myopathic process, often with evidence of muscle membrane inexcitability. Based on animal model studies, the loss of muscle membrane excitability may be related to inactivation of sodium channels at the resting potential. In addition, human and animal pathologic studies reveal characteristic loss of myosin with relative preservation of other structural proteins. In some patients, there is also upregulation of proteolytic pathways, involving calpain and ubiquitin, in conjunction with increased apoptosis. Fortunately, the disorder is reversible, but there may be considerable morbidity.
Collapse
Affiliation(s)
- David Lacomis
- University of Pittsburgh Medical Center Presbyterian, 200 Lothrop Street, F878, Pittsburgh, PA 15213, USA.
| |
Collapse
|