1
|
José RJ, Williams A, Manuel A, Brown JS, Chambers RC. Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis. Eur Respir Rev 2020; 29:29/157/200240. [PMID: 33004529 PMCID: PMC7537941 DOI: 10.1183/16000617.0240-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has rapidly spread throughout the world, resulting in a pandemic with high mortality. There are no effective treatments for the management of severe COVID-19 and current therapeutic trials are focused on antiviral therapy and attenuation of hyper-inflammation with anti-cytokine therapy. Severe COVID-19 pneumonia shares some pathological similarities with severe bacterial pneumonia and sepsis. In particular, it disrupts the haemostatic balance, which results in a procoagulant state locally in the lungs and systemically. This culminates in the formation of microthrombi, disseminated intravascular coagulation and multi-organ failure. The deleterious effects of exaggerated inflammatory responses and activation of coagulation have been investigated in bacterial pneumonia and sepsis and there is recognition that although these pathways are important for the host immune response to pathogens, they can lead to bystander tissue injury and are negatively associated with survival. In the past two decades, evidence from preclinical studies has led to the emergence of potential anticoagulant therapeutic strategies for the treatment of patients with pneumonia, sepsis and acute respiratory distress syndrome, and some of these anticoagulant approaches have been trialled in humans. Here, we review the evidence from preclinical studies and clinical trials of anticoagulant treatment strategies in bacterial pneumonia and sepsis, and discuss the importance of these findings in the context of COVID-19.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London, UK .,Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Andrew Williams
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Ari Manuel
- University Hospital Aintree, Liverpool, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| |
Collapse
|
2
|
Murao S, Yamakawa K. A Systematic Summary of Systematic Reviews on Anticoagulant Therapy in Sepsis. J Clin Med 2019; 8:E1869. [PMID: 31689983 PMCID: PMC6912821 DOI: 10.3390/jcm8111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 01/11/2023] Open
Abstract
Many systematic reviews have been published regarding anticoagulant therapy in sepsis, among which there is substantial heterogeneity. This study aimed to provide an overview of existing systematic reviews of randomized controlled trials by using a comprehensive search method. We searched MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews. Of 895 records screened, 19 systematic reviews were included. The target agent was as follows: antithrombin (n = 4), recombinant thrombomodulin (n = 3), heparin (n = 3), recombinant activated protein C (n = 8), and all anticoagulants (n = 1). Antithrombin did not improve mortality in critically ill patients but indicated a beneficial effect in sepsis-induced disseminated intravascular coagulation (DIC), although the certainty of evidence was judged as low. Recombinant thrombomodulin was associated with a trend in reduced mortality in sepsis with coagulopathy with no increased risk of bleeding, although the difference was not statistically significant and the required information size for any declarative judgement insufficient. Although three systematic reviews showed potential survival benefits of unfractionated heparin and low-molecular-weight heparin in patients with sepsis, trials with low risk of bias were lacking, and the overall impact remains unclear. None of the meta-analyses of recombinant activated protein C showed beneficial effects in sepsis. In summary, a beneficial effect was not observed in overall sepsis in poorly characterized patient groups but was observed in sepsis-induced DIC or sepsis with coagulopathy in more specific patient groups. This umbrella review of anticoagulant therapy suggests that characteristics of the target populations resulted in heterogeneity among the systematic reviews.
Collapse
Affiliation(s)
- Shuhei Murao
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka 558-8558, Japan.
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka 558-8558, Japan.
| |
Collapse
|
3
|
Roman E, Larson PJ, Manno CS. Transfusion Therapy for Coagulation Factor Deficiencies. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Wildhagen K, Lutgens E, Loubele S, Cate HT, Nicolaes G. The structure-function relationship of activated protein C. Thromb Haemost 2017; 106:1034-45. [DOI: 10.1160/th11-08-0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/22/2011] [Indexed: 11/05/2022]
Abstract
SummaryProtein C is the central enzyme of the natural anticoagulant pathway and its activated form APC (activated protein C) is able to proteolyse non-active as well as active coagulation factors V and VIII. Proteolysis renders these cofactors inactive, resulting in an attenuation of thrombin formation and overall down-regulation of coagulation. Presences of the APC cofactor, protein S, thrombomodulin, endothelial protein C receptor and a phospholipid surface are important for the expression of anticoagulant APC activity. Notably, APC also has direct cytoprotective effects on cells: APC is able to protect the endothelial barrier function and expresses anti-inflammatory and anti-apoptotic activities. Exact molecular mechanisms have thus far not been completely described but it has been shown that both the protease activated receptor 1 and EPCR are essential for the cytoprotective activity of APC. Recently it was shown that also other receptors like sphingosine 1 phosphate receptor 1, Cd11b/CD18 and tyrosine kinase with immunoglobulin-like and EGFlike domains 2 are likewise important for APC signalling. Mutagenesis studies are being performed to map the various APC functions and interactions onto its 3D structure and to dissect anticoagulant and cytoprotective properties. The results of these studies have provided a wealth of structure-function information. With this review we describe the state-of-the-art of the intricate structure-function relationships of APC, a protein that harbours several important functions for the maintenance of both humoral and tissue homeostasis.Lessons from natural and engineered mutations
Collapse
|
5
|
Minhas N, Xue M, Jackson CJ. Activated protein C binds directly to Tie2: possible beneficial effects on endothelial barrier function. Cell Mol Life Sci 2017; 74:1895-1906. [PMID: 28005151 PMCID: PMC11107519 DOI: 10.1007/s00018-016-2440-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
Abstract
Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan's blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC's protective effects in vascular leakage-related pathologies.
Collapse
Affiliation(s)
- Nikita Minhas
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia
| | - Meilang Xue
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
6
|
Borthwick EMJ, Hill CJ, Rabindranath KS, Maxwell AP, McAuley DF, Blackwood B. High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 2017; 1:CD008075. [PMID: 28141912 PMCID: PMC6464723 DOI: 10.1002/14651858.cd008075.pub3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Severe sepsis and septic shock are leading causes of death in the intensive care unit (ICU), despite advances in the treatment of patients with severe sepsis and septic shock, including early recognition, appropriate treatment with antibiotics and support of organs that may have been affected by the illness. High-volume haemofiltration (HVHF) is a blood purification technique that may improve outcomes in severe sepsis or septic shock. The technique of HVHF has evolved from renal replacement therapies used in the ICU to treat critically ill patients with acute kidney injury (AKI). This review was first published in 2013 and was updated in 2016. OBJECTIVES To investigate whether HVHF improves outcomes in critically ill adults admitted to the intensive care unit with severe sepsis or septic shock. The primary outcome of this systematic review is patient mortality; secondary outcomes include duration of stay, severity of organ dysfunction and adverse events. SEARCH METHODS For this updated version, we extended searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Latin American Caribbean Health Sciences Literature (LILACS), Web of Science and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) to 31 December 2015. The original search was performed in 2011. We also searched trials registers. SELECTION CRITERIA We included randomized controlled trials (RCTs) and quasi-randomized trials comparing HVHF or high-volume haemodiafiltration versus standard or usual dialysis therapy, as well as RCTs and quasi-randomized trials comparing HVHF or high-volume haemodiafiltration versus no similar dialysis therapy. These studies involved adults treated in critical care units. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data and assessed trial quality. We sought additional information from trialists as required. MAIN RESULTS We included four randomized trials involving 200 participants. Owing to small numbers of studies and participants, it was not possible to combine data for all outcomes. Two trials reported 28-day mortality, and one trial reported hospital mortality; in the third trial, the number of deaths stated did not match the quoted mortality rates. The pooled risk ratio (95% confidence interval) for 28-day mortality associated with HVHF was 0.89 (0.60 to 1.32, two trials, 146 participants, low-quality evidence). One study (137 participants, low-quality evidence) reported length of stay in the ICU. Two trials (170 participants, low-quality evidence) reported organ dysfunction, but we could not pool results owing to reporting differences. Three studies (189 participants, low-quality evidence) reported on haemodynamic changes, but we could not pool results owing to reporting differences. Investigators reported no adverse events. Overall, the included studies had low risk of bias. AUTHORS' CONCLUSIONS Investigators reported no adverse effects of HVHF (low-quality evidence). The results of this meta-analysis show that very few studies have been conducted to investigate the use of HVHF in critically ill patients with severe sepsis or septic shock (four studies, 201 participants, low-quality evidence). Researchers should consider additional randomized controlled trials that are large and multi-centred and have clinically relevant outcome measures. The cost-effectiveness of HVHF should also be studied. .
Collapse
Affiliation(s)
- Emma MJ Borthwick
- Belfast City HospitalRegional Nephrology UnitBelfastNorthern IrelandUKBT9 7AB
| | - Christopher J Hill
- Belfast City HospitalRegional Nephrology UnitBelfastNorthern IrelandUKBT9 7AB
| | | | - Alexander P Maxwell
- Belfast City HospitalRegional Nephrology UnitBelfastNorthern IrelandUKBT9 7AB
| | - Danny F McAuley
- Queen's University BelfastCentre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesWellcome‐Wolfson Building97 Lisburn RoadBelfastNorthern IrelandUKBT9 7BL
| | - Bronagh Blackwood
- Queen's University BelfastCentre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesWellcome‐Wolfson Building97 Lisburn RoadBelfastNorthern IrelandUKBT9 7BL
| | | |
Collapse
|
7
|
Gharib SA, Mar D, Bomsztyk K, Denisenko O, Dhanireddy S, Liles WC, Altemeier WA. SYSTEM-WIDE MAPPING OF ACTIVATED CIRCUITRY IN EXPERIMENTAL SYSTEMIC INFLAMMATORY RESPONSE SYNDROME. Shock 2016; 45:148-56. [PMID: 26536201 PMCID: PMC4715796 DOI: 10.1097/shk.0000000000000507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sepsis-induced multiple organ dysfunction syndrome (MODS) is a major cause of morbidity and mortality in critically ill patients and remains impervious to most therapeutic interventions. We utilized a clinically relevant murine model of systemic inflammatory response syndrome (SIRS) during early MODS induced by ventilator-associated pneumonia to systematically delineate pathways dysregulated in lung, liver, and kidney. We focused on processes commonly activated across at-risk organs and constructed an SIRS-associated network based on connectivity among the gene members of these functionally coherent pathways. Our analyses led to the identification of several putative drivers of early MODS whose expression was regulated by epidermal growth factor receptor. Our unbiased, integrative method is a promising approach to unravel mechanisms in system-wide disorders afflicting multiple compartments such as sepsis-induced MODS, and identify putative therapeutic targets.
Collapse
Affiliation(s)
- Sina A. Gharib
- Computational Medicine Core, University of Washington, Seattle WA
- Center for Lung Biology, University of Washington, Seattle WA
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle WA
- Department of Medicine, University of Washington, Seattle WA
| | - Daniel Mar
- Department of Medicine, University of Washington, Seattle WA
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle WA
| | - Oleg Denisenko
- Department of Medicine, University of Washington, Seattle WA
| | | | - W. Conrad Liles
- Center for Lung Biology, University of Washington, Seattle WA
- Department of Medicine, University of Washington, Seattle WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington, Seattle WA
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle WA
- Department of Medicine, University of Washington, Seattle WA
| |
Collapse
|
8
|
Eliwan HO, Watson RWG, Aslam S, Regan I, Philbin B, O'Hare FM, O'Neill A, Preston R, Blanco A, Grant T, Nolan B, Smith O, Molloy EJ. Neonatal brain injury and systemic inflammation: modulation by activated protein C ex vivo. Clin Exp Immunol 2015; 179:477-84. [PMID: 25204207 DOI: 10.1111/cei.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 01/04/2023] Open
Abstract
Infection and inflammation can be antecedents of neonatal encephalopathy (NE) and increase the risk of neurological sequelae. Activated protein C (APC) has anti-coagulant and anti-inflammatory effects and provides neuroprotection in brain and spinal cord injury. We examined neutrophil and monocyte responses to lipopolysaccharide (LPS) in infants with NE compared with healthy adult and neonatal controls, and also studied the effect of APC. Whole blood was incubated with LPS and APC and Toll-like receptor (TLR)-4 (LPS recognition), CD11b expression (activation) and intracellular reactive oxygen intermediate (ROI; function) release from neutrophils and monocytes was examined by flow cytometry serially from days 1 to 7. We found a significant increase in neutrophil ROI in infants with NE on day 3 following LPS compared to neonatal controls and this augmented response was reduced significantly by APC. Neutrophil and monocyte CD11b expression was increased significantly on day 1 in infants with NE compared to neonatal controls. LPS-induced neutrophil TLR-4 expression was increased significantly in infants with NE on days 3 and 7 and was reduced by APC. LPS-induced monocyte TLR-4 was increased significantly in infants with NE on day 7. Neutrophil and monocyte activation and production of ROIs may mediate tissue damage in infants with NE. APC modified LPS responses in infants with NE. APC may reduce the inflammatory responses in NE and may ameliorate multi-organ dysfunction. Further study of the immunomodulatory effects of protein C may be warranted using mutant forms with decreased bleeding potential.
Collapse
Affiliation(s)
- H O Eliwan
- Paediatrics, National Maternity Hospital, Dublin, Ireland; UCD School of Medicine and Medical Science and Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; National Children Research Centre, Dublin, Ireland; Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsalik EL, Langley RJ, Dinwiddie DL, Miller NA, Yoo B, van Velkinburgh JC, Smith LD, Thiffault I, Jaehne AK, Valente AM, Henao R, Yuan X, Glickman SW, Rice BJ, McClain MT, Carin L, Corey GR, Ginsburg GS, Cairns CB, Otero RM, Fowler VG, Rivers EP, Woods CW, Kingsmore SF. An integrated transcriptome and expressed variant analysis of sepsis survival and death. Genome Med 2014; 6:111. [PMID: 25538794 PMCID: PMC4274761 DOI: 10.1186/s13073-014-0111-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Background Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality. Methods The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes. Results The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology. Conclusions The activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies. Trial registration ClinicalTrials.gov NCT00258869. Registered on 23 November 2005. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0111-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ephraim L Tsalik
- Emergency Medicine Service, Durham Veterans Affairs Medical Center, Durham, North Carolina 27705 USA ; Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Raymond J Langley
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Immunology, Lovelace Respiratory Research Institute, Albuquerque, NM 87108 USA
| | - Darrell L Dinwiddie
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Pediatrics, Center for Translational Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| | - Neil A Miller
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Byunggil Yoo
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | | | - Laurie D Smith
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Isabella Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospitals and Clinic, Kansas City, MO 64108 USA
| | - Anja K Jaehne
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA
| | - Ashlee M Valente
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Ricardo Henao
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - Xin Yuan
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - Seth W Glickman
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Brandon J Rice
- National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Micah T McClain
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lawrence Carin
- Department of Electrical & Computer Engineering, Duke University, Durham, NC 27710 USA
| | - G Ralph Corey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Geoffrey S Ginsburg
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Charles B Cairns
- Department of Emergency Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Ronny M Otero
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA ; Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Vance G Fowler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Emanuel P Rivers
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan 48202 USA
| | - Christopher W Woods
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA ; Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Stephen F Kingsmore
- National Center for Genome Resources, Santa Fe, NM 87505 USA ; Department of Pediatrics, Center for Translational Sciences, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
10
|
de Boer JD, Kager LM, Roelofs JJTH, Meijers JCM, de Boer OJ, Weiler H, Isermann B, van 't Veer C, van der Poll T. Overexpression of activated protein C hampers bacterial dissemination during pneumococcal pneumonia. BMC Infect Dis 2014; 14:559. [PMID: 25366058 PMCID: PMC4228088 DOI: 10.1186/s12879-014-0559-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022] Open
Abstract
Background During pneumonia, inflammation and coagulation are activated as part of anti-bacterial host defense. Activated protein C (APC) has anticoagulant and anti-inflammatory properties and until recently was a registered drug for the treatment of severe sepsis. Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Methods We aimed to investigate the effect of high APC levels during experimental pneumococcal pneumonia. Wild type (WT) and APC overexpressing (APChigh)-mice were intranasally infected with S. pneumoniae and sacrificed after 6, 24 or 48 hours, or followed in a survival study. Results In comparison to WT mice, APChigh-mice showed decreased bacterial dissemination to liver and spleen, while no differences in bacterial loads were detected at the primary site of infection. Although no differences in the extent of lung histopathology were seen, APChigh-mice showed a significantly decreased recruitment of neutrophils into lung tissue and bronchoalveolar lavage fluid. Activation of coagulation was not altered in APChigh-mice. No differences in survival were observed between WT and APChigh-mice (P =0.06). Conclusion APC overexpression improves host defense during experimental pneumococcal pneumonia. This knowledge may add to a better understanding of the regulation of the inflammatory and procoagulant responses during severe Gram-positive pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0559-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Daan de Boer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| | - Liesbeth M Kager
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Department Plasma Proteins, Sanquin, Amsterdam, The Netherlands.
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA.
| | - Berend Isermann
- Department of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany.
| | - Cornelis van 't Veer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands. .,Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands. .,Division of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Wong VM, Bienzle D, Hayes MA, Taylor P, Wood RD. Purification of protein C from canine plasma. BMC Vet Res 2014; 10:251. [PMID: 25326145 PMCID: PMC4212105 DOI: 10.1186/s12917-014-0251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background In order to characterize the functional properties of canine protein C (CnPC), the zymogen needs to be purified from plasma. The goals of this study were (1) to purify protein C from fresh frozen canine plasma by barium chloride and ammonium sulphate precipitation, followed by immunoaffinity chromatography using a monoclonal mouse antibody against human protein C (HPC4) and (2) to characterize this protein’s structure. Results The purified protein contained three glycosylated forms of a heavy chain (~49 kDa) and a glycosylated light chain (~25 kDa). Tandem mass spectra of the peptides obtained following trypsin digestion and liquid chromatography identified this protein to be protein C (vitamin K-dependent protein C precursor, gi|62078422) with 100% probability. Three glycosylation sites (Asn139, Asn202, and Asn350) were identified by detection of peptides containing an N-linked glycosylation consensus sequon with a 3-dalton increase in mass following incubation of the protein with PNGase F in 18O-labeled water. Following incubation with Protac (a specific activator of protein C), the heavy chain showed a slight decrease in molecular size and amidolytic activity measured by a synthetic chromogenic substrate containing an amide bond [H-D-(γ-carbobenzoxyl)-lysyl-prolyl-arginine-paranitroanilide diacetate salt]. The amidolytic activity was increased by ~303-fold in the final protein preparation compared to that in plasma. The purified protein showed concentration-dependent anti-factor V and anti-factor VIII activities in canine plasma in coagulometric factor assays. Conclusions These studies showed that CnPC could be purified from plasma using HPC4 and that this protein showed amidolytic and anti-coagulant properties upon activation with Protac.
Collapse
|
12
|
Abstract
The clinical management of neutropenic infections represents a great diagnostic and therapeutic challenge. Established sepsis criteria only partially reflect the neutropenic setting. Diagnostic procedures are frequently impaired by thrombocytopenia and progressive respiratory insufficiency. Increased tendency to bleed, engraftment, and fulminant progression represent major therapeutic challenges. Thus, crucial for the diagnosis and therapy of neutropenic sepsis are clear and well-communicated algorithms, rapid action, and close collaboration between oncologists and intensivists.
Collapse
|
13
|
Borthwick EMJ, Hill CJ, Rabindranath KS, Maxwell AP, McAuley DF, Blackwood B. High-volume haemofiltration for sepsis. Cochrane Database Syst Rev 2013:CD008075. [PMID: 23440825 DOI: 10.1002/14651858.cd008075.pub2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Severe sepsis and septic shock are leading causes of death in the intensive care unit (ICU). This is despite advances in the management of patients with severe sepsis and septic shock including early recognition, source control, timely and appropriate administration of antimicrobial agents, and goal directed haemodynamic, ventilatory and metabolic therapies. High-volume haemofiltration (HVHF) is a blood purification technique which may improve outcomes in critically ill patients with severe sepsis or septic shock. The technique of HVHF has evolved from renal replacement therapies used to treat acute kidney injury (AKI) in critically ill patients in the ICU. OBJECTIVES This review assessed whether HVHF improves clinical outcome in adult critically ill patients with sepsis in an ICU setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2011, Issue 7); MEDLINE (1990 to August 2011), EMBASE (1990 to August 2011); LILACS (1982 to August 2011), Web of Science (1990 to August 2011), CINAHL (1982 to August 2011) and specific websites. SELECTION CRITERIA We included randomized controlled trials (RCTs) and quasi-randomized trials comparing HVHF or high-volume haemodiafiltration to standard or usual dialysis therapy; and RCTs and quasi-randomized trials comparing HVHF or high-volume haemodiafiltration to no similar dialysis therapy. The studies involved adults in critical care units. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data and assessed trial quality. We sought additional information as required from trialists. MAIN RESULTS We included three randomized trials involving 64 participants. Due to the small number of studies and participants, it was not possible to combine data or perform sub-group analyses. One trial reported ICU and 28-day mortality, one trial reported hospital mortality and in the third, the number of deaths stated did not match the quoted mortality rates. No trials reported length of stay in ICU or hospital and one reported organ dysfunction. No adverse events were reported. Overall, the included studies had a low risk of bias. AUTHORS' CONCLUSIONS There were no adverse effects of HVHF reported.There is insufficient evidence to recommend the use of HVHF in critically ill patients with severe sepsis and or septic shock except as interventions being investigated in the setting of a randomized clinical trial. These trials should be large, multi-centred and have clinically relevant outcome measures. Financial implications should also be assessed.
Collapse
|
14
|
Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev 2012; 12:CD004388. [PMID: 23235609 PMCID: PMC6464614 DOI: 10.1002/14651858.cd004388.pub6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sepsis is a common and frequently fatal condition. Human recombinant activated protein C (APC) has been introduced to reduce the high risk of death associated with severe sepsis or septic shock. This systematic review is an update of a Cochrane review originally published in 2007. OBJECTIVES We assessed the benefits and harms of APC for patients with severe sepsis or septic shock. SEARCH METHODS We searched CENTRAL (The Cochrane Library 2012, Issue 6); MEDLINE (2010 to June 2012); EMBASE (2010 to June 2012); BIOSIS (1965 to June 2012); CINAHL (1982 to June 2012) and LILACS (1982 to June 2012). There was no language restriction. SELECTION CRITERIA We included randomized clinical trials assessing the effects of APC for severe sepsis or septic shock in adults and children. We excluded studies on neonates. We considered all-cause mortality at day 28 and at the end of study follow up, and hospital mortality as the primary outcomes. DATA COLLECTION AND ANALYSIS We independently performed trial selection, risk of bias assessment, and data extraction in duplicate. We estimated relative risks (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic. We used a random-effects model. MAIN RESULTS We identified one new randomized clinical trial in this update which includes six randomized clinical trials involving 6781 participants in total, five randomized clinical trials in adult (N = 6307) and one randomized clinical trial in paediatric (N = 474) participants. All trials had high risk of bias and were sponsored by the pharmaceutical industry. APC compared with placebo did not significantly affect all-cause mortality at day 28 compared with placebo (780/3435 (22.7%) versus 767/3346 (22.9%); RR 1.00, 95% confidence interval (CI) 0.86 to 1.16; I(2) = 56%). APC did not significantly affect in-hospital mortality (393/1767 (22.2%) versus 379/1710 (22.1%); RR 1.01, 95% CI 0.87 to 1.16; I(2) = 20%). APC was associated with an increased risk of serious bleeding (113/3424 (3.3%) versus 74/3343 (2.2%); RR 1.45, 95% CI 1.08 to 1.94; I(2) = 0%). APC did not significantly affect serious adverse events (463/3334 (13.9%) versus 439/3302 (13.2%); RR 1.04, 95% CI 0.92 to 1.18; I(2) = 0%). Trial sequential analyses showed that more trials do not seem to be needed for reliable conclusions regarding these outcomes. AUTHORS' CONCLUSIONS This updated review found no evidence suggesting that APC should be used for treating patients with severe sepsis or septic shock. APC seems to be associated with a higher risk of bleeding. The drug company behind APC, Eli Lilly, has announced the discontinuation of all ongoing clinical trials using this drug for treating patients with severe sepsis or septic shock. APC should not be used for sepsis or septic shock outside randomized clinical trials.
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Quito, Ecuador.
| | | | | | | | | |
Collapse
|
15
|
Schneider A, Albertsmeier M, Böttiger BW, Teschendorf P. [Post-resuscitation syndrome. Role of inflammation after cardiac arrest]. Anaesthesist 2012; 61:424-36. [PMID: 22576987 DOI: 10.1007/s00101-012-2002-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiac arrest with subsequent cardiopulmonary resuscitation causes an ischemic reperfusion syndrome of the whole body resulting in localized damage of particularly sensitive organs, such as the brain and heart, together with systemic sequelae. The main factor is a generalized activation of inflammatory reactions resulting in symptoms similar in many aspects to those of sepsis. Systemic inflammation strengthens organ damage due to disorders in the macrocirculation and microcirculation due to metabolic imbalance as well as the effects of direct leukocyte transmitted tissue destruction. The current article gives an overview on the role of inflammation following cardiac arrest and presents in detail the underlying mechanisms, the clinical symptoms and possible therapeutic approaches.
Collapse
Affiliation(s)
- A Schneider
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Köln, Kerpener Str. 62, 50937 Köln, Deutschland.
| | | | | | | |
Collapse
|
16
|
Osuchowski MF, Craciun F, Weixelbaumer KM, Duffy ER, Remick DG. Sepsis chronically in MARS: systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4648-56. [PMID: 23008446 DOI: 10.4049/jimmunol.1201806] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The paradigm of systemic inflammatory response syndrome-to-compensatory anti-inflammatory response syndrome transition implies that hyperinflammation triggers acute sepsis mortality, whereas hypoinflammation (release of anti-inflammatory cytokines) in late sepsis induces chronic deaths. However, the exact humoral inflammatory mechanisms attributable to sepsis outcomes remain elusive. In the first part of this study, we characterized the systemic dynamics of the chronic inflammation in dying (DIE) and surviving (SUR) mice suffering from cecal ligation and puncture sepsis (days 6-28). In the second part, we combined the current chronic and previous acute/chronic sepsis data to compare the outcome-dependent inflammatory signatures between these two phases. A composite cytokine score (CCS) was calculated to compare global inflammatory responses. Mice were never sacrificed but were sampled daily (20 μl) for blood. In the first part of the study, parameters from chronic DIE mice were clustered into the 72, 48, and 24 h before death time points and compared with SUR of the same post-cecal ligation and puncture day. Cytokine increases were mixed and never preceded chronic deaths earlier than 48 h (3- to 180-fold increase). CCS demonstrated simultaneous and similar upregulation of proinflammatory and anti-inflammatory compartments at 24 h before chronic death (DIE 80- and 50-fold higher versus SUR). In the second part of the study, cytokine ratios across sepsis phases/outcomes indicated steady proinflammatory versus anti-inflammatory balance. CCS showed the inflammatory response in chronic DIE was 5-fold lower than acute DIE mice, but identical to acute SUR. The systemic mixed anti-inflammatory response syndrome-like pattern (concurrent release of proinflammatory and anti-inflammatory cytokines) occurs irrespective of the sepsis phase, response magnitude, and/or outcome. Although different in magnitude, neither acute nor chronic septic mortality is associated with a predominating proinflammatory and/or anti-inflammatory signature in the blood.
Collapse
Affiliation(s)
- Marcin F Osuchowski
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
17
|
Gatheral T, Reed DM, Moreno L, Gough PJ, Votta BJ, Sehon CA, Rickard DJ, Bertin J, Lim E, Nicholson AG, Mitchell JA. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses. PLoS One 2012; 7:e42386. [PMID: 22870324 PMCID: PMC3411636 DOI: 10.1371/journal.pone.0042386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/04/2012] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.
Collapse
Affiliation(s)
- Timothy Gatheral
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Daniel M. Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Laura Moreno
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Bart J. Votta
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Clark A. Sehon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - David J. Rickard
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Eric Lim
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew G. Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Institute of Cardiovascular Medicine and Science (ICMS), London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Kubier A, O'Brien M. Endogenous Anticoagulants. Top Companion Anim Med 2012; 27:81-7. [DOI: 10.1053/j.tcam.2012.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/21/2022]
|
19
|
Abstract
BACKGROUND Sepsis is a common problem in preterm and term infants. The incidence of neonatal sepsis has declined, but mortality remains high. Recombinant human activated protein C (rhAPC) possess a broad spectrum of activity modulating coagulation and inflammation. In septic adults it may reduce mortality, but no significant benefit has been reported in children with severe sepsis. OBJECTIVES To determine whether treatment with rhAPC reduces mortality and/or morbidity in neonatal sepsis. SEARCH METHODS For this update searches were carried out in May 2011 of the Cochrane Central Register of Controlled Trials (The Cochrane Library), MEDLINE, EMBASE, CINAHL, and abstracts of annual meetings of the Pediatric Academic Societies. Doctoral dissertations, theses and the Science Citation Index for articles on activated protein C were searched. No language restriction was applied. SELECTION CRITERIA Randomized or quasi-randomized trials, assessing the efficacy of rhAPC compared to placebo or no intervention as an adjunct to antibiotic therapy of suspected or confirmed severe sepsis in term and preterm infants less than 28 days old. Eligible trials should report at least one of the following outcomes: mortality during initial hospital stay, neurodevelopmental assessment at two years of age or later, length of hospital stay, duration of ventilation, chronic lung disease, periventricular leukomalacia, intraventricular haemorrhage, necrotizing enterocolitis, bleeding, and any other adverse events. DATA COLLECTION AND ANALYSIS Review authors were to independently evaluate the articles for inclusion criteria and quality, and abstract information for the outcomes of interest. Differences were to be resolved by consensus. The statistical methods were to include relative risk, risk difference, number needed to treat to benefit or number needed to treat to harm for dichotomous and weighed mean difference for continuous outcomes reported with 95% confidence intervals. A fixed effect model was to be used for meta-analysis. Heterogeneity tests, including the I(2) statistic, were to be performed to assess the appropriateness of pooling the data. MAIN RESULTS No eligible trials were identified. In October 2011 rhAPC (Xigris®) was withdrawn from the market by Eli Lilly due to a higher mortality in a trial among adults. Xigris® (DrotAA)( rhAPC) should no longer be used in any age category and the product should be returned to the distributor. AUTHORS' CONCLUSIONS Despite the scientific rationale for its use, there is insufficient data to use rhAPC for the management of severe sepsis in newborn infants. Due to the results among adults with lack of efficacy, an increase in bleeding and resulting withdrawal of rhAPC from the market, neonates should not be treated with rhAPC and further trials should not be conducted.
Collapse
Affiliation(s)
- Ranjit I Kylat
- Section of Neonatology and Developmental Biology, Department of Pediatrics, The University of Arizona, Tucson, Arizona,
| | | |
Collapse
|
20
|
Martí-Carvajal AJ, Solà I, Lathyris D, Cardona AF. Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev 2012:CD004388. [PMID: 22419295 DOI: 10.1002/14651858.cd004388.pub5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sepsis is a common and frequently fatal condition. Human recombinant activated protein C (APC) has been used to reduce the high rate of death by severe sepsis or septic shock. This is an update of a Cochrane review (originally published in 2007 and updated in 2008). OBJECTIVES We assessed the clinical effectiveness and safety of APC for the treatment of patients with severe sepsis or septic shock. SEARCH METHODS For this updated review we searched CENTRAL (The Cochrane Library 2010, Issue 6); MEDLINE (1966 to June 2010); EMBASE (1980 to July 1, 2010); BIOSIS (1965 to July 1, 2010); CINAHL (1982 to 16 June 2010) and LILACS (1982 to 16 June 2010). There was no language restriction. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the effects of APC for severe sepsis in adults and children. We excluded studies on neonates. We considered all-cause mortality at day 28, at the end of study follow up, and hospital mortality as the primary outcomes. DATA COLLECTION AND ANALYSIS We independently performed study selection, risk of bias assessment and data extraction. We estimated relative risks (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic. We used a random-effects model. MAIN RESULTS We identified one new RCT in this update. We included a total of five RCTs involving 5101 participants. For 28-day mortality, APC did not reduce the risk of death in adult participants with severe sepsis (pooled RR 0.97, 95% confidence interval (CI) 0.78 to 1.22; P = 0.82, I(2) = 68%). APC use was associated with an increased risk of bleeding (RR 1.47, 95% CI 1.09 to 2.00; P = 0.01, I(2) = 0%). In paediatric patients, APC did not reduce the risk of death (RR 0.98, 95% CI 0.66 to 1.46; P = 0.93). Although the included trials had no major limitations most of them modified their original completion or recruitment protocols. AUTHORS' CONCLUSIONS This updated review found no evidence suggesting that APC should be used for treating patients with severe sepsis or septic shock. Additionally, APC is associated with a higher risk of bleeding. Unless additional RCTs provide evidence of a treatment effect, policy-makers, clinicians and academics should not promote the use of APC.Warning: On October 25th 2011, the European Medicines Agency issued a press release on the worldwide withdrawal of Xigris (activated protein C / drotrecogin alfa) from the market by Eli Lilly due to lack of beneficial effect on 28-day mortality in the PROWESS-SHOCK study. Furthermore, Eli Lily has announced the discontinuation of all other ongoing clinical trials. The final results of the PROWESS-SHOCK study are expected to be published in 2012. This systematic review will be updated when results of the PROWESS-SHOCK or other trials are published.
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad de Carabobo and Iberoamerican Cochrane Network, Valencia, Edo. Carabobo,Venezuela.
| | | | | | | |
Collapse
|
21
|
Abstract
Sepsis, severe sepsis, and septic shock impose a growing economic burden on health care systems globally. This article first describes the epidemiology of sepsis within the United States and internationally. It then reviews costs associated with sepsis and its management in the United States and internationally, including general cost sources in intensive care, direct costs of sepsis, and indirect costs of the burden of illness imposed by sepsis. Finally, it examines the cost-effectiveness of sepsis interventions, focusing on formal cost-effectiveness analyses of nosocomial sepsis prevention strategies, drotrecogin alfa (activated),and integrated sepsis protocols.
Collapse
|
22
|
de Montmollin E, Annane D. Year in review 2010: Critical Care--Multiple organ dysfunction and sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:236. [PMID: 22146601 PMCID: PMC3388699 DOI: 10.1186/cc10359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes new insights in the pathophysiologic implications of inflammation and microvascular alterations in organ dysfunction, as well as genetic factor contribution, from clinical and experimental studies that were published in 2010 in Critical Care in the fields of multiple organ dysfunction and sepsis. New diagnostic and prognostic markers of organ dysfunction are presented. Evaluations of novel therapeutic strategies, including implementation of international guidelines, modulation of inflammation and coagulation, and prevention of ventilator-induced lung injury and acute kidney injury, are reported. The results of these experimental studies and clinical trials are discussed in the context of the current relevant scientific and clinical background.
Collapse
Affiliation(s)
- Etienne de Montmollin
- Service de Réanimation Polyvalente, Hôpital Raymond Poincaré (AP-HP), Université de Versailles Saint Quentin, 104, bd, Raymond Poincaré, 92380 Garches, France
| | | |
Collapse
|
23
|
Do viral infections mimic bacterial sepsis? The role of microvascular permeability: A review of mechanisms and methods. Antiviral Res 2011; 93:2-15. [PMID: 22068147 DOI: 10.1016/j.antiviral.2011.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022]
Abstract
A dysregulated immune response and functional immunosuppression have been considered the major mechanisms of the bacterial sepsis syndrome. More recently, the loss of endothelial barrier function and resultant microvascular leak have been found to be a key determinant of the pathogenesis of bacterial sepsis. Whether a similar paradigm applies to systemic viral syndromes is not known. Answering this question has far-reaching implications for the development of future anti-viral therapeutic strategies. In this review, we provide an overview of the structure and function of the endothelium and how its barrier integrity is compromised in bacterial sepsis. The various in vitro and in vivo methodologies available to investigate vascular leak are reviewed. Emphasis is placed on the advantages and limitations of cell culture techniques, which represent the most commonly used methods. Within this context, we appraise recent studies of three viruses - hantavirus, human herpes virus 8 and dengue virus - that suggest microvascular leak may play a role in the pathogenesis of these viral infections. We conclude with a discussion of how endothelial barrier breakdown may occur in other viral infections such as H5N1 avian influenza virus.
Collapse
|
24
|
Factor XI-deficient mice display reduced inflammation, coagulopathy, and bacterial growth during listeriosis. Infect Immun 2011; 80:91-9. [PMID: 22006565 DOI: 10.1128/iai.05568-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In mice infected sublethally with Listeria monocytogenes, fibrin is deposited at low levels within hepatic tissue, where it functions protectively by limiting bacterial growth and suppressing hemorrhagic pathology. Here we demonstrate that mice infected with lethal doses of L. monocytogenes produce higher levels of fibrin and display evidence of systemic coagulopathy (i.e., thrombocytopenia, fibrinogen depletion, and elevated levels of thrombin-antithrombin complexes). When the hepatic bacterial burden exceeds 1×10(6) CFU, levels of hepatic fibrin correlate with the bacterial burden, which also correlates with levels of hepatic mRNA encoding the hemostatic enzyme factor XI (FXI). Gene-targeted FXI-deficient mice show significantly improved survival upon challenge with high doses of L. monocytogenes and also display reduced levels of hepatic fibrin, decreased evidence of coagulopathy, and diminished cytokine production (interleukin-6 [IL-6] and IL-10). While fibrin limits the bacterial burden during sublethal listeriosis in wild-type mice, FXI-deficient mice display a significantly improved capacity to restrain the bacterial burden during lethal listeriosis despite their reduced fibrin levels. They also show less evidence of hepatic necrosis. In conjunction with suboptimal antibiotic therapy, FXI-specific monoclonal antibody 14E11 improves survival when administered therapeutically to wild-type mice challenged with high doses of L. monocytogenes. Together, these findings demonstrate the utility of murine listeriosis as a model for dissecting qualitative differences between protective and pathological host responses and reveal novel roles for FXI in exacerbating inflammation and pathogen burden during a lethal bacterial infection.
Collapse
|
25
|
Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F. The coagulopathy in sepsis: significance and implications for treatment. Pediatr Rep 2011; 3:e30. [PMID: 22355515 PMCID: PMC3283198 DOI: 10.4081/pr.2011.e30] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/26/2011] [Indexed: 01/19/2023] Open
Abstract
Sepsis related coagulopathy ranges from mild laboratory alterations up to severe disseminated intravascular coagulation (DIC). There is evidence that DIC is involved in the pathogenesis of microvascular dysfunction contributing to organ failure. Additionally, the systemic activation of coagulation, by consuming platelets and coagulation factors, may cause bleeding. Thrombin generation via the tissue factor/factor VIIa route, contemporary depression of antithrombin and protein C anticoagulant systems, as well as impaired fibrin degradation, due to high circulating levels of PAI-1, contribute to enhanced intravascular fibrin deposition. This deranged coagulopathy is an independent predictor of clinical outcome in patients with severe sepsis. Innovative supportive strategies aiming at the inhibition of coagulation activation should comprise inhibition of tissue factor-mediated activation or restoration of physiological anticoagulant pathways, as the administration of recombinant human activated protein C or concentrate. In spite of some promising initial studies, additional trials are needed to define their clinical effectiveness in adults and children with severe sepsis.
Collapse
Affiliation(s)
- Paola Saracco
- Hematology Unit, Department of Pediatrics, University of Turin
| | | | | | | | | | | |
Collapse
|
26
|
Mejaddam AY, Velmahos GC. Randomized controlled trials affecting polytrauma care. Eur J Trauma Emerg Surg 2011; 38:211-21. [PMID: 26815952 DOI: 10.1007/s00068-011-0141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
Trauma remains the leading cause of death in the world in patients under 45 years of age. The evaluation, resuscitation, and appropriate management of polytraumatized patients are paramount to successful outcomes. The advance of evidence-based medicine has had a powerful and positive impact on trauma care, even though the nature of many traumatic injuries lends itself poorly to study in a randomized fashion. During the initial management of bleeding patients, hypotensive resuscitation prior to surgical control has found strong support in the literature, and its use has been adopted by many surgeons. Head injury is the most common cause of traumatic death, and while high-level evidence is limited, adherence to management guidelines is associated with improved outcomes. For abdominal trauma, the concept of damage control surgery, while popular, has never been put to the test in a randomized controlled trial. Numerous randomized trials in the field of critical care have affected the management of severely injured patients, including intensive insulin therapy and low tidal volume ventilation in patients with compromised respiratory function. Finally, a multidisciplinary approach to trauma care in designated trauma centers allows for improved outcomes in polytraumatized patients.
Collapse
Affiliation(s)
- A Y Mejaddam
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital and Harvard Medical School, 165 Cambridge Street, Suite 810, Boston, MA, 02114, USA
| | - G C Velmahos
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital and Harvard Medical School, 165 Cambridge Street, Suite 810, Boston, MA, 02114, USA.
| |
Collapse
|