1
|
Nian C, Yu R, Han Z, Bai Y, Wang J, Sun J, Huang H. Trifluoroethanol promoted formal nucleophilic substitution of indol-2-yl diaryl methanol for the synthesis of tetraarylmethanes. Chem Commun (Camb) 2024; 60:9797-9800. [PMID: 39162023 DOI: 10.1039/d4cc03420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The synthesis of tetraarylmethanes has long been a challenge in the field of synthetic chemistry. In this study, a series of tetraarylmethanes were successfully synthesized through the formal nucleophilic substitution reaction of indol-2-yl diaryl methanol catalyzed by Brønsted acid. The key success of this study lies in suppressing the influence of water molecules by forming hydrogen bonds with the TFE solvent. This process leads to the formation of active 2-indole imine methide (2-IIM) intermediates, ensuring the successful synthesis of tetraarylmethanes. Furthermore, some of the products also exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China.
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| |
Collapse
|
2
|
Manikandan M, Nicolini P, Hapala P. Computational Design of Photosensitive Polymer Templates To Drive Molecular Nanofabrication. ACS NANO 2024; 18:9969-9979. [PMID: 38545921 PMCID: PMC11008366 DOI: 10.1021/acsnano.3c10575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Molecular electronics promises the ultimate level of miniaturization of computers and other machines as organic molecules are the smallest known physical objects with nontrivial structure and function. But despite the plethora of molecular switches, memories, and motors developed during the almost 50-years long history of molecular electronics, mass production of molecular computers is still an elusive goal. This is mostly due to the lack of scalable nanofabrication methods capable of rapidly producing complex structures (similar to silicon chips or living cells) with atomic precision and a small number of defects. Living nature solves this problem by using linear polymer templates encoding large volumes of structural information into sequence of hydrogen bonded end groups which can be efficiently replicated and which can drive assembly of other molecular components into complex supramolecular structures. In this paper, we propose a nanofabrication method based on a class of photosensitive polymers inspired by these natural principles, which can operate in concert with UV photolithography used for fabrication of current microelectronic processors. We believe that such a method will enable a smooth transition from silicon toward molecular nanoelectronics and photonics. To demonstrate its feasibility, we performed a computational screening of candidate molecules that can selectively bind and therefore allow the deterministic assembly of molecular components. In the process, we unearthed trends and design principles applicable beyond the immediate scope of our proposed nanofabrication method, e.g., to biologically relevant DNA analogues and molecular recognition within hydrogen-bonded systems.
Collapse
Affiliation(s)
- Mithun Manikandan
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Paolo Nicolini
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Prokop Hapala
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| |
Collapse
|
3
|
Bouwens T, Bakker TMA, Zhu K, Huijser A, Mathew S, Reek JNH. Rotaxane-Functionalized Dyes for Charge-Rectification in p-Type Photoelectrochemical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306032. [PMID: 38110821 PMCID: PMC10916627 DOI: 10.1002/advs.202306032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 12/20/2023]
Abstract
A supramolecular photovoltaic strategy is applied to enhance power conversion efficiencies (PCE) of photoelectrochemical devices by suppressing electron-hole recombination after photoinduced electron transfer (PET). Here, the author exploit supramolecular localization of the redox mediator-in close proximity to the dye-through a rotaxane topology, reducing electron-hole recombination in p-type dye-sensitized solar cells (p-DSSCs). Dye PRotaxane features 1,5-dioxynaphthalene recognition sites (DNP-arms) with a mechanically-interlocked macrocyclic redox mediator naphthalene diimide macrocycle (3-NDI-ring), stoppering synthetically via click chemistry. The control molecule PStopper has stoppered DNP-arms, preventing rotaxane formation with the 3-NDI-ring. Transient absorption and time-resolved fluorescence spectroscopy studies show ultrafast (211 ± 7 fs and 2.92 ± 0.05 ps) PET from the dye-moiety of PRotaxane to its mechanically interlocked 3-NDI-ring-acceptor, slowing down the electron-hole recombination on NiO surfaces compared to the analogue . p-DSSCs employing PRotaxane (PCE = 0.07%) demonstrate a 30% PCE increase compared to PStopper (PCE = 0.05%) devices, combining enhancements in both open-circuit voltages (VOC = 0.43 vs 0.36 V) and short-circuit photocurrent density (JSC = -0.39 vs -0.34 mA cm-2 ). Electrochemical impedance spectroscopy shows that PRotaxane devices exhibit hole lifetimes (τh ) approaching 1 s, a 16-fold improvement compared to traditional I- /I3 - -based systems (τh = 50 ms), demonstrating the benefits obtained upon nanoengineering of interfacial dye-regeneration at the photocathode.
Collapse
Affiliation(s)
- Tessel Bouwens
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Tijmen M. A. Bakker
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Kaijian Zhu
- PhotoCatalytic Synthesis GroupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 217Enschede7500 AEThe Netherlands
| | - Annemarie Huijser
- PhotoCatalytic Synthesis GroupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 217Enschede7500 AEThe Netherlands
| | - Simon Mathew
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Joost N. H. Reek
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| |
Collapse
|
4
|
Mutunga E, D'Angelo C, Tyagi P. Magnetic molecules lose identity when connected to different combinations of magnetic metal electrodes in MTJ-based molecular spintronics devices (MTJMSD). Sci Rep 2023; 13:16201. [PMID: 37758736 PMCID: PMC10533507 DOI: 10.1038/s41598-023-42731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding the magnetic molecules' interaction with different combinations of metal electrodes is vital to advancing the molecular spintronics field. This paper describes experimental and theoretical understanding showing how paramagnetic single-molecule magnet (SMM) catalyzes long-range effects on metal electrodes and, in that process, loses its basic magnetic properties. For the first time, our Monte Carlo simulations, verified for consistency with regards to experimental studies, discuss the properties of the whole device and a generic paramagnetic molecule analog (GPMA) connected to the combinations of ferromagnet-ferromagnet, ferromagnet-paramagnet, and ferromagnet-antiferromagnet metal electrodes. We studied the magnetic moment vs. magnetic field of GPMA exchange coupled between two metal electrodes along the exposed side edge of cross junction-shaped magnetic tunnel junction (MTJ). We also studied GPMA-metal electrode interfaces' magnetic moment vs. magnetic field response. We have also found that the MTJ dimension impacted the molecule response. This study suggests that SMM spin at the MTJ exposed sides offers a unique and high-yield method of connecting molecules to virtually endless magnetic and nonmagnetic electrodes and observing unprecedented phenomena in the molecular spintronics field.
Collapse
Affiliation(s)
- Eva Mutunga
- Mechanical Engineering, Center for Nanotechnology Research and Education (CNRE), University of the District of Columbia, 4200 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Christopher D'Angelo
- Mechanical Engineering, Center for Nanotechnology Research and Education (CNRE), University of the District of Columbia, 4200 Connecticut Ave. NW, Washington, DC, 20008, USA
| | - Pawan Tyagi
- Mechanical Engineering, Center for Nanotechnology Research and Education (CNRE), University of the District of Columbia, 4200 Connecticut Ave. NW, Washington, DC, 20008, USA.
| |
Collapse
|
5
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
6
|
d'Orchymont F, Holland JP. Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022; 61:e202204072. [PMID: 35532102 PMCID: PMC9400884 DOI: 10.1002/anie.202204072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Mechanically interlocked molecules present opportunities to construct therapeutic drugs and diagnostic imaging agents but harnessing supramolecular chemistry to make biologically active probes in water is a challenge. Here, we describe a rotaxane‐based approach to synthesise radiolabelled proteins and peptides for molecular imaging of cancer biomarkers in vivo. Host–guest chemistry using β‐cyclodextrin‐ and cucurbit[6]uril‐catalysed cooperative capture synthesis produced gallium‐68 or zirconium‐89 radiolabelled metallo[4]rotaxanes. Photochemical conjugation to trastuzumab led to a viable positron emission tomography (PET) radiotracer. The rotaxane architecture can be tuned to accommodate different radiometal ion complexes, other protein‐ or peptide‐based drugs, and fluorophores for optical detection. This technology provides a platform to explore how mechanical bonding can improve drug delivery, enhance tumour specificity, control radiotracer pharmacokinetics, and reduce dosimetry.
Collapse
Affiliation(s)
- Faustine d'Orchymont
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jason P. Holland
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
7
|
Supramolecular Rotaxane‐Based Multi‐Modal Probes for Cancer Biomarker Imaging**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Qiu X, Chiechi RC. Printable logic circuits comprising self-assembled protein complexes. Nat Commun 2022; 13:2312. [PMID: 35484124 PMCID: PMC9050843 DOI: 10.1038/s41467-022-30038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics. Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, United States.
| |
Collapse
|
9
|
Prakashni M, Shukla R, Dasgupta S. Rapid and High-Yield Synthesis of [23]Crown Ether: Applied as a Wheel Component in the Formation of Pseudo[2]rotaxane and Synthesis of [2]Catenane with a Dibenzylammonium Dumbbell. J Org Chem 2021; 86:7825-7831. [PMID: 34019406 DOI: 10.1021/acs.joc.1c00674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile, rapid, and high yield synthesis of [23]crown ether (X23C7) has been developed from commercially available starting materials, in one step with good to excellent yield. The reaction is completed in 6 h under room temperature conditions, with the highest yield being 81%. The X23C7 macrocycle formed pseudo[2]rotaxane with a dibenzylammonium ion (DBA+) dumbbell, exhibiting strong association (Ka = 2.61 × 103 M-1). Consequently, a [2]catenane was synthesized from a DBA+-based diolefin terminated salt and X23C7 in 81% yield, using a threading-followed-ring-closing-metathesis approach.
Collapse
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| | - Rasendra Shukla
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India
| |
Collapse
|
10
|
Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular Pumps and Motors. J Am Chem Soc 2021; 143:5569-5591. [PMID: 33830744 DOI: 10.1021/jacs.0c13388] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
11
|
|
12
|
Larson AM, Balema TA, Zahl P, Schilling AC, Stacchiola DJ, Sykes ECH. Hypothetical Efficiency of Electrical to Mechanical Energy Transfer during Individual Stochastic Molecular Switching Events. ACS NANO 2020; 14:16558-16564. [PMID: 32946215 DOI: 10.1021/acsnano.0c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.
Collapse
Affiliation(s)
- Amanda M Larson
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Tedros A Balema
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex C Schilling
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Jeong M, Park J, Kwon S. Molecular Switches and Motors Powered by Orthogonal Stimuli. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Myeongsu Jeong
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Jiyoon Park
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| |
Collapse
|
14
|
Moulin E, Faour L, Carmona‐Vargas CC, Giuseppone N. From Molecular Machines to Stimuli‐Responsive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906036. [PMID: 31833132 DOI: 10.1002/adma.201906036] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Indexed: 05/12/2023]
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Lara Faour
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Christian C. Carmona‐Vargas
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| |
Collapse
|
15
|
Da Silva Rodrigues R, Marshall DL, McMurtrie JC, Mullen KM. Dynamic covalent synthesis of [2]- and [3]rotaxanes both in solution and on solid supports. NEW J CHEM 2020. [DOI: 10.1039/d0nj02137g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we demonstrate the application of a dynamic covalent chemistry methodology for the synthesis of [2]- and [3]-rotaxanes not only in solution, but also on solid supports with 65% rotaxane functionalisation of the polymer resins observed.
Collapse
Affiliation(s)
| | - David L. Marshall
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- Central Analytical Research Facility
| | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| | - Kathleen M. Mullen
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
16
|
Lakhno V. Theoretical Basis of Nanobioelectronics. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202022601008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several years ago, the modern silicon-based nanoelectronics came to the limits of its miniaturization. Its advancement into the range of 10 nm and less faces enormous challenges. A breakthrough in further miniaturization of electronic devices can be realized only on the basis of new approaches of which nanobioelectronics seems to be the most promising.
Collapse
|
17
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
18
|
Schröder HV, Schalley CA. Electrochemically switchable rotaxanes: recent strides in new directions. Chem Sci 2019; 10:9626-9639. [PMID: 32110308 PMCID: PMC7020790 DOI: 10.1039/c9sc04118d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Are they still electrifying? Electrochemically switchable rotaxanes are well known for their ability to efficiently undergo changes of (co-)conformation and properties under redox-control. Thus, these mechanically interlocked assemblies represent an auspicious liaison between the fields of molecular switches and molecular electronics. Since the first reported example of a redox-switchable molecular shuttle in 1994, improved tools of organic and supramolecular synthesis have enabled sophisticated new architectures, which provide precise control over properties and function. This perspective covers recent advances in the area of electrochemically active rotaxanes including novel molecular switches and machines, metal-containing rotaxanes, non-equilibrium systems and potential applications.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
19
|
Cetin MM, Beldjoudi Y, Roy I, Anamimoghadam O, Bae YJ, Young RM, Krzyaniak MD, Stern CL, Philp D, Alsubaie FM, Wasielewski MR, Stoddart JF. Combining Intra- and Intermolecular Charge Transfer with Polycationic Cyclophanes To Design 2D Tessellations. J Am Chem Soc 2019; 141:18727-18739. [PMID: 31580664 DOI: 10.1021/jacs.9b07877] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fehaid M. Alsubaie
- Joint Center of Excellence in Integrated Nanosystems, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
| | | | - J. Fraser Stoddart
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Schröder HV, Schalley CA. Tetrathiafulvalene - a redox-switchable building block to control motion in mechanically interlocked molecules. Beilstein J Org Chem 2018; 14:2163-2185. [PMID: 30202469 PMCID: PMC6122308 DOI: 10.3762/bjoc.14.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2018] [Indexed: 11/23/2022] Open
Abstract
With the rise of artificial molecular machines, control of motion on the nanoscale has become a major contemporary research challenge. Tetrathiafulvalenes (TTFs) are one of the most versatile and widely used molecular redox switches to generate and control molecular motion. TTF can easily be implemented as functional unit into molecular and supramolecular structures and can be reversibly oxidized to a stable radical cation or dication. For over 20 years, TTFs have been key building blocks for the construction of redox-switchable mechanically interlocked molecules (MIMs) and their electrochemical operation has been thoroughly investigated. In this review, we provide an introduction into the field of TTF-based MIMs and their applications. A brief historical overview and a selection of important examples from the past until now are given. Furthermore, we will highlight our latest research on TTF-based rotaxanes.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
21
|
Afonin AV, Vashchenko AV. The intramolecular hydrogen bond as a unit of molecular electronics: Molecular switching controlled by overcrowded intramolecular three-centered hydrogen bond. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The equilibrium geometry of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole calculated at the MP2/6-311[Formula: see text]G([Formula: see text],[Formula: see text]) level of theory evidences the breaking of one of the components in the three-centered intramolecular hydrogen bond due to the steric strain. For this reason, the three-centered intramolecular hydrogen bonding turns out to be asymmetric interaction involving the major and minor components. However, the reversible switching between these components under an external impact is also possible. Two different stable states with unequal geometric and electronic structure are observed in the derivatives of the 2,5-bis-[2-(pyridin-2-yl)-vinyl]-1[Formula: see text]-pyrrole. These molecules represent novel molecular switches operating due to the pendulum-like transition between the nonequivalent two-centered components of the overcrowded three-centered intramolecular hydrogen bond. Implantation of hydrogen bond as a unit of the molecular scale device enhances potential of molecular electronics and could serve as a step towards the construction of artificial biological ensembles.
Collapse
Affiliation(s)
- Andrei V. Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Alexander V. Vashchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
22
|
Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Self-assembled monolayers in organic electronics. Chem Soc Rev 2018; 46:40-71. [PMID: 27722675 DOI: 10.1039/c6cs00509h] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembly is possibly the most effective and versatile strategy for surface functionalization. Self-assembled monolayers (SAMs) can be formed on (semi-)conductor and dielectric surfaces, and have been used in a variety of technological applications. This work aims to review the strategy behind the design and use of self-assembled monolayers in organic electronics, discuss the mechanism of interaction of SAMs in a microscopic device, and highlight the applications emerging from the integration of SAMs in an organic device. The possibility of performing surface chemistry tailoring with SAMs constitutes a versatile approach towards the tuning of the electronic and morphological properties of the interfaces relevant to the response of an organic electronic device. Functionalisation with SAMs is important not only for imparting stability to the device or enhancing its performance, as sought at the early stages of development of this field. SAM-functionalised organic devices give rise to completely new types of behavior that open unprecedented applications, such as ultra-sensitive label-free biosensors and SAM/organic transistors that can be used as robust experimental gauges for studying charge tunneling across SAMs.
Collapse
Affiliation(s)
- Stefano Casalini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Carlo Augusto Bortolotti
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanosciences, Via Campi 213/a, 41125 Modena, Italy
| | - Francesca Leonardi
- Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Fabio Biscarini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
23
|
Baroncini M, Casimiro L, de Vet C, Groppi J, Silvi S, Credi A. Making and Operating Molecular Machines: A Multidisciplinary Challenge. ChemistryOpen 2018; 7:169-179. [PMID: 29435402 PMCID: PMC5795756 DOI: 10.1002/open.201700181] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Movement is one of the central attributes of life, and a key feature in many technological processes. While artificial motion is typically provided by macroscopic engines powered by internal combustion or electrical energy, movement in living organisms is produced by machines and motors of molecular size that typically exploit the energy of chemical fuels at ambient temperature to generate forces and ultimately execute functions. The progress in several areas of chemistry, together with an improved understanding of biomolecular machines, has led to the development of a large variety of wholly synthetic molecular machines. These systems have the potential to bring about radical innovations in several areas of technology and medicine. In this Minireview, we discuss, with the help of a few examples, the multidisciplinary aspects of research on artificial molecular machines and highlight its translational character.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
- Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Christiaan de Vet
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Jessica Groppi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
- Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| |
Collapse
|
24
|
Hewson SW, Mullen KM. Understanding coordination equilibria in solution and gel-phase [2]rotaxanes. Org Biomol Chem 2018; 16:8569-8578. [DOI: 10.1039/c8ob02304b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An active-metal template approach has been use to synthesise solution and surface bound addressable [2]rotaxanes giving unique insights into thermodynamic equilibria in interlocked structures.
Collapse
Affiliation(s)
- Sean W. Hewson
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Kathleen M. Mullen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
25
|
Striepe L, Baumgartner T. Viologens and Their Application as Functional Materials. Chemistry 2017; 23:16924-16940. [DOI: 10.1002/chem.201703348] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Laura Striepe
- Department of Chemistry and Centre for Advanced Solar Materials; University of Calgary; 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Thomas Baumgartner
- Department of Chemistry and Centre for Advanced Solar Materials; University of Calgary; 2500 University Drive NW Calgary AB T2N 1N4 Canada
- Current address: Department of Chemistry; York University; 4700 Keele St Toronto ON M3J 1P3 Canada
| |
Collapse
|
26
|
Jeong H, Kim D, Xiang D, Lee T. High-Yield Functional Molecular Electronic Devices. ACS NANO 2017; 11:6511-6548. [PMID: 28578582 DOI: 10.1021/acsnano.7b02967] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An ultimate goal of molecular electronics, which seeks to incorporate molecular components into electronic circuit units, is to generate functional molecular electronic devices using individual or ensemble molecules to fulfill the increasing technical demands of the miniaturization of traditional silicon-based electronics. This review article presents a summary of recent efforts to pursue this ultimate aim, covering the development of reliable device platforms for high-yield ensemble molecular junctions and their utilization in functional molecular electronic devices, in which distinctive electronic functionalities are observed due to the functional molecules. In addition, other aspects pertaining to the practical application of molecular devices such as manufacturing compatibility with existing complementary metal-oxide-semiconductor technology, their integration, and flexible device applications are also discussed. These advances may contribute to a deeper understanding of charge transport characteristics through functional molecular junctions and provide a desirable roadmap for future practical molecular electronics applications.
Collapse
Affiliation(s)
- Hyunhak Jeong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 08826, Korea
| | - Dongku Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 08826, Korea
| | - Dong Xiang
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University , Tianjin 300071, China
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University , Seoul 08826, Korea
| |
Collapse
|
27
|
Fukino T, Yamagishi H, Aida T. Redox-Responsive Molecular Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603888. [PMID: 27990693 DOI: 10.1002/adma.201603888] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Redox reactions can alter the electronic, optical, and magnetic properties of molecules and their ensembles by adding or removing electrons. Here, the developments made over the past 10 years using molecular events are discussed, such as assembly/disassembly, transformation of ensembles, geometric changes, and molecular motions that are designed to be redox-responsive. Considerable progress has occurred in the application of these events to the realization of electronic memory, color displays, actuators, adhesives, and drug delivery. In these cases, systems behave in either a highly or a poorly correlated manner depending on the number of redox-active units involved, based on the method of integration. One of the great advantages of redox-responsive devices and materials is that they have the potential to be readily integrated into existing electronic technologies.
Collapse
Affiliation(s)
- Takahiro Fukino
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Yamagishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
28
|
Da Silva Rodrigues R, Mullen KM. Surface-Assembled Mechanically Interlocked Architectures. Chempluschem 2017; 82:814-825. [PMID: 31961569 DOI: 10.1002/cplu.201700065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/09/2017] [Indexed: 01/30/2023]
Abstract
Since the advent of supramolecular chemistry, there has been keen interest in the synthesis of interlocked molecules, given their unique potential to act as receptors, molecular machines and even motors. Despite advances in the complexity of molecular machines that can be synthesised and operated in solution, reports of the operation or even attachment of complex supramolecular systems on solid surfaces are less common. Synthetic challenges and a lack of adequate characterisation techniques to monitor the thermodynamic and kinetic influences governing assembly at the solution-surface interface has slowed progress in this area of research. This Review looks at the developments in the field of covalently assembled interlocked architectures on gold, silica and polymer surfaces, highlighting the differences observed between solution and surface assembly of these unique structures.
Collapse
Affiliation(s)
- Rafael Da Silva Rodrigues
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Kathleen M Mullen
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
29
|
Majumdar S, Malen JA, McGaughey AJH. Cooperative Molecular Behavior Enhances the Thermal Conductance of Binary Self-Assembled Monolayer Junctions. NANO LETTERS 2017; 17:220-227. [PMID: 28073270 DOI: 10.1021/acs.nanolett.6b03894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of the local molecular environment on thermal transport through organic-inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.
Collapse
Affiliation(s)
- Shubhaditya Majumdar
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Halstead SJ, Li J. Molecular dynamics simulations of acid/base induced switching of a bistable rotaxane. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1258497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Simon J. Halstead
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Juan Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
31
|
Dolinar BS, Kozimor SA, Berry JF. K3[Mo2(SNO5)4Cl]3[Mo2(SNO5)4]: the first example of a heterometallic extended metal atom node (HEMAN). Dalton Trans 2016; 45:17602-17605. [DOI: 10.1039/c6dt03659g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synthesis, structure, and electrochemistry of K3[Mo2(SNO5)4Cl]3[Mo2(SNO5)4] (1, HSNO5 = monothiosuccinimide), the first example of a heterometallic extended metal atom node (HEMAN).
Collapse
Affiliation(s)
- Brian S. Dolinar
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
| | - Stosh A. Kozimor
- Inorganic Isotope and Actinide Chemistry Group
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - John F. Berry
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|
32
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
33
|
Electrochemically addressable trisradical rotaxanes organized within a metal-organic framework. Proc Natl Acad Sci U S A 2015; 112:11161-8. [PMID: 26283386 DOI: 10.1073/pnas.1514485112] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The organization of trisradical rotaxanes within the channels of a Zr6-based metal-organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust Zr(IV)-carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet-visible-near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal-organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.
Collapse
|
34
|
Majumdar S, Sierra-Suarez JA, Schiffres SN, Ong WL, Higgs CF, McGaughey AJH, Malen JA. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. NANO LETTERS 2015; 15:2985-2991. [PMID: 25884912 DOI: 10.1021/nl504844d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present measurements of the thermal conductance of self-assembled monolayer (SAM) junctions formed between metal leads (Au, Ag, Pt, and Pd) with mismatched phonon spectra. The thermal conductance obtained from frequency domain thermoreflectance experiments is 65 ± 7 MW/m(2) K for matched Au-alkanedithiol-Au junctions, while the mismatched Au-alkanedithiol-Pd junctions yield a thermal conductance of 36 ± 3 MW/m(2) K. The experimental observation that junction thermal conductance (per molecule) decreases as the mismatch between the lead vibrational spectra increases, paired with results from molecular dynamics (MD) simulations, suggest that phonons scatter elastically at the metal-SAM interfaces. Furthermore, we resolve a known discrepancy between measurements and MD predictions of SAM thermal conductance by using a contact mechanics model to predict 54 ± 15% areal contact in the Au-alkanedithiol-Au experimental junction. This incomplete contact obscures the actual junction thermal conductance of 115 ± 22 MW/m(2) K, which is comparable to that of metal-dielectric interfaces.
Collapse
Affiliation(s)
- Shubhaditya Majumdar
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - Jonatan A Sierra-Suarez
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - Scott N Schiffres
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - Wee-Liat Ong
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - C Fred Higgs
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - Alan J H McGaughey
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| | - Jonathan A Malen
- †Department of Mechanical Engineering, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, United States
| |
Collapse
|
35
|
Parker CR, Leary E, Frisenda R, Wei Z, Jennum KS, Glibstrup E, Abrahamsen PB, Santella M, Christensen MA, Della Pia EA, Li T, Gonzalez MT, Jiang X, Morsing TJ, Rubio-Bollinger G, Laursen BW, Nørgaard K, van der Zant H, Agrait N, Nielsen MB. A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements. J Am Chem Soc 2014; 136:16497-507. [DOI: 10.1021/ja509937k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian R. Parker
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Edmund Leary
- Laboratorio
de Bajas Temperaturas, Departamento de Física de la Materia
Condensada Módulo 3, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
- IMDEA-Nanoscience,
Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | - Riccardo Frisenda
- Kavli
Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - Zhongming Wei
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark
| | - Karsten S. Jennum
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Emil Glibstrup
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Peter Bæch Abrahamsen
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Marco Santella
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark
| | - Mikkel A. Christensen
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Eduardo Antonio Della Pia
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Tao Li
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Maria Teresa Gonzalez
- IMDEA-Nanoscience,
Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | - Xingbin Jiang
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Thorbjørn J. Morsing
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Gabino Rubio-Bollinger
- Laboratorio
de Bajas Temperaturas, Departamento de Física de la Materia
Condensada Módulo 3, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Bo W. Laursen
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kasper Nørgaard
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Herre van der Zant
- Kavli
Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - Nicolas Agrait
- Laboratorio
de Bajas Temperaturas, Departamento de Física de la Materia
Condensada Módulo 3, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
- IMDEA-Nanoscience,
Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | - Mogens Brøndsted Nielsen
- Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
36
|
Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MW, Harbach PH, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJ, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GK, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PM, Head-Gordon M. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 2014. [DOI: 10.1080/00268976.2014.952696] [Citation(s) in RCA: 1769] [Impact Index Per Article: 176.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Gao GQ, Xu AW. Efficient catalytic reduction of azo dyes by N,N-dimethylformamide mediated by viologen. NEW J CHEM 2014. [DOI: 10.1039/c4nj00342j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Solano MV, Della Pia EA, Jevric M, Schubert C, Wang X, van der Pol C, Kadziola A, Nørgaard K, Guldi DM, Nielsen MB, Jeppesen JO. Mono- and Bis(pyrrolo)tetrathiafulvalene Derivatives Tethered to C60: Synthesis, Photophysical Studies, and Self-Assembled Monolayers. Chemistry 2014; 20:9918-29. [DOI: 10.1002/chem.201402623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 01/07/2023]
|
39
|
Avellini T, Baroncini M, Ragazzon G, Silvi S, Venturi M, Credi A. Photochemically Controlled Molecular Machines with Sequential Logic Operation. Isr J Chem 2014. [DOI: 10.1002/ijch.201400039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Threaded structures based on the recognition of 1,5-dinaphtho-crown ethers to paraquat and vinylogous viologen derivatives: host–guest complexations, X-ray crystal structures, and self-assembly superstructures. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Pun AB, Gagnon KJ, Klivansky LM, Teat SJ, Li ZT, Liu Y. Solvent-driven selective π-cation templating in dynamic assembly of interlocked molecules. Org Chem Front 2014. [DOI: 10.1039/c3qo00074e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The different solvent responses for bipyridinium and trispyridinium-based dynamic imine [2]rotaxanes allow their interconversion with high selectivity.
Collapse
Affiliation(s)
- Andrew B. Pun
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley, USA
| | - Kevin J. Gagnon
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley, USA
| | | | - Simon J. Teat
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley, USA
| | - Zhan-Ting Li
- Department of Chemistry
- Fudan University
- Shanghai 200433, China
| | - Yi Liu
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley, USA
| |
Collapse
|
42
|
Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks. MOLECULAR MACHINES AND MOTORS 2014; 354:213-51. [DOI: 10.1007/128_2013_516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM. Functional interlocked systems. Chem Soc Rev 2014; 43:99-122. [DOI: 10.1039/c3cs60178a] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Affiliation(s)
- Gregory Scholes
- Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
45
|
Schmucker AL, Barin G, Brown KA, Rycenga M, Coskun A, Buyukcakir O, Osberg KD, Stoddart JF, Mirkin CA. Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1900-1903. [PMID: 23129396 DOI: 10.1002/smll.201201993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Abrin L Schmucker
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Coumans RGE, Elemans JAAW, Rowan AE, Nolte RJM. Interlocked Porphyrin Switches. Chemistry 2013; 19:7758-70. [DOI: 10.1002/chem.201203983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/03/2013] [Indexed: 11/12/2022]
|
47
|
Kamakura SI, Jung J, Minato T, Kim Y, Hossain MZ, Kato HS, Munakata T, Kawai M. Dispersive Electronic States of the π-Orbitals Stacking in Single Molecular Lines on the Si(001)-(2×1)-H Surface. J Phys Chem Lett 2013; 4:1199-1204. [PMID: 26282042 DOI: 10.1021/jz400389k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One-dimensional (1D) molecular assemblies have been considered as one of the potential candidates for miniaturized electronic circuits in organic electronics. Here, we present the quantitative experimental measurements of the dispersive electronic feature of 1D benzophenone molecular assemblies on the Si(001)-(2×1)-H. The well-aligned molecular lines and their certain electronic state dispersion were observed by scanning tunneling microscopy (STM) and angle-resolved ultraviolet photoemission spectroscopy (ARUPS), respectively. Density functional theory (DFT) calculations reproduced not only the experimental STM image but also the dispersive features that originated from the stacking phenyl π-orbitals in the molecular assembly. We obtained the effective mass of 2.0me for the hole carrier along the dispersive electronic state, which was comparable to those of the single-crystal molecules widely used in organic electronic applications. These results ensure the one-dimensionally delocalized electronic states in the molecular lines, which is requisitely demanded for a charge-transport wire.
Collapse
Affiliation(s)
- Shin-Ichi Kamakura
- ‡Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8501, Japan
| | | | | | | | - Md Zakir Hossain
- ⊥Advanced Engineering Research Team, Advanced Scientific Research Leaders Development Unit, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Hiroyuki S Kato
- #Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Toshiaki Munakata
- #Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Maki Kawai
- ‡Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8501, Japan
| |
Collapse
|
48
|
Olea Ulloa C, Ponce Vargas M, Guajardo Maturana R, Muñoz-Castro A. Theoretical study of the binding strength and magnetical response properties involved in the formation of the π-donor/π-acceptor [TTF–CBPQT]4+ host–guest system. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Lu CH, Qi XJ, Orbach R, Yang HH, Mironi-Harpaz I, Seliktar D, Willner I. Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes. NANO LETTERS 2013; 13:1298-1302. [PMID: 23421921 DOI: 10.1021/nl400078g] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Copolymer chains consisting of acrylamide units and guanine (G)-containing oligonucleotide-tethered acrylamide units undergo, in the presence of K(+) ions, cross-linking by G-quadruplexes to yield a hydrogel. The hydrogel is dissociated upon addition of 18-crown-6 ether that traps the K(+) ions. Reversible formation and dissociation of the hydrogel is demonstrated by the cyclic addition of K(+) ions and 18-crown-6 ether, respectively. Formation of the hydrogel in the presence of hemin results in a hemin/G-quadruplex-cross-linked catalytic hydrogel mimicking the function of horseradish peroxidase, reflected by the catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid), ABTS(2-), by H2O2 to ABTS(·-) and by the catalyzed generation of chemiluminescence in the presence of luminol/H2O2. Cyclic "ON" and "OFF" activation of the catalytic functions of the hydrogel are demonstrated upon the formation of the hydrogel in the presence of K(+) ions and its dissociation by 18-crown-6 ether, respectively. The hydrogel is characterized by rheology measurements, circular dichroism, and probing its chemical and photophysical properties.
Collapse
Affiliation(s)
- Chun-Hua Lu
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Peng WT, Chang YC, Chao I. A Design Strategy for Motion Control Systems with Identical Binding Sites. Chemphyschem 2013; 14:500-4. [DOI: 10.1002/cphc.201300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Indexed: 11/08/2022]
|