1
|
Owens CL, Nash GR, Hadler K, Fitzpatrick RS, Anderson CG, Wall F. Apatite enrichment by rare earth elements: A review of the effects of surface properties. Adv Colloid Interface Sci 2019; 265:14-28. [PMID: 30711795 DOI: 10.1016/j.cis.2019.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet. The effect of enrichment of natural apatite and the doping of synthetic apatite on surface behaviour can be determined by measuring the zeta potential and the isoelectric point of the mineral. In this paper, we review zeta potential studies of natural and synthetic apatite to determine the effect of elemental enrichment on surface behaviour. Fifty three studies of natural apatite and forty four studies of synthetic apatite were reviewed. The isoelectric point of apatite varied from pH 1 to pH 8.7, with studies of apatite specified to be >90% pure reducing the variation to pH 3 to pH 6.5. Of the four studies of rare earth enriched apatite found, three had IEP values between pH 3 and pH 4. A study of synthetic apatite showing enrichment of between 1 and 10% by the REE europium does not affect surface behaviour. However, no studies were found that investigated the effect of common REE processing reagents on REE enriched apatite zeta potentials. Therefore, in addition to comparing previous studies we also therefore present new zeta potential measurements of apatite from a REE enriched deposit under water and common flotation collector conditions. The IEP value of this apatite under water conditions was at pH 3.6, shifting to <3.5 under both hydroxamic acid and betacol conditions. When compared to previous studies, the behaviour of REE enriched apatite under collector conditions is similar to non-REE apatite. This result could be important for future processing of apatite enriched with REE, and therefore global apatite and rare earth supply.
Collapse
|
2
|
Zeta potential in sandpacks: Effect of temperature, electrolyte pH, ionic strength and divalent cations. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Gerold CT, Henry CS. Observation of Dynamic Surfactant Adsorption Facilitated by Divalent Cation Bridging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1550-1556. [PMID: 29298381 DOI: 10.1021/acs.langmuir.7b03516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamic evidence of the mechanism for surfactant adsorption to surfaces of like charge has been observed. Additionally, removal and retention of surfactant molecules on the surface were observed as a function of time. A decrease in surface charge is observed when metal counterions are introduced and is dependent on charge density as well as valency of the metal ion. When surfactant species are also present with the metals, a dramatic increase in surface charge arises. We observed that the rate and quantity of surfactant adsorption can be controlled by the presence of divalent Ca2+. Under isotonic conditions the introduction of Ca2+ is also easily distinguishable from that of monovalent Na+ and provides dynamic evidence of the divalent "cation bridging" phenomenon. Dynamic changes to surface charge are experimentally determined by utilizing current monitoring to quantify the zeta potential in a microfluidic device.
Collapse
Affiliation(s)
- Chase T Gerold
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Maçon ALB, Li S, Chung JJ, Nommeots-Nomm A, Solanki AK, Stevens MM, Jones JR. Ductile silica/methacrylate hybrids for bone regeneration. J Mater Chem B 2016; 4:6032-6042. [DOI: 10.1039/c6tb00968a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) were synthesised as a potential new generation of scaffold materials.
Collapse
Affiliation(s)
| | - Siwei Li
- Department of Materials Imperial College London
- London
- UK
| | | | | | | | - Molly M. Stevens
- Department of Materials Imperial College London
- London
- UK
- Institute of Biomedical Engineering Imperial College London
- London
| | | |
Collapse
|
5
|
Yi P, Chen KL. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3588-3599. [PMID: 21355574 DOI: 10.1021/la104682b] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aggregation and deposition kinetics of two multiwalled carbon nanotubes (MWNTs) with different degrees of surface oxidation are investigated using time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. Carboxyl groups are determined to be the predominant oxygen-containing surface functional groups for both MWNTs through X-ray photoelectron spectroscopy (XPS). The aggregation and deposition behavior of both MWNTs is in qualitative agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentration (CCC) of the highly oxidized MWNTs (HO-MWNTs) is significantly higher than the lowly oxidized MWNTs (LO-MWNTs) in the presence of NaCl (210 and 53 mM, respectively) since HO-MWNTs have a higher surface charge density. In contrast, the aggregation inverse stability profiles of HO-MWNTs and LO-MWNTs are identical and yield comparable CCCs (0.9 and 1.0 mM, respectively) in the presence of CaCl(2). Similar to the results obtained from the aggregation study, HO-MWNTs are considerably more stable to deposition on silica surfaces compared to LO-MWNTs in the presence of NaCl. However, both MWNTs have the same propensity to undergo deposition in the presence of CaCl(2). The remarkable similarity in the aggregation and deposition kinetics of HO-MWNTs and LO-MWNTs in CaCl(2) may be due to Ca(2+) cations having a higher affinity to form complexes with adjacent carboxyl groups on HO-MWNTs than with isolated carboxyl groups on LO-MWNTs.
Collapse
Affiliation(s)
- Peng Yi
- Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2686, United States
| | | |
Collapse
|
6
|
Oda K, Akamatsu K, Fujita M, Nakao SI. Two-Dimensional Simulation of Lift Velocities of Spherical Particles in Crossflow Microfiltration. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2009. [DOI: 10.1252/jcej.09we102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazunori Oda
- Department of Chemical System Engineering, The University of Tokyo
| | - Kazuki Akamatsu
- Department of Chemical System Engineering, The University of Tokyo
| | - Masahiro Fujita
- Department of Chemical System Engineering, The University of Tokyo
| | - Shin-ichi Nakao
- Department of Chemical System Engineering, The University of Tokyo
| |
Collapse
|
7
|
Szili EJ, Kumar S, Smart RSC, Lowe R, Saiz E, Voelcker NH. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups. SURFACE SCIENCE 2008; 602:2402-2411. [PMID: 19809536 PMCID: PMC2757315 DOI: 10.1016/j.susc.2008.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO(2), showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups.
Collapse
Affiliation(s)
- Endre J. Szili
- Mawson Institute for Advanced Manufacturing, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sunil Kumar
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Roger St. C. Smart
- Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Rachel Lowe
- School of Chemistry, Physics and Earth Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Eduardo Saiz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Nicolas H. Voelcker
- School of Chemistry, Physics and Earth Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
8
|
Abstract
We report the effects of ligand presentation on the binding of aqueous proteins to solid supported lipid bilayers. Specifically, we show that the equilibrium dissociation constant can be strongly affected by ligand lipophilicity and linker length/structure. The apparent equilibrium dissociation constants (K(D)) were compared for two model systems, biotin/anti-biotin and 2,4-dinitrophenyl (DNP)/anti-DNP, in bulk solution and at model membrane surfaces. The binding constants in solution were obtained from fluorescence anisotropy measurements. The surface binding constants were determined by microfluidic techniques in conjunction with total internal reflection fluorescence microscopy. The results showed that the bulk solution equilibrium dissociation constants for anti-biotin and anti-DNP were almost identical, K(D)(bulk) = 1.7 +/- 0.2 nM vs. 2.9 +/- 0.1 nM. By contrast, the dissociation constant for anti-biotin antibody was three orders of magnitude tighter than for anti-DNP at a lipid membrane interface, K(D) = 3.6 +/- 1.1 nM vs. 2.0 +/- 0.2 microM. We postulate that the pronounced difference in surface binding constants for these two similar antibodies is due to differences in the ligands' relative lipophilicity, i.e., the more hydrophobic DNP molecules had a stronger interaction with the lipid bilayers, rendering them less available to incoming anti-DNP antibodies compared with the biotin/anti-biotin system. However, when membrane-bound biotin ligands were well screened by a poly(ethylene glycol) (PEG) polymer brush, the K(D) value for the anti-biotin antibody could also be weakened by three orders of magnitude, 2.4 +/- 1.1 microM. On the other hand, the dissociation constant for anti-DNP antibodies at a lipid interface could be significantly enhanced when DNP haptens were tethered to the end of very long hydrophilic PEG lipopolymers (K(D) = 21 +/- 10 nM) rather than presented on short lipid-conjugated tethers. These results demonstrate that ligand presentation strongly influences protein interactions with membrane-bound ligands.
Collapse
|
9
|
Hertz A, Bruce IJ. Inorganic materials for bone repair or replacement applications. Nanomedicine (Lond) 2007; 2:899-918. [DOI: 10.2217/17435889.2.6.899] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, excipient systems have been used increasingly in biomedicine in reconstructive and replacement surgery, as bone cements, drug-delivery vehicles and contrast agents. Particularly, interest has been growing in the development and application of controlled pore inorganic ceramic materials for use in bone-replacement and bone-repair roles and, in this context, attention has been focused on calcium-phosphate, bioactive glasses and SiO2- and TiO2-based materials. It has been shown that inorganic materials that most closely mimic bone structure and surface chemistry most closely function best in bone replacement/repair and, in particular, if a substance possesses a macroporous structure (pores and interconnections >100µm diameter), then cell infiltration, bone growth and vascularization can all be promoted. The surface roughness and micro/mesoporosity of a material have also been observed to significantly influence its ability to promote apatite nucleation and cell attachment significantly. Pores (where present) can also be packed with pharmaceuticals and biomolecules (e.g., bone morphogenetic proteins [BMPs], which can stimulate bone formation). Finally, the most bio-efficient – in terms of collagen formation and apatite nucleation – materials are those that are able to provide soluble mineralizing species (Si, Ca, PO4) at their implant sites and/or are doped or have been surface-activated with specific functional groups. This article presents the context and latest advances in the field of bone-repair materials, especially with respect to the development of bioactive glasses and micro/mesoporous and macroporous inorganic scaffolds. It deals with the possible methods of preparing porous pure/doped or functionalized silicas or their composites, the studies that have been undertaken to evaluate their abilities to act as bone repair scaffolds and also presents future directions for work in that context.
Collapse
Affiliation(s)
- Audrey Hertz
- University of Kent, Department of Biosciences, Canterbury, CT2 7NJ, UK
| | - Ian J Bruce
- University of Kent, Department of Biosciences, Canterbury, CT2 7NJ, UK
| |
Collapse
|
10
|
Nge TT, Sugiyama J. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. J Biomed Mater Res A 2007; 81:124-34. [PMID: 17111406 DOI: 10.1002/jbm.a.31020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The apatite forming ability of biopolymer bacterial cellulose (BC) has been investigated by soaking different BC specimens in a simulated body fluid (1.5 SBF) under physiological conditions, at 37 degrees C and pH 7.4, mimicking the natural process of apatite formation. From ATR-FTIR spectra and ICP-AES analysis, the crystalline phase nucleated on the BC microfibrils surface was calcium deficient carbonated apatite through initial formation of octacalcium phosphate (OCP) or OCP like calcium phosphate phase regardless of the substrates. Morphology of the deposits from SEM, FE-SEM, and TEM observations revealed the fine structure of thin film plates uniting together to form apatite globules of various size (from <1 mum to 3 mum) with respect to the substrates. Surface modification by TEMPO (2,2,6,6-tetramethylpyperidine-1-oxyl)-mediated oxidation, which can readily form active carboxyl functional groups upon selective oxidation of primary hydroxyl groups on the surface of BC microfibrils, enhanced the rate of apatite nucleation. Ion exchanged treatment with calcium chloride solution after TEMPO-mediated oxidation was found to be remarkably different from other BC substrates with the highest deposit weight and the smallest apatite globules size. The role of BC substrates to induce mineralization rate differs according to the nature of the BC substrates, which strongly influences the growth behavior of the apatite crystals.
Collapse
Affiliation(s)
- Thi Thi Nge
- Laboratory of Biomass Morphogenesis and Information, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | |
Collapse
|
11
|
Leivo J, Meretoja V, Vippola M, Levänen E, Vallittu P, Mäntylä TA. Sol-gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomater 2006; 2:659-68. [PMID: 16884966 DOI: 10.1016/j.actbio.2006.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/11/2006] [Accepted: 06/06/2006] [Indexed: 11/26/2022]
Abstract
Rat bone marrow stromal cell differentiation on aluminosilicate 3Al(2)O(3)-2SiO(2) coatings was investigated. Thin ceramic coatings were prepared on alpha-alumina substrates by the sol-gel process and calcined in order to establish an amorphous aluminosilicate ceramic phase with and without nanosized transitional mullite crystals. In addition, coatings of thermally sprayed aluminosilicate and diphasic gamma-alumina-silica nanosized colloids were prepared. Cell culture testing by rat osteoblasts showed good biocompatibility for aluminosilicates with sustained normal osteoblast functions. Despite mutual disparities in physical and chemical nanostructures, the culture findings suggested fairly similar osteoblast response to all tested coatings. The results suggest that topographical frequency parameters and chemical uniformity are important parameters in determining the best conditions for osteoblasts on sol-gel derived aluminosilicate materials.
Collapse
Affiliation(s)
- Jarkko Leivo
- Institute of Materials Science, Tampere University of Technology, 33101 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Kim HM, Himeno T, Kawashita M, Kokubo T, Nakamura T. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface 2006; 1:17-22. [PMID: 16849149 PMCID: PMC1618931 DOI: 10.1098/rsif.2004.0003] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite (HA) has been investigated in vitro, in which the HA surface was surveyed as a function of soaking time in simulated body fluid (SBF). In terms of surface structure by transmission electron microscopy with energy-dispersive X-ray spectrometry, the HA whose Ca/P atomic ratio was 1.67 revealed three different characteristic soaking periods in SBF, i.e. the first soaking period, in which the HA surface increased the Ca/P ratio up to 1.83 to form an amorphous phase of Ca-rich calcium phosphate; the second soaking period, in which the HA surface decreased the Ca/P ratio up to 1.47 to form an amorphous phase of Ca-poor calcium phosphate; and the third soaking period, in which the HA surface gradually increased the Ca/P ratio up to 1.65 to eventually produce the bone-like nano-cerystallites of apatite, which grew forming complex crystal assemblies with a further increase in immersion time. Analysis using electrophoresis spectroscopy indicated that, immediately after immersion in SBF, the HA revealed a highly negative surface potential, which increased to reach a maximum positive value in the first soaking period. The surface potential then decreased to again reach a negative value in the second soaking period and thereafter converge to a constant negative value in the third soaking period. This implies that the HA induces biomineralization of apatite by smartly varying its surface potential to trigger an electrostatic interaction, first with positive calcium ions and second with negative phosphate ions in the SBF.
Collapse
Affiliation(s)
- H-M Kim
- Department of Ceramic Engineering, School of Advanced Materials Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea.
| | | | | | | | | |
Collapse
|
13
|
Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 2005; 26:4366-73. [PMID: 15701365 DOI: 10.1016/j.biomaterials.2004.11.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
The surfaces of two hydroxyapatites (HA), which have been sintered at different temperatures of 800 and 1200 degrees C, was investigated as a function of soaking time in simulated body fluid (SBF) using transmission electron microscopy (TEM) attached with energy-dispersive spectrometry (EDX) and laser electrophoresis spectroscopy. The TEM-EDX indicated that after soaking in SBF, both the HAs form bonelike apatite by undergoing the same surface structural change, i.e., formations of a Ca-rich amorphous or nano-crystalline calcium phosphate (ACP) and a Ca-poor ACP, which eventually crystallized into bonelike apatite. Zeta potential characterized by the electrophoresis indicated that during exposure to SBF, the HA surfaces reveal negative surface charge, thereby interacting with the positive calcium ions in the fluid to form the Ca-rich ACP, which gains positive surface charge. The Ca-rich ACP on the HAs then interacts with the negative phosphate ions in the fluid to form the Ca-poor ACP, which stabilizes by being crystallized into bonelike apatite with a low solubility in the SBF. The exposure times for formations of these phases of the Ca-rich ACP, the Ca-poor ACP as well as the apatite were, however, all late on HA sintered at 1200 degrees C, compared with the HA sintered at 800 degrees C. This phenomenon was attributed to a lower initial negative surface charge of the HA sintered at 800 degrees C than of that one sintered at 1200 degrees C, owing to poverty in surface hydroxyl and phosphate groups which are responsible for the surface negativity of the HA. These indicate that sintered temperature of HA might influence not in terms of the process but in terms of the rate of formation of biologically active bonelike apatite on its surface, through which the HA integrates with living bone.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Department of Ceramic Engineering, School of Advanced Materials Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea.
| | | | | | | |
Collapse
|
14
|
Abstract
Calcium titanate (CaTiO(3), perovskite) has been used to determine its apatite nucleation ability and propose a possible nucleation initial step. Measurements of calcium leaching from the calcium titanate surface and phosphate adsorption experiments were carried out separately by using commercial calcium titanate suspensions at room temperature. Adsorption behaviour determined by zeta potential measurements shows that phosphate is strongly adsorbed on the calcium titanate surface. It was found that the higher the pH, the higher the Ca present on the calcium titanate surface, but phosphate adsorption followed this trend only up to pH 7.4. Results suggest that phosphate ions are not adsorbed only on Ca sites but also on TiO(2) groups sites of the surface, formed after calcium leaching from the surface. When both ions are simultaneously added in a modified simulated body fluid containing calcium titanate, at 37 degrees C, apatite growth occurs on its surface after 1 week of immersion.
Collapse
Affiliation(s)
- J Coreño
- Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, C. P. 42184, Pachuca de Soto, Estado de Hidalgo, Mexico.
| | | |
Collapse
|
15
|
Yamaguchi I, Iizuka S, Osaka A, Monma H, Tanaka J. The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids Surf A Physicochem Eng Asp 2003. [DOI: 10.1016/s0927-7757(02)00365-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Coreño J, Martínez A, Coreño O, Bolarín A, Sánchez F. Calcium and phosphate adsorption as initial steps of apatite nucleation on sol-gel-prepared titania surface. J Biomed Mater Res A 2003; 64:131-7. [PMID: 12483705 DOI: 10.1002/jbm.a.10395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Titania powders have been prepared by the sol-gel route from Ti (IV) ethoxide under acidic conditions. Adsorption experiments of calcium and phosphate ions on gel-derived titania suspensions were performed to suggest a likely initial step of apatite growth on its surface. Experiments were performed as a function of time and pH at 37 degrees C with and without NaCl present in the suspensions. Also, zeta (zeta) potential experiments were performed to determine the kind of calcium adsorption. Results suggest that, apparently, calcium and phosphate adsorption can act as two different initial steps for apatite growth.
Collapse
Affiliation(s)
- Juan Coreño
- Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo km 4.5 Pachuca, Hgo, México.
| | | | | | | | | |
Collapse
|