1
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr Rev Food Sci Food Saf 2022; 21:843-867. [PMID: 35181994 DOI: 10.1111/1541-4337.12926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
Abstract
Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| |
Collapse
|
2
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
3
|
Short Chain Fatty Acid Biosynthesis in Microalgae Synechococcus sp. PCC 7942. Mar Drugs 2019; 17:md17050255. [PMID: 31035409 PMCID: PMC6562792 DOI: 10.3390/md17050255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023] Open
Abstract
Short chain fatty acids (SCFAs) are valued as a functional material in cosmetics. Cyanobacteria can accumulate SCFAs under some conditions, the related mechanism is unclear. Two potential genes Synpcc7942_0537 (fabB/F) and Synpcc7942_1455 (fabH) in Synechococcus sp. PCC 7942 have homology with fabB/F and fabH encoding β-ketoacyl ACP synthases (I/II/III) in plants. Therefore, effects of culture time and cerulenin on SCFAs accumulation, expression levels and functions of these two potential genes were studied. The results showed Synechococcus sp. PCC 7942 accumulated high SCFAs (C12 + C14) in early growth stage (day 4) and at 7.5g/L cerulenin concentration, reaching to 2.44% and 2.84% of the total fatty acids respectively, where fabB/F expression was down-regulated. Fatty acid composition analysis showed C14 increased by 65.19% and 130% respectively, when fabB/F and fabH were antisense expressed. C14 increased by 10.79% (fab(B/F)-) and 6.47% (fabH-) under mutation conditions, while C8 increased by six times in fab(B/F)- mutant strain. These results suggested fabB/F is involved in fatty acid elongation (C <18) and the elongation of cis-16:1 to cis-18:1 fatty acid in Synechococcus sp. PCC 7942, while fabH was involved in elongation of fatty acid synthesis, which were further confirmed in complementary experiments of E. coli. The research could provide the scientific basis for the breeding of SCFA-rich microalgae species.
Collapse
|
4
|
Kılıç B, Özer CO. Potential use of interesterified palm kernel oil to replace animal fat in frankfurters. Meat Sci 2019; 148:206-212. [DOI: 10.1016/j.meatsci.2018.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/14/2018] [Accepted: 08/29/2018] [Indexed: 01/22/2023]
|
5
|
Lin H, Shen H, Lee YK. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase. Front Microbiol 2018; 9:619. [PMID: 29670594 PMCID: PMC5893845 DOI: 10.3389/fmicb.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/16/2018] [Indexed: 01/18/2023] Open
Abstract
Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan K Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Reynolds KB, Taylor MC, Cullerne DP, Blanchard CL, Wood CC, Singh SP, Petrie JR. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1397-1408. [PMID: 28301719 PMCID: PMC5633779 DOI: 10.1111/pbi.12724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/12/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.
Collapse
Affiliation(s)
- Kyle B. Reynolds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
- Department of Primary IndustriesGraham Centre for Agricultural InnovationCharles Sturt UniversityWagga WaggaNSWAustralia
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Matthew C. Taylor
- Commonwealth Scientific and Industrial Research OrganizationLand and WaterActonACTAustralia
| | - Darren P. Cullerne
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
- School of Environmental and Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Christopher L. Blanchard
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Craig C. Wood
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| | - Surinder P. Singh
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| | - James R. Petrie
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| |
Collapse
|
7
|
Effects of replacement of beef fat with interesterified palm kernel oil on the quality characteristics of Turkish dry-fermented sausage. Meat Sci 2017; 131:18-24. [DOI: 10.1016/j.meatsci.2017.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022]
|
8
|
Lin H, Lee YK. Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella tertiolecta for improved biodiesel production. JOURNAL OF APPLIED PHYCOLOGY 2017; 29:2811-2819. [PMID: 29213182 PMCID: PMC5705751 DOI: 10.1007/s10811-017-1210-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Genetic engineering of microalgae to accumulate high levels of medium-chain-length fatty acids (MCFAs) represents an attractive strategy to improve the quality of microalgae-based biodiesel, but it has thus far been least successful. We demonstrate that one limitation is the availability of fatty acyl-acyl carrier protein (ACP) substrate pool for acyl-ACP thioesterase (TE). A combinational expression platform that involved plant lauric acid-biased TE (C12TE) and MCFA-specific ketoacyl-ACP synthase (KASIV) increased lauric acid (C12:0) and myristic acid (C14:0) accumulation by almost sevenfold and fourfold, respectively, compared with native strain. These findings suggest a platform for further investigation into the enlargement of MCFA acyl-ACP substrate pool as an approach to sustainably improve quality of microalgae-based biodiesel with regard to MCFA production.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117545 Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117545 Singapore
| |
Collapse
|
9
|
Gu H, Jinkerson RE, Davies FK, Sisson LA, Schneider PE, Posewitz MC. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase. FRONTIERS IN PLANT SCIENCE 2016; 7:690. [PMID: 27303412 PMCID: PMC4880568 DOI: 10.3389/fpls.2016.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/05/2016] [Indexed: 05/12/2023]
Abstract
The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs) is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis in photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%), with the majority of C14 fatty acids allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes putatively lacking bacterial evolutionary control mechanisms could be used to improve MCFA production in this promising production strain. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to fivefold. The level of increase is dependent on promoter strength and culturing conditions.
Collapse
Affiliation(s)
- Huiya Gu
- Department of Chemistry and Geochemistry, Colorado School of Mines, GoldenCO, USA
| | - Robert E. Jinkerson
- Department of Plant Biology, Carnegie Institution for Science, StanfordCA, USA
| | - Fiona K. Davies
- Department of Chemistry and Geochemistry, Colorado School of Mines, GoldenCO, USA
| | - Lyle A. Sisson
- Department of Chemistry and Geochemistry, Colorado School of Mines, GoldenCO, USA
| | - Philip E. Schneider
- Department of Chemistry and Geochemistry, Colorado School of Mines, GoldenCO, USA
| | - Matthew C. Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines, GoldenCO, USA
- *Correspondence: Matthew C. Posewitz,
| |
Collapse
|
10
|
Kim HJ, Silva JE, Iskandarov U, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1021-33. [PMID: 26505880 DOI: 10.1111/tpj.13063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 05/04/2023]
Abstract
Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jillian E Silva
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Umidjon Iskandarov
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mariette Andersson
- Department of Plant Breeding Swedish, University of Agricultural Sciences, Alnarp, Sweden
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Keithanne Mockaitis
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
11
|
Kim HJ, Silva JE, Vu HS, Mockaitis K, Nam JW, Cahoon EB. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4251-65. [PMID: 25969557 PMCID: PMC4493788 DOI: 10.1093/jxb/erv225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jillian E Silva
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Hieu Sy Vu
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Keithanne Mockaitis
- Department of Biology, and Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jeong-Won Nam
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
12
|
Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 2013; 587:936-42. [DOI: 10.1016/j.febslet.2013.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 11/19/2022]
|
13
|
Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2013. [PMID: 23190163 DOI: 10.1111/pbi.12023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.
Collapse
|
14
|
Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P. Replacing fossil oil with fresh oil - with what and for what? EUR J LIPID SCI TECH 2011; 113:812-831. [PMID: 22102794 PMCID: PMC3210827 DOI: 10.1002/ejlt.201100032] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/10/2011] [Accepted: 04/01/2011] [Indexed: 12/28/2022]
Abstract
Industrial chemicals and materials are currently derived mainly from fossil-based raw materials, which are declining in availability, increasing in price and are a major source of undesirable greenhouse gas emissions. Plant oils have the potential to provide functionally equivalent, renewable and environmentally friendly replacements for these finite fossil-based raw materials, provided that their composition can be matched to end-use requirements, and that they can be produced on sufficient scale to meet current and growing industrial demands. Replacement of 40% of the fossil oil used in the chemical industry with renewable plant oils, whilst ensuring that growing demand for food oils is also met, will require a trebling of global plant oil production from current levels of around 139 MT to over 400 MT annually. Realisation of this potential will rely on application of plant biotechnology to (i) tailor plant oils to have high purity (preferably >90%) of single desirable fatty acids, (ii) introduce unusual fatty acids that have specialty end-use functionalities and (iii) increase plant oil production capacity by increased oil content in current oil crops, and conversion of other high biomass crops into oil accumulating crops. This review outlines recent progress and future challenges in each of these areas. Practical applications: The research reviewed in this paper aims to develop metabolic engineering technologies to radically increase the yield and alter the fatty acid composition of plant oils and enable the development of new and more productive oil crops that can serve as renewable sources of industrial feedstocks currently provided by non-renewable and polluting fossil-based resources. As a result of recent and anticipated research developments we can expect to see significant enhancements in quality and productivity of oil crops over the coming decades. This should generate the technologies needed to support increasing plant oil production into the future, hopefully of sufficient magnitude to provide a major supply of renewable plant oils for the industrial economy without encroaching on the higher priority demand for food oils. Achievement of this goal will make a significant contribution to moving to a sustainable carbon-neutral industrial society with lower emissions of carbon dioxide to the atmosphere and reduced environmental impact as a result.
Collapse
Affiliation(s)
- Anders S Carlsson
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences Alnarp, Sweden
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C. Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol 2009; 10:49. [PMID: 19463193 PMCID: PMC2697984 DOI: 10.1186/1471-2199-10-49] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/24/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus) developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. RESULTS Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, beta-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, alpha-CT and SUC1) were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. CONCLUSION This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low glucosinolate, high oleic acid and high oil content, as well as high yield, resulted in higher FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC expression levels and lower KAS3, beta-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, alpha-CT and SUC1 expression levels. It also resulted in altered relationships between these genes during storage accumulation in seed development.
Collapse
Affiliation(s)
- Yaping Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No, 2 Xudong 2nd Road, Wuhan, 430062, PR China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 2009; 141:31-41. [PMID: 19428728 DOI: 10.1016/j.jbiotec.2009.02.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/15/2009] [Accepted: 02/20/2009] [Indexed: 01/03/2023]
Abstract
This paper compares three possible strategies for enhanced lipid overproduction in microalgae: the biochemical engineering (BE) approaches, the genetic engineering (GE) approaches, and the transcription factor engineering (TFE) approaches. The BE strategy relies on creating a physiological stress such as nutrient-starvation or high salinity to channel metabolic fluxes to lipid accumulation. The GE strategy exploits our understanding to the lipid metabolic pathway, especially the rate-limiting enzymes, to create a channelling of metabolites to lipid biosynthesis by overexpressing one or more key enzymes in recombinant microalgal strains. The TFE strategy is an emerging technology aiming at enhancing the production of a particular metabolite by means of overexpressing TFs regulating the metabolic pathways involved in the accumulation of target metabolites. Currently, BE approaches are the most established in microalgal lipid production. The TFE is a very promising strategy because it may avoid the inhibitive effects of the BE approaches and the limitation of "secondary bottlenecks" as commonly observed in the GE approaches. However, it is still a novel concept to be investigated systematically.
Collapse
|
18
|
Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oils from plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:640-55. [PMID: 18476869 DOI: 10.1111/j.1365-313x.2008.03430.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The seed oils of domesticated oilseed crops are major agricultural commodities that are used primarily for nutritional applications, but in recent years there has been increasing use of these oils for production of biofuels and chemical feedstocks. This is being driven in part by the rapidly rising costs of petroleum, increased concern about the environmental impact of using fossil oil, and the need to develop renewable domestic sources of fuel and industrial raw materials. There is also a need to develop sustainable sources of nutritionally important fatty acids such as those that are typically derived from fish oil. Plant oils can provide renewable sources of high-value fatty acids for both the chemical and health-related industries. The value and application of an oil are determined largely by its fatty acid composition, and while most vegetable oils contain just five basic fatty acid structures, there is a rich diversity of fatty acids present in nature, many of which have potential usage in industry. In this review, we describe several areas where plant oils can have a significant impact on the emerging bioeconomy and the types of fatty acids that are required in these various applications. We also outline the current understanding of the underlying biochemical and molecular mechanisms of seed oil production, and the challenges and potential in translating this knowledge into the rational design and engineering of crop plants to produce high-value oils in plant seeds.
Collapse
Affiliation(s)
- John M Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85238, USA.
| | | | | | | |
Collapse
|
19
|
Stoll C, Lühs W, Zarhloul MK, Brummel M, Spener F, Friedt W. Knockout of KASIII regulation changes fatty acid composition in canola (
Brassica napus
). EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200500280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christof Stoll
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus‐Liebig‐University, Giessen, Germany
| | - Wilfried Lühs
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus‐Liebig‐University, Giessen, Germany
| | - M. Karim Zarhloul
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus‐Liebig‐University, Giessen, Germany
| | - Monika Brummel
- Institute for Biochemistry, Westfälische Wilhelms‐Universität Münster, Münster, Germany
| | - Friedrich Spener
- Institute for Biochemistry, Westfälische Wilhelms‐Universität Münster, Münster, Germany
| | - Wolfgang Friedt
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus‐Liebig‐University, Giessen, Germany
| |
Collapse
|
20
|
Stoll C, Lühs W, Zarhloul MK, Friedt W. Genetic modification of saturated fatty acids in oilseed rape (Brassica napus). EUR J LIPID SCI TECH 2005. [DOI: 10.1002/ejlt.200590021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Sakurai H, Pokorný J. The development and application of novel vegetable oils tailor-made for specific human dietary needs. EUR J LIPID SCI TECH 2003. [DOI: 10.1002/ejlt.200300890] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, Heinz E. Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:779-802. [PMID: 12940546 DOI: 10.1078/0176-1617-01025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Hjördis Drexler
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|