1
|
Sory DR, Heyraud ACM, Jones JR, Rankin SM. Ionic release from bioactive SiO 2-CaO CME/poly(tetrahydrofuran)/poly(caprolactone) hybrids drives human-bone marrow stromal cell osteogenic differentiation. BIOMATERIALS ADVANCES 2025; 166:214019. [PMID: 39326252 DOI: 10.1016/j.bioadv.2024.214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study demonstrates that dissolution products of inorganic/organic SiO2-CaOCME/PTHF/PCL-diCOOH hybrid (70S30CCME-CL) drive human bone marrow stromal cells (h-BMSCs) down an osteogenic pathway with the production of mineralised matrix. We investigated osteogenesis through combined analyses of mRNA dynamics for key markers and targeted staining of mineralised matrix. We demonstrate that h-BMSCs undergo accelerated differentiation in vitro in response to the 70S30CCME-CL ionic milieu, as compared to incubation with osteogenic media. Extracts from 70S30CCME-CL promote osteogenesis by inducing changes in cellular metabolic activity, promoting changes in cell morphology consistent with the osteogenic lineage, and by enhancing mineralisation of hydroxyapatite in the extracellular matrix. Additionally, our results show that 70S30CCME-CL hybrids prove sustained functional resilience by maintaining osteostimulatory effects despite cumulated dissolution cycles. In co-differentiation medium, 70S30CCME-CL ionic release can modulate signalling pathways associated with non-osteogenic functions, further supporting their potential for bone regeneration applications. Overall, our study provides compelling experimental evidence that the 70S30CCME-CL hybrid is a promising biomaterial for bone tissue regeneration applications.
Collapse
Affiliation(s)
- David R Sory
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Nikody M, Kessels L, Morejón L, Schumacher M, Wolfs TGAM, Rademakers T, Delgado JA, Habibovic P, Moroni L, Balmayor ER. In vitro osteogenic and in ovo angiogenic effects of a family of natural origin P 2O 5-free bioactive glasses. RSC Adv 2024; 14:34708-34717. [PMID: 39479482 PMCID: PMC11523078 DOI: 10.1039/d4ra04731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Bioactive glasses (BGs) belong to a group of ceramic biomaterials having numerous applications due to their excellent biocompatibility and bioactivity. Depending on their composition, properties of BGs can be finely tuned. In this study, we investigated both angiogenic and osteogenic properties of a novel family of BGs from the SiO2-CaO-Na2O system. Three BGs were synthesised from calcite minerals and silica sands extracted from natural deposits. Silica sands used for the synthesis of each glass were obtained from different depths of the deposit, resulting in a different colour and elemental composition. The composition and structural properties of the obtained BGs were determined. Direct culture of human mesenchymal stromal cells (hMSCs) with BG particles at different concentrations was used to investigate the biocompatibility as well as the osteogenic and angiogenic properties of the BGs. In addition, BGs' effect on angiogenesis was further studied in a chick chorioallantoic membrane (CAM) model. Material characterisation confirmed the amorphous character of BGs. Investigated BGs were biocompatible and stimulated early upregulation of RUNX2, ALPL, COL1A1, OCN, and OPN. All BGs tested in a CAM model positively influenced the number, distribution, and branching of the blood vessels. Furthermore, our study revealed that the depth of sand deposit, at which the raw material was collected, had an impact on the osteogenic and angiogenic properties of the resulting glasses. On the one hand, silica sand collected at the deepest layer of the deposit, featuring a higher content of Fe2O3 and Al2O3, originated BGs with potent stimulative capacity of osteogenic and angiogenic gene expression. On the other hand, sand with high silica content and titanium ions resulted in a glass that better supported vessel structure. The BGs presented in this study showed the potential to promote osteogenesis and angiogenesis during bone tissue regeneration, and thus, they will be further studied as part of composite materials for the development of 3D implantable scaffolds.
Collapse
Affiliation(s)
- Martyna Nikody
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Lilian Kessels
- Department of Paediatrics, Research Institute for Oncology and Reproduction (GROW), Maastricht University Maastricht The Netherlands
| | - Lizette Morejón
- Center of Biomaterials, University of Havana 10400 Havana Cuba
| | - Matthias Schumacher
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Tim G A M Wolfs
- Department of Paediatrics, Research Institute for Oncology and Reproduction (GROW), Maastricht University Maastricht The Netherlands
| | - Timo Rademakers
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
- Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
| | - José A Delgado
- Center of Biomaterials, University of Havana 10400 Havana Cuba
- Universitat Internacional de Catalunya 08195 Barcelona Spain
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University Maastricht The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
| | - Elizabeth R Balmayor
- Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University 6229 ER Maastricht The Netherlands
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital 52074 Aachen Germany
| |
Collapse
|
3
|
Krishnan L, Chakrabarty P, Govarthanan K, Rao S, Santra TS. Bioglass and nano bioglass: A next-generation biomaterial for therapeutic and regenerative medicine applications. Int J Biol Macromol 2024; 277:133073. [PMID: 38880457 DOI: 10.1016/j.ijbiomac.2024.133073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Biomaterials are an indispensable component in tissue engineering that primarily functions to resemble the extracellular matrix of any tissue targeted for regeneration. In the last five decades, bioglass has been extensively used in the field of therapeutic and tissue engineering. The doping of metal components into bioglass and the synthesizing of nano bioglass particles have found remarkable implications, both in vivo and in vitro. These include various medical and biological applications such as rejuvenating tissues, facilitating regeneration, and delivering biomolecules into cells and therapy, etc. Therefore, the current review discusses the various techniques used in synthesizing bioglass particles, trends of various ion-doped nano bioglass, and their applications in therapy as well as in regenerative medicine, specifically in the fields of dentistry, cardiovascular, skin, nervous, and respiratory systems. Apart from these, this review also emphasizes the bioglass combined with diverse natural polymers (like collagen, chitosan, etc.) and their applications. Furthermore, we discuss the effectiveness of bioglass properties such as antibacterial effects, biomolecular delivery systems, tissue compatibility, and regenerative material. Finally, the prospects and limitations are elaborated.
Collapse
Affiliation(s)
- Lakshmi Krishnan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Govarthanan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Lim HK, Song IS, Choi WC, Choi YJ, Kim EY, Phan THT, Lee UL. Biocompatibility and dimensional stability through the use of 3D-printed scaffolds made by polycaprolactone and bioglass-7: An in vitro and in vivo study. Clin Implant Dent Relat Res 2024. [PMID: 39257249 DOI: 10.1111/cid.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This experiment aimed to observe the differences in biological properties by producing BGS-7 + PCL scaffolds with different weight fractions of BGS-7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective. MATERIALS AND METHODS Cube-shaped bioglass (BGS-7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS-7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7-mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically. RESULTS HA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS-7 increase. In the in vivo test, a higher bone-implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together. CONCLUSION The 3D-printed scaffold, a mixture of BGS-7 and PCL, exhibit higher biological compatibility as the proportion of BGS-7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral & Maxillofacial Surgery, Korea University Guro Hospital, Seoul, Korea
| | - In-Seok Song
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Won-Cheul Choi
- Department of Orthodontics, Dental Center, Chung-Ang University Hospital, Seoul, Korea
| | - Young-Jun Choi
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Thi Hong Tham Phan
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ui-Lyong Lee
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
7
|
Murali A, Brokesh AM, Cross LM, Kersey AL, Jaiswal MK, Singh I, Gaharwar A. Inorganic Biomaterials Shape the Transcriptome Profile to Induce Endochondral Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402468. [PMID: 38738803 PMCID: PMC11304299 DOI: 10.1002/advs.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Minerals play a vital role, working synergistically with enzymes and other cofactors to regulate physiological functions including tissue healing and regeneration. The bioactive characteristics of mineral-based nanomaterials can be harnessed to facilitate in situ tissue regeneration by attracting endogenous progenitor and stem cells and subsequently directing tissue-specific differentiation. Here, cellular responses of human mesenchymal stem/stromal cells to traditional bioactive mineral-based nanomaterials, such as hydroxyapatite, whitlockite, silicon-dioxide, and the emerging synthetic 2D nanosilicates are investigated. Transcriptome sequencing is utilized to probe the cellular response and determine the significantly affected signaling pathways due to exposure to these inorganic nanomaterials. Transcriptome profiles of stem cells treated with nanosilicates reveals a stabilized skeletal progenitor state suggestive of endochondral differentiation. This observation is bolstered by enhanced deposition of matrix mineralization in nanosilicate treated stem cells compared to control or other treatments. Specifically, use of 2D nanosilicates directs osteogenic differentiation of stem cells via activation of bone morphogenetic proteins and hypoxia-inducible factor 1-alpha signaling pathway. This study provides insight into impact of nanomaterials on cellular gene expression profile and predicts downstream effects of nanomaterial induction of endochondral differentiation.
Collapse
Affiliation(s)
- Aparna Murali
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna M. Brokesh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lauren M. Cross
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Anna L. Kersey
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Manish K. Jaiswal
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Irtisha Singh
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Cell Biology and GeneticsCollege of MedicineTexas A&M UniversityBryanTX77807‐3260USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Interdisciplinary Program in Genetics and GenomicsTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
8
|
Karbivskyy V, Kurgan N, Kasyianenko V, Sukhenko I, Smolyak S, Zaika V, Dubok V. Spectral Investigations of 60S Bioactive Glass Modified with La and Y Ions. J Phys Chem B 2024; 128:5888-5894. [PMID: 38853530 DOI: 10.1021/acs.jpcb.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The changes in the atomic structure and in the network of bonds between oxide tetrahedra in 60S bioactive glass upon modification of its structure by yttrium and lanthanum atoms were investigated via XPS, FTIR, and NMR spectroscopy methods. The presence of nanostructure in the samples of 60S bioactive glass modified with yttrium and lanthanum was demonstrated. The formation of a bioinert core of 60S bioactive glass nanoparticles with the subsequent formation of a biocompatible layer is facilitated by the redistribution of electron density when oxygen bridge bonds are broken, PO4 and SiO4 tetrahedra are fragmented in the polymer matrix, and isolated nanoclusters are formed. Given the fact that during the interaction with the extracellular matrix, the breakdown of covalent bonds -O-Si-O-P- is more energetically costly than the rapid ionic exchange of network modifiers Ca2+ (Y3+, La3+) and the leaching of isolated nanoclusters into the surrounding physiological environment, it is argued that modification of 60S bioactive glass with yttrium or lanthanum can accelerate bioactive ionic processes in the extracellular matrix.
Collapse
Affiliation(s)
- V Karbivskyy
- G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - N Kurgan
- G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - V Kasyianenko
- Vinnytsia National Technical University, Vinnytsia 21021, Ukraine
| | - I Sukhenko
- G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - S Smolyak
- G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - V Zaika
- G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - V Dubok
- I. M. Frantsevich Institute for Problems in Material Science of the National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| |
Collapse
|
9
|
Zhong Y, Liu C, Yan X, Li X, Chen X, Mai S. Odontogenic and anti-inflammatory effects of magnesium-doped bioactive glass in vital pulp therapy. Biomed Mater 2024; 19:045026. [PMID: 38740053 DOI: 10.1088/1748-605x/ad4ada] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to investigate the effects of magnesium-doped bioactive glass (Mg-BG) on the mineralization, odontogenesis, and anti-inflammatory abilities of human dental pulp stem cells (hDPSCs). Mg-BG powders with different Mg concentrations were successfully synthesized via the sol-gel method and evaluated using x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Apatite formation was observed on the surfaces of the materials after soaking in simulated body fluid. hDPSCs were cultured with Mg-BG powder extracts in vitro, and no evident cytotoxicity was observed. Mg-BG induced alkaline phosphatase (ALP) expression and mineralization of hDPSCs and upregulated the expression of odontogenic genes, including those encoding dentin sialophosphoprotein, dentin matrix protein 1, ALP, osteocalcin, and runt-related transcription factor 2. Moreover, Mg-BG substantially suppressed the secretion of inflammatory cytokines (interleukin [IL]-4, IL-6, IL-8, and tumor necrosis factor-alpha). Collectively, the results of this study suggest that Mg-BG has excellent in vitro bioactivity and is a potential material for vital pulp therapy of inflamed pulps.
Collapse
Affiliation(s)
- Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Cong Liu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Xiangdong Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Xiaofeng Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| |
Collapse
|
10
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Cholewa-Kowalska K. Bioactive Glasses Modulate Anticancer Activity and Other Polyphenol-Related Properties of Polyphenol-Loaded PCL/Bioactive Glass Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24261-24273. [PMID: 38709741 PMCID: PMC11103658 DOI: 10.1021/acsami.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.
Collapse
Affiliation(s)
- Michal Dziadek
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Kinga Dziadek
- Faculty
of Food Technology, Department of Human Nutrition and Dietetics, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamila Checinska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Barbara Zagrajczuk
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| |
Collapse
|
11
|
Salimi E, Asim MH, Abidin MNZ. Investigating the in-vitro bioactivity, biodegradability and drug release behavior of the newly developed PES/HA/WS biocompatible nanocomposites as bone graft substitute. Sci Rep 2024; 14:10798. [PMID: 38734777 PMCID: PMC11088656 DOI: 10.1038/s41598-024-61586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Esmaeil Salimi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, 3619995161, Iran.
| | | | - Muhammad Nidzhom Zainol Abidin
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Borden MD, Shors EC, Walsh WR, Lovric V. Characterization of an advanced bone graft material with a nanocrystalline hydroxycarbanoapatite surface and dual phase composition. J Biomed Mater Res B Appl Biomater 2024; 112:e35416. [PMID: 38747324 DOI: 10.1002/jbm.b.35416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 10/24/2024]
Abstract
The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).
Collapse
Affiliation(s)
| | | | - William R Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Abdollahi F, Saghatchi M, Paryab A, Malek Khachatourian A, Stephens ED, Toprak MS, Badv M. Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements. BIOMATERIALS ADVANCES 2024; 159:213828. [PMID: 38479240 DOI: 10.1016/j.bioadv.2024.213828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.
Collapse
Affiliation(s)
- Farnoosh Abdollahi
- Department of Dentistry, Kashan University of Medical Science, Kashan, Iran
| | - Mahshid Saghatchi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Emma D Stephens
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Maryam Badv
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
14
|
Cohn N, Bradtmüller H, Zanotto E, von Marttens A, Covarrubias C. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties. Biomolecules 2024; 14:482. [PMID: 38672498 PMCID: PMC11047882 DOI: 10.3390/biom14040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties. The nanocomposite hybrids were produced by incorporating nBGs in situ into a polytetrahydrofuran (PTHF) and silica (SiO2) hybrid synthesis mixture using a combined sol-gel and cationic polymerization method. nBGs ~80 nm in size were synthesized using the sol-gel technique. The structure, composition, morphology, and mechanical properties of the resulting materials were characterized using ATR-FTIR, 29Si MAS NMR, SEM-EDX, AFM, TGA, DSC, mechanical, and DMA testing. The in vitro bioactivity and degradability of the hybrids were assessed in simulated body fluid (SBF) and PBS, respectively. Cytocompatibility with mesenchymal stem cells was assessed using MTS and cell adhesion assays. Osteogenic differentiation was determined using the alkaline phosphatase activity (ALP), as well as the gene expression of Runx2 and Osterix markers. Hybrids loaded with 5, 10, and 15% of nBGs retained the mechanical flexibility of the PTHF-SiO2 matrix and improved its ability to promote the formation of bone-like apatite in SBF. The nBGs did not impair cell viability, increased the ALP activity, and upregulated the expression of Runx2 and Osterix. These results demonstrate that nBGs are an effective osteoinductive nanoadditive for the production of class II hybrid materials with enhanced properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Nicolás Cohn
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Henrik Bradtmüller
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Edgar Zanotto
- Center of Research, Technology and Education in Vitreous Materials, Department of Materials Engineering, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil; (H.B.); (E.Z.)
| | - Alfredo von Marttens
- Oral and Maxillofacial Implantology Program, Graduate School, Faculty of Dentistry, University of Chile, Santiago 7520355, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile
| |
Collapse
|
15
|
Cao B, Xie L, Xu Y, Shen J, Zhang Y, Wang Y, Weng X, Bao Z, Yang X, Gou Z, Wang C. Dual-core-component multiphasic bioceramic granules with selective-area porous structures facilitating bone tissue regeneration and repair. RSC Adv 2024; 14:10526-10537. [PMID: 38567335 PMCID: PMC10985589 DOI: 10.1039/d4ra00911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Ca-phosphate/-silicate ceramic granules have been widely studied because their biodegradable fillers can enhance bone defect repair accompanied with bioactive ion release and material degradation; however, it is a challenge to endow bioceramic composites with time-dependent ion release and highly efficient osteogenesis in vivo. Herein, we prepared dual-core-type bioceramic granules with varying chemical compositions beneficial for controlling ion release and stimulating osteogenic capability. Core-shell-structured bioceramic granules (P8-Sr4@Zn3, P8-Sr4@TCP, and P8-Sr4@HAR) composed of 8% P- and 4% Sr-substituting wollastonite (P8, Sr4) dual core components and different shell components, such as 3% Zn-substituting wollastonite (Zn3), β-tricalcium phosphate (β-TCP), and hardystonite (HAR), were prepared by cutting extruded core-shell fibers through dual-core ternary nozzles, followed by high-temperature sintering post-treatment. The experimental results showed that nonstoichiometric wollastonite core components contributed to more biologically active ion release in Tris buffer in vitro, and the sparingly dissolvable shell component readily maintained the granule morphology in vivo; thus, such bioceramic implants can adjust new bone growth and material degradation over time. In particular, bioceramic granules encapsulated by the TCP shell exhibited the most appreciable osteogenic capacity and expected biodegradation, which was mostly favorable for bone repair in critical bone defects. It is reasonable to consider that this new multiphasic bioceramic granule design is versatile for developing next-generation implants for various bone damage repairs.
Collapse
Affiliation(s)
- Binji Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Lijun Xie
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Yan Xu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Jian Shen
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine and Institute of Emergency Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| | - Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100730 China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College Beijing 100730 China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University Hangzhou 310058 China (+86) 571-8697 1539 (+86) 571-8820 8353
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine #88 Jiefang Road Hangzhou 310009 Zhejiang Province China
| |
Collapse
|
16
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
17
|
Hashimoto K, Oiwa M, Shibata H. Effect of Silicon Dioxide Nanoparticles on the Sintering Properties of Beta-Tricalcium Phosphate Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:797. [PMID: 38399047 PMCID: PMC10890285 DOI: 10.3390/ma17040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Composite sintered bodies comprising silicon dioxide (SiO2) nanoparticles dispersed in β-tricalcium phosphate (β-TCP) were prepared. The addition of nano-sized colloidal SiO2 to the β-TCP produced well-dispersed secondary phase nanoparticles that promoted densification by suppressing grain growth and increasing linear shrinkage of the sintered bodies. The SiO2 was found not to react with the β-TCP at 1120 °C and the substitution of silicon for phosphorous to produce a solid solution did not occur. This lack of a reaction is ascribed to the absence of available calcium ions to compensate for the increase in charge associated with this substitution. The SiO2 nanoparticles were found to be present near the intersections of grain boundaries in the β-TCP. β-TCP composite sintered body containing 2.0 and 4.0 wt% SiO2 exhibited a bending strength comparable to that of cortical bone and hence could potentially be used as a bone filling material.
Collapse
Affiliation(s)
- Kazuaki Hashimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Chiba, Japan; (M.O.); (H.S.)
| | | | | |
Collapse
|
18
|
Rehder F, Arango-Ospina M, Decker S, Saur M, Kunisch E, Moghaddam A, Renkawitz T, Boccaccini AR, Westhauser F. The Addition of Zinc to the ICIE16-Bioactive Glass Composition Enhances Osteogenic Differentiation and Matrix Formation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Biomimetics (Basel) 2024; 9:53. [PMID: 38248627 PMCID: PMC10813151 DOI: 10.3390/biomimetics9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An ICIE16-bioactive glass (BG) composition (in mol%: 49.5 SiO2, 6.6 Na2O, 36.3 CaO, 1.1 P2O5, and 6.6 K2O) has demonstrated excellent in vitro cytocompatibility when cultured with human bone marrow-derived mesenchymal stromal cells (BMSCs). However, its impact on the development of an osseous extracellular matrix (ECM) is limited. Since zinc (Zn) is known to enhance ECM formation and maturation, two ICIE16-BG-based Zn-supplemented BG compositions, namely 1.5 Zn-BG and 3Zn-BG (in mol%: 49.5 SiO2, 6.6 Na2O, 34.8/33.3 CaO, 1.1 P2O5, 6.6 K2O, and 1.5/3.0 ZnO) were developed, and their influence on BMSC viability, osteogenic differentiation, and ECM formation was assessed. Compared to ICIE16-BG, the Zn-doped BGs showed improved cytocompatibility and significantly enhanced osteogenic differentiation. The expression level of the osteopontin gene was significantly higher in the presence of Zn-doped BGs. A larger increase in collagen production was observed when the BMSCs were exposed to the Zn-doped BGs compared to that of the ICIE16-BG. The calcification of the ECM was increased by all the BG compositions; however, calcification was significantly enhanced by the Zn-doped BGs in the early stages of cultivation. Zn constitutes an attractive addition to ICIE16-BG, since it improves its ability to build and calcify an ECM. Future studies should assess whether these positive properties remain in an in vivo environment.
Collapse
Affiliation(s)
- Felix Rehder
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Simon Decker
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Arash Moghaddam
- PrivatÄrztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany (M.S.)
| |
Collapse
|
19
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
20
|
Turner J, Nandakumar A, Anilbhai N, Boccaccini AR, Jones JR, Jell G. The effect of Si species released from bioactive glasses on cell behaviour: A quantitative review. Acta Biomater 2023; 170:39-52. [PMID: 37714247 DOI: 10.1016/j.actbio.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Despite over 50 years of silicate bioactive glass (SBG) research, commercial success, and 6000+ published articles, there remains a lack of understanding of how soluble silicate (Si) species released from SBGs influences cellular responses. Using a systematic approach, this article quantitatively compares the in vitro responses of cells to SBG dissolution products reported in the literature and determines if there is a Si concentration ([Si]) dependent effect on cell behaviour. Cell behavioural responses to SBGs [Si] in dissolution products included metabolic activity (reported in 52 % of articles), cell number (24 %), protein production (22 %), gene expression (22 %) and biomineralization (24 %). There was a difference in the [Si] reported to cause increased (desirable) cellular responses (median = 30.2 ppm) compared to the [Si] reported to cause decreased (undesirable) cellular responses (median = 52.0 ppm) (P ≤ 0.001). The frequency of undesirable outcomes increased with increasing [Si], with ∼3 times more negative outcomes reported above 52 ppm. We also investigated the effect of [Si] on specific cellular outcomes (e.g., metabolic activity, angiogenesis, osteogenesis), if cell type/species influenced these responses and the impact of other ions (Ca, P, Na) within the SBG dissolution media on cell behaviour. This review has, for the first time, quantitatively compared the cellular responses to SBGs from the literature, providing a quantitative overview of SBG in vitro practices and presents evidence of a range of [Si] where desirable cellular responses may be more likely (30-52 ppm). This review also demonstrates the need for greater standardisation of in vitro methodological approaches and recommends some minimum reporting standards. STATEMENT OF SIGNIFICANCE: This systematic review investigates the relationship between the concentration of Si released from Si-bioactive glasses (SBG) and in vitro cellular responses. Si releasing materials continue to be of considerable scientific, commercial, and medical interest (with 1500+ articles published in the last 3 years) but there is considerable variation in the reported biologically effective Si concentrations and on the importance of Si on cell behaviour. Despite the variation in methodological approaches, this article demonstrated statistical commonalities in the Si concentrations that cause desirable and undesirable cellular behaviours, suggesting a window where positive cellular outcomes are more likely. This review also provides a quantitative analysis of in vitro practices within the bioactive glass field and highlights the need for greater standardisation.
Collapse
Affiliation(s)
- Joel Turner
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK; Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Arkhash Nandakumar
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK
| | - Nikhit Anilbhai
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Gavin Jell
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK.
| |
Collapse
|
21
|
Bergoglio M, Najmi Z, Cochis A, Miola M, Vernè E, Sangermano M. UV-Cured Bio-Based Acrylated Soybean Oil Scaffold Reinforced with Bioactive Glasses. Polymers (Basel) 2023; 15:4089. [PMID: 37896333 PMCID: PMC10610054 DOI: 10.3390/polym15204089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a photo-initiator (Irgacure 819) and a bioactive glass particle. The resin showed high reactivity towards radical photopolymerisation, and the presence of the bioactive glass did not significantly affect the photocuring process. The 3D-printed samples showed different properties from the mould-polymerised samples. The glass transition temperature Tg showed an increase of 3D samples with increasing bioactive glass content, attributed to the layer-by-layer curing process that resulted in improved interaction between the bioactive glass and the polymer matrix. Scanning electron microscope analysis revealed an optimal distribution on bioactive glass within the samples. Compression tests indicated that the 3D-printed sample exhibited higher modulus compared to mould-synthetized samples, proving the enhanced mechanical behaviour of 3D-printed scaffolds. The cytocompatibility and biocompatibility of the samples were evaluated using human bone marrow mesenchymal stem cells (bMSCs). The metabolic activity and attachment of cells on the samples' surfaces were analysed, and the results demonstrated higher metabolic activity and increased cell attachment on the surfaces containing higher bioactive glass content. The viability of the cells was further confirmed through live/dead staining and reseeding experiments. Overall, this study presents a novel approach for fabricating bioactive glass reinforced scaffolds using 3D printing technology, offering potential applications in tissue engineering.
Collapse
Affiliation(s)
- Matteo Bergoglio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Ziba Najmi
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università Del Piemonte Orientale (UPO), 28100 Novara, Italy; (Z.N.); (A.C.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università Del Piemonte Orientale (UPO), 28100 Novara, Italy; (Z.N.); (A.C.)
| | - Marta Miola
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Enrica Vernè
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| |
Collapse
|
22
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
23
|
Heyraud A, Tallia F, Sory D, Ting HK, Tchorzewska A, Liu J, Pilsworth HL, Lee PD, Hanna JV, Rankin SM, Jones JR. 3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source. Front Bioeng Biotechnol 2023; 11:1224596. [PMID: 37671192 PMCID: PMC10476218 DOI: 10.3389/fbioe.2023.1224596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture.
Collapse
Affiliation(s)
- Agathe Heyraud
- Department of Materials, Imperial College London, London, United Kingdom
| | - Francesca Tallia
- Department of Materials, Imperial College London, London, United Kingdom
| | - David Sory
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Hung-Kai Ting
- Department of Materials, Imperial College London, London, United Kingdom
| | - Anna Tchorzewska
- Department of Materials, Imperial College London, London, United Kingdom
| | - Jingwen Liu
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | | | - Peter D. Lee
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry, United Kingdom
| | - Sara M. Rankin
- Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Aguilar-Rabiela AE, Homaeigohar S, González-Castillo EI, Sánchez ML, Boccaccini AR. Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspheres. Polymers (Basel) 2023; 15:polym15112432. [PMID: 37299231 DOI: 10.3390/polym15112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.
Collapse
Affiliation(s)
- Arturo E Aguilar-Rabiela
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Eduin I González-Castillo
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mirna L Sánchez
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal B1876, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
25
|
Quan H, Ren C, He Y, Wang F, Dong S, Jiang H. Application of Biomaterials in Treating Early Osteonecrosis of the Femoral Head: Research Progress and Future Perspectives. Acta Biomater 2023; 164:15-73. [PMID: 37080444 DOI: 10.1016/j.actbio.2023.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Osteonecrosis of the femoral head (ONFH), a progressive pathological process of femoral head ischemia and osteocyte necrosis, is a refractory orthopedic disease caused by multiple etiologies and there is no complete cure at present. With the extension of ONFH duration, osteocyte apoptosis and trabecular bone loss can decrease the load-bearing capacity of the femoral head, which leads to the collapse of the articular cartilage and subchondral bone. Therefore, an urgent clinical need exists to develop effective treatment strategies of early-stage ONFH for maintaining the hip joint function and preventing femoral head collapse. In recent years, extensive attention has been paid to the application of diverse biomaterials in treating early ONFH for sustaining the normal morphology and function of the autologous femoral head, and slowing disease progression. Herein, we review the research progress of bone grafts, metallic materials, bioceramics, bioglasses and polymer materials for early ONFH treatment, and discuss the biological mechanisms of bone repair and regeneration in the femoral-head necrotic area. We propose suggestions for future research directions, from a special perspective of improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts (VAOs) generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts (BAOs) and BAO-mediated bone resorption. This review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH. STATEMENT OF SIGNIFICANCE: We believe that at least three aspects of this manuscript make it interesting to readers of the Acta Biomaterialia. First, we briefly summarize the incidence, pathogenesis, risk factors, classification criteria and treatment of early osteonecrosis of the femoral head (ONFH). Second, we review the research progress in biomaterials for early ONFH treatment and the biological mechanisms of bone repair and regeneration in femoral-head necrotic area. Third, we propose future research progress on improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts and bone resorption. We hope this review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH.
Collapse
Affiliation(s)
- Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chencan Ren
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
26
|
Riaz M, Najam M, Arif S, Farooq S, Mahmood A. The structural, biological and dielectric properties of Sr, Mg and Zn doped silicate ceramics. J Mech Behav Biomed Mater 2023; 142:105830. [PMID: 37040688 DOI: 10.1016/j.jmbbm.2023.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
The current work examines the structural and biological characteristics of doped Zn, Mg, and Sr. Na2O-CaO-Si2O-P2O5 silicate ceramics synthesized by the solid state method. The undoped sample showed amorphous behavior after sintering at the 800 OC while doping of SrO, MgO and ZnO induce crystal growth; and a single phase of Parawollastonite (JCPDS# 00-043-1460) was identified in both doped samples. The strontium doped sample showed the highest value of the dielectric as compared to other three samples. The Sr doped sample had higher dielectric value because the size of Sr2+ is greater than Ca+2 so it will possess the higher polarizing power. Conductivity of Zn and Sr doped samples increased with increase in frequency and Mg doped decrease with increase in frequency. Bioactivity test confirmed that doped samples were more bioactive as compared to undoped samples, and Sr doped sample showed superior bioactivity as compared to other samples.
Collapse
Affiliation(s)
- Madeeha Riaz
- Physics Department, Lahore College for Women University, Lahore, Pakistan.
| | - Manahil Najam
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Shafaq Arif
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Shazia Farooq
- Physics Department, Lahore College for Women University, Lahore, Pakistan
| | - Arshad Mahmood
- National Institute of Lasers and Optronics (NILOP), P. O.Nilore, Islamabad, Pakistan
| |
Collapse
|
27
|
Fellenberg J, Losch S, Marinescu MR, Frey B, Lehner B, Arango-Ospina M, Hadzhieva Z, Boccaccini AR, Westhauser F. Bioactive Glass Inhibits Tumor Development from Giant Cell Tumor of Bone-Derived Neoplastic Stromal Cells in a Chicken Chorioallantoic Membrane Assay. Cancers (Basel) 2023; 15:cancers15061868. [PMID: 36980753 PMCID: PMC10046747 DOI: 10.3390/cancers15061868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor recurrence is a major problem during the treatment of giant cell tumors of bone (GCTB). We recently identified tumor cell-specific cytotoxic effects of bioactive glasses (BGs) toward neoplastic stromal cells derived from GCTB tissue (GCTSCs) in vitro. Since these data indicated a promising role of BGs in the adjuvant treatment of GCTBs, we aimed to investigate the transferability of the in vitro data into the more complex in vivo situation in the current study. We first analyzed the cytotoxicity of three different BGs in vitro by WST-1 assay after co-cultivation with primary GCTSC cell lines. The effects of BGs on tumor engraftment and growth were analyzed by chicken chorioallantoic membrane (CAM) assays and subsequent quantification of tumor take rates and tumor volumes. In vitro, all tested BGs displayed a cytotoxic effect on GCTSCs that was dependent on BG composition, concentration, and particle size. Comparable effects could be observed within the in vivo environment resulting in reduced tumor take rates and tumor volumes in BG-treated samples. These data indicate a possible clinical application of BGs in the context of GCTB therapy, mediating a reduction of recurrence rates with the simultaneous promotion of bone regeneration.
Collapse
Affiliation(s)
- Joerg Fellenberg
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Sarina Losch
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Max R Marinescu
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Birgit Frey
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Burkhard Lehner
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Marcela Arango-Ospina
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Zoya Hadzhieva
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fabian Westhauser
- Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| |
Collapse
|
28
|
Bao Z, Yang J, Shen J, Wang C, Li Y, Zhang Y, Yang G, Zhong C, Xu S, Xie L, Shen M, Gou Z. Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy. J Mater Chem B 2023; 11:2417-2430. [PMID: 36809396 DOI: 10.1039/d2tb02702j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Silicate-based biomaterials-clinically applied fillers and promising candidates-can act as a highly biocompatible substrate for osteostimulative osteogenic cell growth in vitro and in vivo. These biomaterials have been proven to exhibit a variety of conventional morphologies in bone repair, including scaffolds, granules, coatings and cement pastes. Herein, we aim to develop a series of novel bioceramic fiber-derived granules with core-shell structures which have a hardystonite (HT) shell layer and changeable core components-that is, the chemical compositions of a core layer can be tuned to include a wide range of silicate candidates (e.g., wollastonite (CSi)) with doping of functional ions (e.g., Mg, P, and Sr). Meanwhile, it is versatile to control the biodegradation and bioactive ion release sufficiently for stimulating new bone growth after implantation. Our method employs rapidly gelling ultralong core-shell CSi@HT fibers derived from different polymer hydrosol-loaded inorganic powder slurries through the coaxially aligned bilayer nozzles, followed by cutting and sintering treatments. It was demonstrated that the nonstoichiometric CSi core component could contribute to faster bio-dissolution and biologically active ion release in tris buffer in vitro. The rabbit femoral bone defect repair experiments in vivo indicated that core-shell bioceramic granules with an 8% P-doped CSi-core could significantly stimulate osteogenic potential favorable for bone repair. It is worth concluding that such a tunable component distribution strategy in fiber-type bioceramic implants may develop new-generation composite biomaterials endowed with time-dependent biodegradation and high osteostimulative activities for a range of bone repair applications in situ.
Collapse
Affiliation(s)
- Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jun Yang
- Department of Orthopaedic Surgery, Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Jian Shen
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310008, China
| | - Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Yan Zhang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Guojing Yang
- Department of Orthopaedic Surgery, Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Cheng Zhong
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Lijun Xie
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
30
|
Solanki AK, Autefage H, Rodriguez AR, Agarwal S, Penide J, Mahat M, Whittaker T, Nommeots-Nomm A, Littmann E, Payne DJ, Metcalfe AD, Quintero F, Pou J, Stevens MM, Jones JR. Cobalt containing glass fibres and their synergistic effect on the HIF-1 pathway for wound healing applications. Front Bioeng Biotechnol 2023; 11:1125060. [PMID: 36970616 PMCID: PMC10036384 DOI: 10.3389/fbioe.2023.1125060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid.Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.
Collapse
Affiliation(s)
- Anu K. Solanki
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Hélène Autefage
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | | | - Shweta Agarwal
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Joaquin Penide
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Muzamir Mahat
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Thomas Whittaker
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Amy Nommeots-Nomm
- Department of Materials, Imperial College London, London, United Kingdom
| | - Elena Littmann
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - David J. Payne
- Department of Materials, Imperial College London, London, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Anthony D. Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Felix Quintero
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Juan Pou
- Dpto. Fisica Aplicada, Universidad de Vigo, E.I. Industrial, Vigo, Spain
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, United Kingdom
- *Correspondence: Julian R. Jones,
| |
Collapse
|
31
|
Holmes NP, Roohani I, Entezari A, Guagliardo P, Mirkhalaf M, Lu Z, Chen YS, Yang L, Dunstan CR, Zreiqat H, Cairney JM. Discovering an unknown territory using atom probe tomography: Elemental exchange at the bioceramic scaffold/bone tissue interface. Acta Biomater 2023; 162:199-210. [PMID: 36893955 DOI: 10.1016/j.actbio.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Here we report the first atom probe study to reveal the atomic-scale composition of in vivo bone formed in a bioceramic scaffold (strontium-hardystonite-gahnite) after 12-month implantation in a large bone defect in sheep tibia. The composition of the newly formed bone tissue differs to that of mature cortical bone tissue, and elements from the degrading bioceramic implant, particularly aluminium (Al), are present in both the newly formed bone and in the original mature cortical bone tissue at the perimeter of the bioceramic implant. Atom probe tomography confirmed that the trace elements are released from the bioceramic and are actively transported into the newly formed bone. NanoSIMS mapping, as a complementary technique, confirmed the distribution of the released ions from the bioceramic into the newly formed bone tissue within the scaffold. This study demonstrated the combined benefits of atom probe and nanoSIMS in assessing nanoscopic chemical composition changes at precise locations within the tissue/biomaterial interface. Such information can assist in understanding the interaction of scaffolds with surrounding tissue, hence permitting further iterative improvements to the design and performance of biomedical implants, and ultimately reducing the risk of complications or failure while increasing the rate of tissue formation. STATEMENT OF SIGNIFICANCE: The repair of critical-sized load-bearing bone defects is a challenge, and precisely engineered bioceramic scaffold implants is an emerging potential treatment strategy. However, we still do not understand the effect of the bioceramic scaffold implants on the composition of newly formed bone in vivo and surrounding existing mature bone. This article reports an innovative route to solve this problem, the combined power of atom probe tomography and nanoSIMS is used to spatially define elemental distributions across bioceramic implant sites. We determine the nanoscopic chemical composition changes at the Sr-HT Gahnite bioceramic/bone tissue interface, and importantly, provide the first report of in vivo bone tissue chemical composition formed in a bioceramic scaffold.
Collapse
Affiliation(s)
- Natalie P Holmes
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| | - Iman Roohani
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Ali Entezari
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA 6009, Australi
| | - Mohammad Mirkhalaf
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St Brisbane, QLD 4000, Australia
| | - Zufu Lu
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Yi-Sheng Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
| | - Limei Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia; School of Civil & Environmental Engineering, University of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia.
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Bioglass obtained via one-pot synthesis as osseointegrative drug delivery system. Int J Pharm 2023; 633:122610. [PMID: 36669580 DOI: 10.1016/j.ijpharm.2023.122610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Osseointegration is a fundamental process during which implantable biomaterial integrates with host bone tissue. The surgical procedure of biomaterial implantation is highly associated with the risk of bacterial infection. Thus, the research continues for biodegradable bone void fillers which are able to stimulate the bone tissue regeneration and locally deliver the antibacterial agent. Herein, we obtained bifunctional bioglass (BG) using novel, preoptimized, rapid one-pot synthesis. Following the ISO Standards, the influence of the obtained BG on osteoblast-mediated phenomena, such as osteoconduction and osteoinduction was assessed and compared to two commercial materials: bioactive glass powder 45S and bioactive glass powder 85S. Direct-contact tests revealed osteoblast adhesion to BG particles; whereas, tests on extracts confirmed high viability of cells incubated with BG extract. Analyses of gene expression, alkaline phosphatase activity, and calcium phosphates deposition confirmed the stimulation of early and late stages of osteoblast differentiation and mineralization. Additionally, an extended evaluation of intracellular calcium fluctuations revealed a possible correlation between osteoblast calcium uptake and extracellular matrix mineralization. Moreover, proposed bioglass exhibited satisfactory doxycycline adsorption capacity and release profile. The obtained results confirmed the bifunctionality of the proposed BG and indicated its potential as osseointegrative bone drug delivery system.
Collapse
|
33
|
Gritsch L, Bossard C, Jallot E, Jones JR, Lao J. Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. J Mater Chem B 2023; 11:519-545. [PMID: 36541433 DOI: 10.1039/d2tb02089k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioactive glass-based organic/inorganic hybrids are a family of materials holding great promise in the biomedical field. Developed from bioactive glasses following recent advances in sol-gel and polymer chemistry, they can overcome many limitations of traditional composites typically used in bone repair and orthopedics. Thanks to their unique molecular structure, hybrids are often characterized by synergistic properties that go beyond a mere combination of their two components; it is possible to synthesize materials with a wide variety of mechanical and biological properties. The polymeric component, in particular, can be tailored to prepare tough, load-bearing materials, or rubber-like elastomers. It can also be a key factor in the determination of a wide range of interesting biological properties. In addition, polymers can also be used within hybrids as carriers for therapeutic ions (although this is normally the role of silica). This review offers a brief look into the history of hybrids, from the discovery of bioactive glasses to the latest developments, with a particular emphasis on polymer design and chemistry. First the benefits and limitations of hybrids will be discussed and compared with those of alternative approaches (for instance, nanocomposites). Then, key advances in the field will be presented focusing on the polymeric component: its chemistry, its physicochemical and biological advantages, its drawbacks, and selected applications. Comprehensive tables summarizing all the polymers used to date to fabricate sol-gel hybrids for biomedical applications are also provided, to offer a handbook of all the available candidates for hybrid synthesis. In addition to the current trends, open challenges and possible avenues of future development are proposed.
Collapse
Affiliation(s)
- Lukas Gritsch
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France. .,Technogym S.p.A., via Calcinaro 2861, 47521 Cesena (FC), Italy
| | - Cédric Bossard
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Edouard Jallot
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan Lao
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| |
Collapse
|
34
|
Hyväri L, Vanhatupa S, Ojansivu M, Kelloniemi M, Pakarinen TK, Hupa L, Miettinen S. Heat Shock Protein 27 Is Involved in the Bioactive Glass Induced Osteogenic Response of Human Mesenchymal Stem Cells. Cells 2023; 12:cells12020224. [PMID: 36672159 PMCID: PMC9856363 DOI: 10.3390/cells12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.
Collapse
Affiliation(s)
- Laura Hyväri
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Miina Ojansivu
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
| | - Toni-Karri Pakarinen
- Regea Cell and Tissue Center, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-40-1901789
| |
Collapse
|
35
|
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater 2023; 19:217-236. [PMID: 35510175 PMCID: PMC9048153 DOI: 10.1016/j.bioactmat.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo. Properties of injectable calcium phosphate bone cements and bioactive glasses are discussed. Benefits that BG addition to CPC could bring are highlighted. Desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The presence of BG in CPC advances in vitro and in vivo response of the composites. Future research direction of BG containing injectable CPC composites are provided.
Collapse
|
36
|
Kim HS, Kumbar SG, Nukavarapu SP. Amorphous silica fiber matrix biomaterials: An analysis of material synthesis and characterization for tissue engineering. Bioact Mater 2023; 19:155-166. [PMID: 35441118 PMCID: PMC9006749 DOI: 10.1016/j.bioactmat.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Silica biomaterials including Bioglass offer great biocompatibility and bioactivity but fail to provide pore and degradation features needed for tissue engineering. Herein we report on the synthesis and characterization of novel amorphous silica fiber matrices to overcome these limitations. Amorphous silica fibers were fused by sintering to produce porous matrices. The effects of sacrificial polymer additives such as polyvinyl alcohol (PVA) and cellulose fibers (CF) on the sintering process were also studied. The resulting matrices formed between sintering temperatures of 1,350–1,550 °C retained their fiber structures. The matrices presented pores in the range of 50–200 μm while higher sintering temperatures resulted in increased pore diameter. PVA addition to silica significantly reduced the pore diameter and porosity compared with silica matrices with or without the addition of CF. The PVA additive morphologically appeared to fuse the silica fibers to a greater extent and resulted in significantly higher compressive modulus and strength than the rest of the matrices synthesized. These matrices lost roughly 30% of their original mass in an in vitro degradation study over 40 weeks. All matrices absorbed 500 wt% of water and did not change in their overall morphology, size, or shape with hydration. These fiber matrices supported human mesenchymal stem cell adhesion, proliferation, and mineralized matrix production. Amorphous silica fiber biomaterials/matrices reported here are biodegradable and porous and closely resemble the native extracellular matrix structure and water absorption capacity. Extending the methodology reported here to alter matrix properties may lead to a variety of tissue engineering, implant, and drug delivery applications.
Collapse
Affiliation(s)
- Hyun S. Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Corresponding author. Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
37
|
Santos Beato P, Poologasundarampillai G, Nommeots-Nomm A, Kalaskar DM. Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
38
|
Zhao H, Wang X, Jin A, Wang M, Wang Z, Huang X, Dai J, Wang X, Lin D, Shen SGF. Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioact Mater 2022; 18:507-525. [PMID: 35415307 PMCID: PMC8976096 DOI: 10.1016/j.bioactmat.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid maxillary expansion (RME), as a common treatment for craniomaxillofacial deformity, faces the challenge of high relapse rates and unsatisfactory therapeutic effects. In this study, a standardized Sprague-Dawley (SD) rat RME model was first established with a modified expander as well as retainer design and optimized anterior maxillary expanding force of 100 g which exerted the most synchronized mobility of mid-palatal suture and incisors. Via the standardized model, the high relapse rate was proven to be attributed to insufficient osteogenesis in expanded suture, requiring long-term retainer wearing in clinical situations. To reduce the relapse rate, mesoporous bioactive glass/fibrin glue (MBG/FG) composite hydrogels were developed for an in situ minimal invasive injection that enhance osteogenesis in the expanded palate. The component of 1 wt% MBG was adopted for enhanced mechanical strength, matched degradation rate and ion dissolution, excellent in vitro biocompatibility and osteoinductivity. Effects of 1%MBG/FG composite hydrogel on osteogenesis in expanded mid-palatal sutures with/without retention were evaluated in the standardized model. The results demonstrated that injection of 1%MBG/FG composite hydrogel significantly promoted bone formation within the expanded mid-palatal suture, inhibited osteoclastogenesis and benefited the balance of bone remodeling towards osteogenesis. Combination of retainer and injectable biomaterial was demonstrated as a promising treatment to reduce relapse rate and enhance osteogenesis after RME. The model establishment and the composite hydrogel development in this article might provide new insight to other craniomaxillofacial deformity treatment and design of bone-repairing biomaterials with higher regenerative efficiency. A standardized rat RME model was established with optimized parameters. Sufficient osteogenesis was the prerequisite of reducing relapse ratio. Design of an injectable MBG/FG composite hydrogel for osteogenic enhancement. Combinatory treatment of injection and retention was developed for relapse reduction.
Collapse
|
39
|
Zhang X, Zhang M, Lin J. Effect of pH on the In Vitro Degradation of Borosilicate Bioactive Glass and Its Modulation by Direct Current Electric Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7015. [PMID: 36234355 PMCID: PMC9570734 DOI: 10.3390/ma15197015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Controlled ion release and mineralization of bioactive glasses are essential to their applications in bone regeneration. Tuning the chemical composition and surface structure of glasses are the primary means of achieving this goal. However, most bioactive glasses exhibit a non-linear ion release behavior. Therefore, modifying the immersion environment of glasses through external stimuli becomes an approach. In this study, the ion release and mineralization properties of a borosilicate bioactive glass were investigated in the Tris buffer and K2HPO4 solutions with different pH. The glass had a faster ion release rate at a lower pH, but the overly acidic environment was detrimental to hydroxyapatite production. Using a direct current (DC) electric field as an external stimulus, the pH of the immersion solution could be modulated within a narrow range, thereby modulating ion release from the glass. As a result, significant increases in ion release were observed after three days, and the development of porous mineralization products on the glass surface after six days. This study demonstrates the effectiveness of the DC electric field in modulating the ion release of the bioactive glass in vitro and provides a potential way to regulate the degradation of the glass in vivo.
Collapse
Affiliation(s)
- Xuanyu Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Minhui Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jian Lin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Homaeigohar S, Li M, Boccaccini AR. Bioactive glass-based fibrous wound dressings. BURNS & TRAUMA 2022; 10:tkac038. [PMID: 36196303 PMCID: PMC9519693 DOI: 10.1093/burnst/tkac038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
Since the discovery of silicate bioactive glass (BG) by Larry Hench in 1969, different classes of BGs have been researched over decades mainly for bone regeneration. More recently, validating the beneficial influence of BGs with tailored compositions on angiogenesis, immunogenicity and bacterial infection, the applicability of BGs has been extended to soft tissue repair and wound healing. Particularly, fibrous wound dressings comprising BG particle reinforced polymer nanofibers and cotton-candy-like BG fibers have been proven to be successful for wound healing applications. Such fibrous dressing materials imitate the physical structure of skin's extracellular matrix and release biologically active ions e.g. regenerative, pro-angiogenic and antibacterial ions, e.g. borate, copper, zinc, etc., that can provoke cellular activities to regenerate the lost skin tissue and to induce new vessels formation, while keeping an anti-infection environment. In the current review, we discuss different BG fibrous materials meant for wound healing applications and cover the relevant literature in the past decade. The production methods for BG-containing fibers are explained and as fibrous wound dressing materials, their wound healing and bactericidal mechanisms, depending on the ions they release, are discussed. The present gaps in this research area are highlighted and new strategies to address them are suggested.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Meng Li
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
41
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
42
|
Toosi S, Naderi-Meshkin H, Esmailzadeh Z, Behravan G, Ramakrishna S, Behravan J. Bioactive glass-collagen/poly (glycolic acid) scaffold nanoparticles exhibit improved biological properties and enhance osteogenic lineage differentiation of mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:963996. [PMID: 36159698 PMCID: PMC9490118 DOI: 10.3389/fbioe.2022.963996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today’s using tissue engineering and suitable scaffolds have got attention to increase healing of non-union bone fractures. In this study, we aimed to prepare and characterize scaffolds with functional and mechanical properties suitable for bone regeneration. Porous scaffolds containing collagen-poly glycolic acid (PGA) blends and various quantities of bioactive glass (BG) 45S5 were fabricated. Scaffolds with different compositions (BG/collagen-PGA ratios (w/w): 0/100; 40/60; 70/30) were characterized for their morphological properties, bioactivity, and mechanical behavior. Then, biocompatibility and osteogenic differentiation potential of the scaffolds were analyzed by seeding mesenchymal stem cells (MSCs). Scaffolds made with collagen-PGA combined with the BG (45S5) were found to have interconnected pores (average pore diameter size 75–115 µm) depending on the percentage of the BG added. Simulated body fluid (SBF) soaking experiments indicated the stability of scaffolds in SBF regardless of their compositions, while the scaffolds retained their highly interconnected structure. The elastic moduli, cell viability, osteogenic differentiation of the BG/collagen-PGA 40/60 and 70/30 scaffolds were superior to the original BG/collagen-PGA (0/100). These results suggest that BG incorporation enhanced the physical stability of our collagen-PGA scaffold previously reported. This new scaffold composition provides a promising platform to be used as a non-toxic scaffold for bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Shirin Toosi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Zohreh Esmailzadeh
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| |
Collapse
|
43
|
Workie AB, Shih SJ. A study of bioactive glass-ceramic's mechanical properties, apatite formation, and medical applications. RSC Adv 2022; 12:23143-23152. [PMID: 36090402 PMCID: PMC9380540 DOI: 10.1039/d2ra03235j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Apparently, bioactive glass-ceramics are made by doing a number of steps, such as creating a microstructure from dispersed crystals within the residual glass, which provides high bending strength, and apatite crystallizes on surfaces of glass-ceramics when calcium ions are present in the blood. Apatite crystals grow on the glass and ceramic surfaces due to the hydrated silica. These materials are biocompatible with living bone in a matter of weeks, don't weaken mechanically or histologically, and exhibit good osteointegration as well as mechanical properties that are therapeutically relevant, such as fracture toughness and flexural strength. As part of this study, we examined mechanical properties, process mechanisms involved in apatite formation, and potential applications for bioactive glass-ceramic in orthopedic surgery, including load-bearing devices.
Collapse
Affiliation(s)
- Andualem Belachew Workie
- Faculty of Materials Science and Engineering, Bahir Dar Institute of Technology, Bahir Dar University P. O. Box 26 Bahir Dar Ethiopia
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology 43 Sec. 4 Keelung Road Taipei 10607 Taiwan
| | - Shao-Ju Shih
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology 43 Sec. 4 Keelung Road Taipei 10607 Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University No. 100, Shih-Chuan 1st Road Kaohsiung 80708 Taiwan
| |
Collapse
|
44
|
Wei Y, Baskaran N, Wang HY, Su YC, Nabilla SC, Chung RJ. Study of polymethylmethacrylate/tricalcium silicate composite cement for orthopedic application. Biomed J 2022; 46:100540. [DOI: 10.1016/j.bj.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
|
45
|
Fandzloch M, Bodylska W, Roszek K, Halubek-Gluchowska K, Jaromin A, Gerasymchuk Y, Lukowiak A. Solvothermally-derived nanoglass as a highly bioactive material. NANOSCALE 2022; 14:5514-5528. [PMID: 35343556 DOI: 10.1039/d1nr05984j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly bioactive glass solvBG76 in a binary system 76SiO2-24CaO (wt%) was prepared following a solvothermal path of the synthesis. The facile synthesis, in terms of the steps and reagents needed, enabled the achievement of a mesoporous material. Many factors such as nano-size (<50 nm), different morphology (non-spherical), use of an unconventional network modifier (calcium hydroxide) during the synthesis, a structure free of crystalline impurities, and textural properties greatly enhanced the kinetic deposition process of hydroxyapatite (HA) when contacting with physiological fluids. The formation of a HA layer on the glass was analyzed by various techniques, namely XRD, IR-ATR, Raman, XPS, EDS analyses, SEM, and HR-TEM imaging. The results obtained were compared to the 45S5 glass tested as a reference biomaterial as well as 70S30C-a glass with similar size and composition to reported solvBG76 but obtained by the conventional sol-gel method. For the first time, superior apatite-mineralization ability in less than 1 h in a physiological-like buffer was achieved. This unique bioactivity is accompanied by biocompatibility and hemocompatibility, which was indicated by a set of various assays in human dermal fibroblasts and MC3T3 mouse osteoblast precursor cells, as well as hemolytic activity determination.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Weronika Bodylska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Katarzyna Halubek-Gluchowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Yuriy Gerasymchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| |
Collapse
|
46
|
Gómez-Cerezo MN, Patel R, Vaquette C, Grøndahl L, Lu M. In vitro evaluation of porous poly(hydroxybutyrate-co-hydroxyvalerate)/akermanite composite scaffolds manufactured using selective laser sintering. BIOMATERIALS ADVANCES 2022; 135:212748. [PMID: 35929220 DOI: 10.1016/j.bioadv.2022.212748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
Incorporation of a bioactive mineral filler in a biodegradable polyester scaffold is a promising strategy for scaffold assisted bone tissue engineering (TE). The current study evaluates the in vitro behavior of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/Akermanite (AKM) composite scaffolds manufactured using selective laser sintering (SLS). Exposure of the mineral filler on the surface of the scaffold skeleton was evident from in vitro mineralization in PBS. PHBV scaffolds and solvent cast films served as control samples and all materials showed preferential adsorption of fibronectin compared to serum albumin as well as non-cytotoxic response in human osteoblasts (hOB) at 24 h. hOB culture for up to 21 days revealed that the metabolic activity in PHBV films and scaffolds was significantly higher than that of PHBV/AKM scaffolds within the first two weeks of incubation. Afterwards, the metabolic activity in PHBV/AKM scaffolds exceeded that of the control samples. Confocal imaging showed cell penetration into the porous scaffolds. Significantly higher ALP activity was observed in PHBV/AKM scaffolds at all time points in both basal and osteogenic media. Mineralization during cell culture was observed on all samples with PHBV/AKM scaffolds exhibiting distinctly different mineral morphology. This study has demonstrated that the bioactivity of PHBV SLS scaffolds can be enhanced by incorporating AKM, making this an attractive candidate for bone TE application.
Collapse
Affiliation(s)
| | - Rushabh Patel
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Mingyuan Lu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
47
|
Bighetti-Trevisan RL, Souza ATP, Tosin IW, Bueno NP, Crovace MC, Beloti MM, Rosa AL, Ferraz EP. Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Braz Oral Res 2022; 36:e022. [PMID: 35293496 DOI: 10.1590/1807-3107bor-2022.vol36.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Despite the crucial role of osteoclasts in the physiological process of bone repair, most bone tissue engineering strategies have focused on osteoblast-biomaterial interactions. Although Biosilicate® with two crystalline phases (BioS-2P) exhibits osteogenic properties and significant bone formation, its effects on osteoclasts are unknown. This study aimed to investigate the in vitro and in vivo effects of BioS-2P on osteoclast differentiation and activity. RAW 264.7 cells were cultured in osteoclastogenic medium (OCM) or OCM conditioned with BioS-2P (OCM-BioS-2P), and the cell morphology, viability, and osteoclast differentiation were evaluated. BioS-2P scaffolds were implanted into rat calvarial defects, and the bone tissue was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and RT-polymerase chain reaction (PCR) after 2 and 4 weeks to determine the gene expressions of osteoclast markers and compare them with those of the bone grown in empty defects (Control). OCM-BioS-2P favored osteoclast viability and activity, as evidenced by an increase in the TRAP-positive cells and matrix resorption. The bone tissue grown on BioS-2P scaffolds exhibited higher expression of the osteoclast marker genes (Ctsk, Mmp 9, Rank) after 2 and 4 weeks and the RankL/Opg ratio after 2 weeks. Trap gene expression was lower at 2 weeks, and a higher number of TRAP-stained areas were observed in the newly formed bone on BioS-2P scaffolds at both 2 and 4 weeks compared to the Controls. These results enhanced our understanding of the role of bioactive glass-ceramics in bone repair, and highlighted their role in the modulation of osteoclastic activities and promotion of interactions between bone tissues and biomaterials.
Collapse
Affiliation(s)
| | | | - Ingrid Wezel Tosin
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Natália Pieretti Bueno
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| | - Murilo Camuri Crovace
- Universidade Federal de São Carlos - UFScar, Vitreous Materials Laboratory, São Carlos, SP, Brazil
| | - Marcio Mateus Beloti
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Emanuela Prado Ferraz
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| |
Collapse
|
48
|
Yin J, Xiao W, Zhao Q, Sun J, Zhou W, Zhao W. MicroRNA-582-3p regulates osteoporosis through regulating homeobox A10 and osteoblast differentiation. Immunopharmacol Immunotoxicol 2022; 44:421-428. [PMID: 35285389 DOI: 10.1080/08923973.2022.2052895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jian Yin
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wei Xiao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Qingbin Zhao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Jungang Sun
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wenzheng Zhou
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wei Zhao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| |
Collapse
|
49
|
Lin J, Liu L, Huang S, Zheng W, Liu H, Bai Z, Jiang K, Wang X. PCL nanofibrous incorporating unique matrix fusion protein adsorbed mesoporous bioactive glass for bone tissue engineering. Int J Biol Macromol 2022; 208:136-148. [PMID: 35301005 DOI: 10.1016/j.ijbiomac.2022.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
Mesoporous bioactive glass (MBG) is a potential biomedical material in bone defect repairment because of its bioactivity, biocompatibility, and osteoinduction properties. Here we report that Mg-doped MBG scaffold with 3:1 Ca/Mg ratio (MBG-Ca/Mg-3) is good for MC3T3-E1 osteoblast differentiation and mineralization. Mimicking bone extracellular matrix structure by electrospinning, we used MBG-Ca/Mg-3 adsorbed with Osteocalcin-Osteopontin-Biglycan (OOB), a new unique matrix fusion protein, to form OOB@MBG-Ca/Mg-3 scaffold, which has multifunctional ability in calvarial bone defect repairment in vivo. Intriguingly, we found that OOB@MBG-Ca/Mg-3 scaffold increases the expression of osteoblastic marker genes, including bone morphogenetic protein (Bmp2), osteopontin (Opn), Osterix, Runx2 through activation of ERK1/2. We concluded that OOB@MBG-Ca/Mg-3 scaffold promotes osteoblast differentiation and mineralization through ERK1/2 pathway and it can also enhance bone formation in vivo, which provides a new biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Long Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Shan Huang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Haoming Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenzu Bai
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Kai Jiang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xiaoyan Wang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| |
Collapse
|
50
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|