Vincenzi S, Jesensek D, Crivelli AJ. Biological and statistical interpretation of size-at-age, mixed-effects models of growth.
ROYAL SOCIETY OPEN SCIENCE 2020;
7:192146. [PMID:
32431890 PMCID:
PMC7211857 DOI:
10.1098/rsos.192146]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The differences in life-history traits and processes between organisms living in the same or different populations contribute to their ecological and evolutionary dynamics. We developed mixed-effect model formulations of the popular size-at-age von Bertalanffy and Gompertz growth functions to estimate individual and group variation in body growth, using as a model system four freshwater fish populations, where tagged individuals were sampled for more than 10 years. We used the software Template Model Builder to estimate the parameters of the mixed-effect growth models. Tests on data that were not used to estimate model parameters showed good predictions of individual growth trajectories using the mixed-effects models and starting from one single observation of body size early in life; the best models had R 2 > 0.80 over more than 500 predictions. Estimates of asymptotic size from the Gompertz and von Bertalanffy models were not significantly correlated, but their predictions of size-at-age of individuals were strongly correlated (r > 0.99), which suggests that choosing between the best models of the two growth functions would have negligible effects on the predictions of size-at-age of individuals. Model results pointed to size ranks that are largely maintained throughout the lifetime of individuals in all populations.
Collapse