1
|
Lee YC, Li YC, Lin KC, Yao G, Chang YJ, Lee YY, Liu CT, Hsu WL, Wu YH, Chu HT, Liu TX, Yeh YP, Chang C. Effects of robotic priming of bilateral arm training, mirror therapy, and impairment-oriented training on sensorimotor and daily functions in patients with chronic stroke: study protocol of a single-blind, randomized controlled trial. Trials 2022; 23:566. [PMID: 35841056 PMCID: PMC9287972 DOI: 10.1186/s13063-022-06498-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Combining robotic therapy (RT) with task-oriented therapy is an emerging strategy to facilitate motor relearning in stroke rehabilitation. This study protocol will compare novel rehabilitation regimens that use bilateral RT as a priming technique to augment two task-oriented therapies: mirror therapy (MT) and bilateral arm training (BAT) with a control intervention: RT combined with impairment-oriented training (IOT). METHODS This single-blind, randomized, comparative efficacy study will involve 96 participants with chronic stroke. Participants will be randomized into bilateral RT+MT, bilateral RT+BAT, and bilateral RT+IOT groups and receive 18 intervention sessions (90 min/day, 3 d/week for 6 weeks). The outcomes will include the Fugl-Meyer Assessment, Stroke Impact Scale version 3.0, Medical Research Council scale, Revised Nottingham Sensory Assessment, ABILHAND Questionnaire, and accelerometer and will be assessed at baseline, after treatment, and at the 3-month follow-up. Analysis of covariance and the chi-square automatic interaction detector method will be used to examine the comparative efficacy and predictors of outcome, respectively, after bilateral RT+MT, bilateral RT+BAT, and bilateral RT+IOT. DISCUSSION The findings are expected to contribute to the research and development of robotic devices, to update the evidence-based protocols in postacute stroke care programs, and to investigate the use of accelerometers for monitoring activity level in real-life situations, which may in turn promote home-based practice by the patients and their caregivers. Directions for further studies and empirical implications for clinical practice will be further discussed in upper-extremity rehabilitation after stroke. TRIAL REGISTRATION This trial was registered December 12, 2018, at www. CLINICALTRIALS gov ( NCT03773653 ).
Collapse
Affiliation(s)
- Yi-Chen Lee
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| | - Yi-Chun Li
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan. .,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.
| | - Grace Yao
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ya-Ju Chang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ting Liu
- Department of Rehabilitation, Taipei Tzu Chi Hospital, the Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - Wan-Ling Hsu
- Department of Rehabilitation, Taipei Tzu Chi Hospital, the Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - Yi-Hsuan Wu
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ho-Ta Chu
- Rehabilitation Department, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Ting-Xuan Liu
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| | - Yi-Ping Yeh
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| | - Chieh Chang
- School of Occupational Therapy, College of Medicine, National Taiwan University, 17, F4, Xu Zhou Road, Taipei, Taiwan
| |
Collapse
|
2
|
Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Finch T, Alvarado N, Ternent L, Fernandez-Garcia C, Aird L, Andole S, Cohen DL, Dawson J, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Turner DL, Vale L, Wilkes S, Shaw L. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technol Assess 2020; 24:1-232. [PMID: 33140719 PMCID: PMC7682262 DOI: 10.3310/hta24540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Loss of arm function is common after stroke. Robot-assisted training may improve arm outcomes. OBJECTIVE The objectives were to determine the clinical effectiveness and cost-effectiveness of robot-assisted training, compared with an enhanced upper limb therapy programme and with usual care. DESIGN This was a pragmatic, observer-blind, multicentre randomised controlled trial with embedded health economic and process evaluations. SETTING The trial was set in four NHS trial centres. PARTICIPANTS Patients with moderate or severe upper limb functional limitation, between 1 week and 5 years following first stroke, were recruited. INTERVENTIONS Robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme comprising repetitive functional task practice, and usual care. MAIN OUTCOME MEASURES The primary outcome was upper limb functional recovery 'success' (assessed using the Action Research Arm Test) at 3 months. Secondary outcomes at 3 and 6 months were the Action Research Arm Test results, upper limb impairment (measured using the Fugl-Meyer Assessment), activities of daily living (measured using the Barthel Activities of Daily Living Index), quality of life (measured using the Stroke Impact Scale), resource use costs and quality-adjusted life-years. RESULTS A total of 770 participants were randomised (robot-assisted training, n = 257; enhanced upper limb therapy, n = 259; usual care, n = 254). Upper limb functional recovery 'success' was achieved in the robot-assisted training [103/232 (44%)], enhanced upper limb therapy [118/234 (50%)] and usual care groups [85/203 (42%)]. These differences were not statistically significant; the adjusted odds ratios were as follows: robot-assisted training versus usual care, 1.2 (98.33% confidence interval 0.7 to 2.0); enhanced upper limb therapy versus usual care, 1.5 (98.33% confidence interval 0.9 to 2.5); and robot-assisted training versus enhanced upper limb therapy, 0.8 (98.33% confidence interval 0.5 to 1.3). The robot-assisted training group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale) than the usual care group at 3 and 6 months. The enhanced upper limb therapy group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale), better mobility (as measured by the Stroke Impact Scale mobility domain) and better performance in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the usual care group, at 3 months. The robot-assisted training group performed less well in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the enhanced upper limb therapy group at 3 months. No other differences were clinically important and statistically significant. Participants found the robot-assisted training and the enhanced upper limb therapy group programmes acceptable. Neither intervention, as provided in this trial, was cost-effective at current National Institute for Health and Care Excellence willingness-to-pay thresholds for a quality-adjusted life-year. CONCLUSIONS Robot-assisted training did not improve upper limb function compared with usual care. Although robot-assisted training improved upper limb impairment, this did not translate into improvements in other outcomes. Enhanced upper limb therapy resulted in potentially important improvements on upper limb impairment, in performance of activities of daily living, and in mobility. Neither intervention was cost-effective. FUTURE WORK Further research is needed to find ways to translate the improvements in upper limb impairment seen with robot-assisted training into improvements in upper limb function and activities of daily living. Innovations to make rehabilitation programmes more cost-effective are required. LIMITATIONS Pragmatic inclusion criteria led to the recruitment of some participants with little prospect of recovery. The attrition rate was higher in the usual care group than in the robot-assisted training or enhanced upper limb therapy groups, and differential attrition is a potential source of bias. Obtaining accurate information about the usual care that participants were receiving was a challenge. TRIAL REGISTRATION Current Controlled Trials ISRCTN69371850. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 54. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Helen Rodgers
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Tyneside, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Bosomworth
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hermano I Krebs
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederike van Wijck
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Denise Howel
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nina Wilson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracy Finch
- Nursing, Midwifery and Health, Northumbria University, Newcastle upon Tyne, UK
| | | | - Laura Ternent
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Lydia Aird
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Tyneside, UK
| | - Sreeman Andole
- Barking, Havering and Redbridge University Hospitals NHS Trust, Romford, UK
| | - David L Cohen
- London North West University Healthcare NHS Trust, London, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gary A Ford
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Francis
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Steven Hogg
- Lay investigator (contact Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK)
| | | | - Christopher I Price
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Tyneside, UK
| | - Duncan L Turner
- School of Health, Sport and Bioscience, University of East London, London, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Scott Wilkes
- School of Medicine, University of Sunderland, Sunderland, UK
| | - Lisa Shaw
- Stroke Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Raghavan P, Bilaloglu S, Ali SZ, Jin X, Aluru V, Buckley MC, Tang A, Yousefi A, Stone J, Agrawal SK, Lu Y. The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis. Neurorehabil Neural Repair 2020; 34:134-147. [PMID: 31959040 DOI: 10.1177/1545968319887685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background. High-intensity repetitive training is challenging to provide poststroke. Robotic approaches can facilitate such training by unweighting the limb and/or by improving trajectory control, but the extent to which these types of assistance are necessary is not known. Objective. The purpose of this study was to examine the extent to which robotic path assistance and/or weight support facilitate repetitive 3D movements in high functioning and low functioning subjects with poststroke arm motor impairment relative to healthy controls. Methods. Seven healthy controls and 18 subjects with chronic poststroke right-sided hemiparesis performed 300 repetitions of a 3D circle-drawing task using a 3D Cable-driven Arm Exoskeleton (CAREX) robot. Subjects performed 100 repetitions each with path assistance alone, weight support alone, and path assistance plus weight support in a random order over a single session. Kinematic data from the task were used to compute the normalized error and speed as well as the speed-error relationship. Results. Low functioning stroke subjects (Fugl-Meyer Scale score = 16.6 ± 6.5) showed the lowest error with path assistance plus weight support, whereas high functioning stroke subjects (Fugl-Meyer Scale score = 59.6 ± 6.8) moved faster with path assistance alone. When both speed and error were considered together, low functioning subjects significantly reduced their error and increased their speed but showed no difference across the robotic conditions. Conclusions. Robotic assistance can facilitate repetitive task performance in individuals with severe arm motor impairment, but path assistance provides little advantage over weight support alone. Future studies focusing on antigravity arm movement control are warranted poststroke.
Collapse
Affiliation(s)
- Preeti Raghavan
- New York University, New York, NY, USA.,Johns Hopkins University, Baltimore, MD, USA
| | | | - Syed Zain Ali
- New York University, New York, NY, USA.,NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Xin Jin
- Columbia University, New York, NY, USA
| | | | - Megan C Buckley
- New York University, New York, NY, USA.,NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | | | | | | | | | - Ying Lu
- New York University, New York, NY, USA
| |
Collapse
|
4
|
Wang H, Arceo R, Chen S, Ding L, Jia J, Yao J. Effectiveness of interventions to improve hand motor function in individuals with moderate to severe stroke: a systematic review protocol. BMJ Open 2019; 9:e032413. [PMID: 31562163 PMCID: PMC6773351 DOI: 10.1136/bmjopen-2019-032413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The human hand is extremely involved in our daily lives. However, the rehabilitation of hand function after stroke can be rather difficult due to the complexity of hand structure and function, as well as neural basis that supports hand function. Specifically, in individuals with moderate to severe impairment following a stroke, previous evidence for effective treatments that recover hand function in this population is limited, and thus has never been reviewed. With the progress of rehabilitation science and tool development, results from more and more clinical trials are now available, thereby justifying conducting a systematic review. METHODS AND ANALYSIS This systematic review protocol is consistent with the methodology recommended by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols and the Cochrane handbook for systematic reviews of interventions. Electronic searches will be carried out in the PubMed, CINAHL, Physiotherapy Evidence Database and Cochrane Library databases, along with manual searches in the reference lists from included studies and published systematic reviews. The date range parameters used in searching all databases is between January 1999 and January 2019. Randomised controlled trials (RCTs) published in English, with the primary outcome focusing on hand motor function, will be included. Two reviewers will screen all retrieved titles, abstracts and full texts, perform the evaluation of the risk bias and extract all data independently. The risk of bias of the included RCTs will be evaluated by the Cochrane Collaboration's tool. A qualitative synthesis will be provided in text and table, to summarise the main results of the selected publications. A meta-analysis will be considered if there is sufficient homogeneity across outcomes. The quality of the included publications will be evaluated by the Grading of Recommendations Assessment, Development and Evaluation system from the Cochrane Handbook for Systematic Reviews of Interventions. ETHICS AND DISSEMINATION No ethical approval is needed, and the results of this review will be disseminated via peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER CRD42019128285.
Collapse
Affiliation(s)
- Hewei Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Ray Arceo
- Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Shugeng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Yao
- Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Vermillion BC, Dromerick AW, Lee SW. Toward Restoration of Normal Mechanics of Functional Hand Tasks Post-Stroke: Subject-Specific Approach to Reinforce Impaired Muscle Function. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1606-1616. [PMID: 31226079 PMCID: PMC6713235 DOI: 10.1109/tnsre.2019.2924208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Robotic therapy enables mass practice of complex hand movements after stroke, but current devices generally enforce patients to reproduce prescribed kinematic patterns using rigid actuators, without considering individuals' unique impairment characteristics, thereby reducing their efficacy. In this paper, we tested the feasibility of a novel, theory-based "biomimetic" approach to restoring mechanics of complex hand tasks with subject-specific assistance patterns. Twelve chronic stroke survivors performed two simulated functional tasks: hand open and simulated pinch task (distal pad press). Assistance was provided by non-restraining actuators (exotendons) that counteracted 'subject-specific' impairments, identified during unassisted task performance. There was no constraint of movement to predefined patterns. Assistance patterns required to complete tasks were significantly different across subjects, reflecting high variability in impairment and required assistance patterns. For hand open, range of motion and interjoint coordination were significantly improved for severely impaired patients, while movement quality was enhanced (reduction in jerk) for those less impaired. For simulated pinch, subject-specific assistance restored task mechanics before injury, as patients were able to direct fingertip force toward the direction normal to surface; angular deviation reduced from 16.8°±10.4° to 3.7°±2.6°. Notably, electromyography data confirmed that subjects maintained an effort level under assistance comparable to unassisted conditions. The proposed method could lead to a novel paradigm for hand rehabilitation that restores complex task mechanics with a subject-specific assistance reflecting individual impairment characteristics while promoting subjects' participation.
Collapse
|
6
|
Schweighofer N, Wang C, Mottet D, Laffont I, Bakhti K, Reinkensmeyer DJ, Rémy-Néris O. Dissociating motor learning from recovery in exoskeleton training post-stroke. J Neuroeng Rehabil 2018; 15:89. [PMID: 30290806 PMCID: PMC6173922 DOI: 10.1186/s12984-018-0428-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background A large number of robotic or gravity-supporting devices have been developed for rehabilitation of upper extremity post-stroke. Because these devices continuously monitor performance data during training, they could potentially help to develop predictive models of the effects of motor training on recovery. However, during training with such devices, patients must become adept at using the new “tool” of the exoskeleton, including learning the new forces and visuomotor transformations associated with the device. We thus hypothesized that the changes in performance during extensive training with a passive, gravity-supporting, exoskeleton device (the Armeo Spring) will follow an initial fast phase, due to learning to use the device, and a slower phase that corresponds to reduction in overall arm impairment. Of interest was whether these fast and slow processes were related. Methods To test the two-process hypothesis, we used mixed-effect exponential models to identify putative fast and slow changes in smoothness of arm movements during 80 arm reaching tests performed during 20 days of exoskeleton training in 53 individuals with post-acute stroke. Results In line with our hypothesis, we found that double exponential models better fit the changes in smoothness of arm movements than single exponential models. In contrast, single exponential models better fit the data for a group of young healthy control subjects. In addition, in the stroke group, we showed that smoothness correlated with a measure of impairment (the upper extremity Fugl Meyer score - UEFM) at the end, but not at the beginning, of training. Furthermore, the improvement in movement smoothness due to the slow component, but not to the fast component, strongly correlated with the improvement in the UEFM between the beginning and end of training. There was no correlation between the change of peaks due to the fast process and the changes due to the slow process. Finally, the improvement in smoothness due to the slow, but not the fast, component correlated with the number of days since stroke at the onset of training – i.e. participants who started exoskeleton training sooner after stroke improved their smoothness more. Conclusions Our results therefore demonstrate that at least two processes are involved in in performance improvements measured during mechanized training post-stroke. The fast process is consistent with learning to use the exoskeleton, while the slow process independently reflects the reduction in upper extremity impairment.
Collapse
Affiliation(s)
- Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA.
| | - Chunji Wang
- Neuroscience graduate Program, University of Southern California, Los Angeles, USA
| | - Denis Mottet
- STAPS, Université de Montpellier, Euromov, Montpellier, France
| | - Isabelle Laffont
- Montpellier University Hospital, Euromov, IFRH, Montpellier University, Montpellier, France
| | - Karima Bakhti
- Montpellier University Hospital, Euromov, IFRH, Montpellier University, Montpellier, France
| | - David J Reinkensmeyer
- Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, University of California, Irvine, USA
| | - Olivier Rémy-Néris
- Université de Bretagne Occidentale, Centre hospitalier universitaire, LaTIM-INSERM UMR1101, Brest, France
| |
Collapse
|
7
|
Norman SL, McFarland DJ, Miner A, Cramer SC, Wolbrecht ET, Wolpaw JR, Reinkensmeyer DJ. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. J Neural Eng 2018; 15:056026. [PMID: 30063219 PMCID: PMC6158016 DOI: 10.1088/1741-2552/aad724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain-computer interface (BCI) technology is attracting increasing interest as a tool for enhancing recovery of motor function after stroke, yet the optimal way to apply this technology is unknown. Here, we studied the immediate and therapeutic effects of BCI-based training to control pre-movement sensorimotor rhythm (SMR) amplitude on robot-assisted finger extension in people with stroke. APPROACH Eight people with moderate to severe hand impairment due to chronic stroke completed a four-week three-phase protocol during which they practiced finger extension with assistance from the FINGER robotic exoskeleton. In Phase 1, we identified spatiospectral SMR features for each person that correlated with the intent to extend the index and/or middle finger(s). In Phase 2, the participants learned to increase or decrease SMR features given visual feedback, without movement. In Phase 3, the participants were cued to increase or decrease their SMR features, and when successful, were then cued to immediately attempt to extend the finger(s) with robot assistance. MAIN RESULTS Of the four participants that achieved SMR control in Phase 2, three initiated finger extensions with a reduced reaction time after decreasing (versus increasing) pre-movement SMR amplitude during Phase 3. Two also extended at least one of their fingers more forcefully after decreasing pre-movement SMR amplitude. Hand function, measured by the box and block test (BBT), improved by 7.3 ± 7.5 blocks versus 3.5 ± 3.1 blocks in those with and without SMR control, respectively. Higher BBT scores at baseline correlated with a larger change in BBT score. SIGNIFICANCE These results suggest that learning to control person-specific pre-movement SMR features associated with finger extension can improve finger extension ability after stroke for some individuals. These results merit further investigation in a rehabilitation context.
Collapse
Affiliation(s)
- S L Norman
- University of California Irvine, Irvine, CA, United States of America
| | | | | | | | | | | | | |
Collapse
|
8
|
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018; 9:CD006876. [PMID: 30175845 PMCID: PMC6513114 DOI: 10.1002/14651858.cd006876.pub5] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. OBJECTIVES To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. SEARCH METHODS We searched the Cochrane Stroke Group's Trials Register (last searched January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2018, Issue 1), MEDLINE (1950 to January 2018), Embase (1980 to January 2018), CINAHL (1982 to January 2018), AMED (1985 to January 2018), SPORTDiscus (1949 to January 2018), PEDro (searched February 2018), Compendex (1972 to January 2018), and Inspec (1969 to January 2018). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. SELECTION CRITERIA Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, used the GRADE approach to assess the quality of the body of evidence, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. MAIN RESULTS We included 45 trials (involving 1619 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.31, 95% confidence interval (CI) 0.09 to 0.52, P = 0.0005; I² = 59%; 24 studies, 957 participants, high-quality evidence), arm function (SMD 0.32, 95% CI 0.18 to 0.46, P < 0.0001, I² = 36%, 41 studies, 1452 participants, high-quality evidence), and arm muscle strength (SMD 0.46, 95% CI 0.16 to 0.77, P = 0.003, I² = 76%, 23 studies, 826 participants, high-quality evidence). Electromechanical and robot-assisted arm training did not increase the risk of participant dropout (RD 0.00, 95% CI -0.02 to 0.02, P = 0.93, I² = 0%, 45 studies, 1619 participants, high-quality evidence), and adverse events were rare. AUTHORS' CONCLUSIONS People who receive electromechanical and robot-assisted arm training after stroke might improve their activities of daily living, arm function, and arm muscle strength. However, the results must be interpreted with caution although the quality of the evidence was high, because there were variations between the trials in: the intensity, duration, and amount of training; type of treatment; participant characteristics; and measurements used.
Collapse
Affiliation(s)
- Jan Mehrholz
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolFetscherstr. 74DresdenGermany01307
| | - Marcus Pohl
- Helios Klinik Schloss PulsnitzNeurological RehabilitationWittgensteiner Str. 1PulsnitzSaxonyGermany01896
| | - Thomas Platz
- Ernst‐Moritz‐Arndt‐Universität GreifswaldNeurorehabilitation Centre and Spinal Cord Injury Unit, BDH‐Klinik GreifswaldKarl‐Liebknecht‐Ring 26aGreifswaldGermany17491
- Ernst‐Moritz‐Arndt‐UniversitätNeurowissenschaftenGreifswaldGermany
| | - Joachim Kugler
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolFetscherstr. 74DresdenGermany01307
| | - Bernhard Elsner
- Dresden Medical School, Technical University DresdenDepartment of Public HealthFetscherstr. 74DresdenSachsenGermany01307
| | | |
Collapse
|
9
|
Takebayashi T, Takahashi K, Amano S, Uchiyama Y, Gosho M, Domen K, Hachisuka K. Assessment of the Efficacy of ReoGo-J Robotic Training Against Other Rehabilitation Therapies for Upper-Limb Hemiplegia After Stroke: Protocol for a Randomized Controlled Trial. Front Neurol 2018; 9:730. [PMID: 30210446 PMCID: PMC6121101 DOI: 10.3389/fneur.2018.00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Stroke patients experience chronic hemiparesis in their upper extremities leaving negative effects on quality of life. Robotic therapy is one method to recover arm function, but its research is still in its infancy. Research questions of this study is to investigate how to maximize the benefit of robotic therapy using ReoGo-J for arm hemiplegia in chronic stroke patients. Methods: Design of this study is a multi-center parallel group trial following the prospective, randomized, open-label, blinded endpoint (PROBE) study model. Participants and setting will be 120 chronic stroke patients (over 6 months post-stroke) will be randomly allocated to three different rehabilitation protocols. In this study, the control group will receive 20 min of standard rehabilitation (conventional occupational therapy) and 40 min of self-training (i.e., sanding, placing and stretching). The robotic therapy group will receive 20 min of standard rehabilitation and 40 min of robotic therapy using ReoGo®-J device. The combined therapy group will receive 40 min of robotic therapy and 20 min of constraint-induced movement therapy (protocol to improve upper-limb use in ADL suggests). This study employs the Fugl-Meyer Assessment upper-limb score (primary outcome), other arm function measures and the Stroke Impact Scale score will be measured at baseline, 5 and 10 weeks of the treatment phase. In analysis of this study, we use the mixed effects model for repeated measures to compare changes in outcomes between groups at 5 and 10 Weeks. The registration number of this study is UMIN000022509. Conclusions: This study is a feasible, multi-site randomized controlled trial to examine our hypothesis that combined training protocol could maximize the benefit of robotic therapy and best effective therapeutic strategy for patients with upper-limb hemiparesis.
Collapse
Affiliation(s)
- Takashi Takebayashi
- Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| | - Kayoko Takahashi
- Department of Rehabilitation, School of Allied Health Science, Kitasato University, Sagamihara-shi, Japan
| | - Satoru Amano
- Department of Rehabilitation, The Hospital of Hyogo College of Medicine, Nishinomiya-shi, Japan
| | - Yuki Uchiyama
- Department of Rehabilitation, Hyogo College of Medicine, Nishinomiya-shi, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenji Hachisuka
- Kyushu Rosai Hospital, Moji Medical Center, Kita-kyushu-shi, Japan
| |
Collapse
|
10
|
Semprini M, Laffranchi M, Sanguineti V, Avanzino L, De Icco R, De Michieli L, Chiappalone M. Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond. Front Neurol 2018; 9:212. [PMID: 29686644 PMCID: PMC5900382 DOI: 10.3389/fneur.2018.00212] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
Neurological diseases causing motor/cognitive impairments are among the most common causes of adult-onset disability. More than one billion of people are affected worldwide, and this number is expected to increase in upcoming years, because of the rapidly aging population. The frequent lack of complete recovery makes it desirable to develop novel neurorehabilitative treatments, suited to the patients, and better targeting the specific disability. To date, rehabilitation therapy can be aided by the technological support of robotic-based therapy, non-invasive brain stimulation, and neural interfaces. In this perspective, we will review the above methods by referring to the most recent advances in each field. Then, we propose and discuss current and future approaches based on the combination of the above. As pointed out in the recent literature, by combining traditional rehabilitation techniques with neuromodulation, biofeedback recordings and/or novel robotic and wearable assistive devices, several studies have proven it is possible to sensibly improve the amount of recovery with respect to traditional treatments. We will then discuss the possible applied research directions to maximize the outcome of a neurorehabilitation therapy, which should include the personalization of the therapy based on patient and clinician needs and preferences.
Collapse
Affiliation(s)
| | | | - Vittorio Sanguineti
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberto De Icco
- Department of Neurology and Neurorehabilitation, Istituto Neurologico Nazionale C. Mondino, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
11
|
Nam C, Rong W, Li W, Xie Y, Hu X, Zheng Y. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke. Front Neurol 2017; 8:679. [PMID: 29312116 PMCID: PMC5735084 DOI: 10.3389/fneur.2017.00679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 01/03/2023] Open
Abstract
Background Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. Objectives This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. Method A clinical trial with single-group design was conducted on chronic stroke participants (n = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Results Significant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05), the ARAT (P < 0.05), and in the MAS (P < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii (P < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05). Conclusion The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. Trial registration ClinicalTrials.gov. NCT02117089; date of registration: April 10, 2014.
Collapse
Affiliation(s)
- Chingyi Nam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Wei Rong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Waiming Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yunong Xie
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
12
|
McKenzie A, Dodakian L, See J, Le V, Quinlan EB, Bridgford C, Head D, Han VL, Cramer SC. Validity of Robot-Based Assessments of Upper Extremity Function. Arch Phys Med Rehabil 2017; 98:1969-1976.e2. [PMID: 28483654 PMCID: PMC5736001 DOI: 10.1016/j.apmr.2017.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the validity of 5 robot-based assessments of arm motor function poststroke. DESIGN Cross-sectional study. SETTING Outpatient clinical research center. PARTICIPANTS Volunteer sample of participants (N=40; age, >18y; 3-6mo poststroke) with arm motor deficits that had reached a stable plateau. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Clinical standards included the arm motor domain of the Fugl-Meyer Assessment (FMA) and 5 secondary motor outcomes: hand/wrist subsection of the arm motor domain of the FMA, Action Research Arm Test, Box and Block test (BBT), hand motor subscale of the Stroke Impact Scale Version 2.0, and Barthel Index. Robot-based assessments included wrist targeting, finger targeting, finger movement speed, reaction time, and a robotic version of the BBT. Anatomical measures included percent injury to the corticospinal tract (CST) and extent of injury of the hand region of the primary motor cortex obtained from magnetic resonance imaging. RESULTS Participants had moderate to severe impairment (arm motor domain of the FMA scores, 35.6±14.4; range, 13.5-60). Performance on the robot-based tests, including speed (r=.82; P<.0001), wrist targeting (r=.72; P<.0001), and finger targeting (r=.67; P<.0001), correlated significantly with the arm motor domain of the FMA scores. Wrist targeting (r=.57-.82) and finger targeting (r=.49-.68) correlated significantly with all 5 secondary motor outcomes and with percent CST injury. The robotic version of the BBT correlated significantly with the clinical BBT but was less prone to floor effects. Robot-based assessments were comparable to the arm motor domain of the FMA score in relation to percent CST injury and superior in relation to extent of injury to the hand region of the primary motor cortex. CONCLUSIONS The present findings support using a battery of robot-based methods for assessing the upper extremity motor function in participants with chronic stroke.
Collapse
Affiliation(s)
- Alison McKenzie
- Chapman University, Irvine, CA; University of California at Irvine, Irvine, CA.
| | | | - Jill See
- University of California at Irvine, Irvine, CA
| | - Vu Le
- University of California at Irvine, Irvine, CA
| | | | | | | | - Vy L Han
- University of California at Irvine, Irvine, CA
| | | |
Collapse
|
13
|
Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016; 10:442. [PMID: 27679565 PMCID: PMC5020059 DOI: 10.3389/fnhum.2016.00442] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/27/2022] Open
Abstract
Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.
Collapse
Affiliation(s)
- Samar M Hatem
- Physical and Rehabilitation Medicine, Brugmann University HospitalBrussels, Belgium; Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Faculty of Medicine and Pharmacy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit BrusselBrussels, Belgium
| | - Geoffroy Saussez
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Margaux Della Faille
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Vincent Prist
- Physical and Rehabilitation Medicine, Centre Hospitalier de l'Ardenne Libramont, Belgium
| | - Xue Zhang
- Movement Control and Neuroplasticity Research Group, Motor Control Laboratory, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Delphine Dispa
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Physical Medicine and Rehabilitation, Cliniques Universitaires Saint-Luc, Université Catholique de LouvainBrussels, Belgium
| | - Yannick Bleyenheuft
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
14
|
Nycz CJ, Butzer T, Lambercy O, Arata J, Fischer GS, Gassert R. Design and Characterization of a Lightweight and Fully Portable Remote Actuation System for Use With a Hand Exoskeleton. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2528296] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Cho KH, Song WK. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke. TOHOKU J EXP MED 2016; 237:149-55. [PMID: 26460793 DOI: 10.1620/tjem.237.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stroke, as a major risk factor for chronic impairment of upper limb function, can severely restrict the activities of daily living. Recently, robotic devices have been used to enhance the functional upper extremity movement of stroke patients. The purpose of the current study was to assess whether a robot-assisted reach training program using a whole arm manipulator (WAM) could improve upper extremity kinematic performance and functional movement for chronic stroke patients. Using a single-group design, this study followed 10 people with chronic stroke (6 men, 61.5 years; Mini-Mental State Examination score: 27.0; onset duration: 8.9 years). WAM with seven degrees of freedom for the shoulder, elbow, and wrist joints was used during robot-assisted reach exercises. Subjects participated in the training program for 40 minutes per day, 2 times a week, for 4 weeks. The main outcome measures were upper extremity kinematic performance (movement velocity) for three directions and functional movement (Action Research Arm Test). Upper extremity kinematic performance and functional movement measures were performed three times: at baseline, during intervention (at 2 weeks), and post intervention. Upper extremity kinematic performance and functional movement showed improvement after two weeks (P < 0.05) and four weeks (P < 0.05) of training compared to baseline. The findings of the current study demonstrated the positive effects of short-term robot-assisted reach training on upper extremity kinematic performance as well as functional movement in individuals with chronic stroke. In addition, the findings of the current study may provide valuable information for subsequent randomized controlled trials.
Collapse
Affiliation(s)
- Ki Hun Cho
- Department of Rehabilitative and Assistive Technology, Korea National Rehabilitation Research Institute, Korea National Rehabilitation Center
| | | |
Collapse
|
16
|
Bos RA, Haarman CJ, Stortelder T, Nizamis K, Herder JL, Stienen AH, Plettenburg DH. A structured overview of trends and technologies used in dynamic hand orthoses. J Neuroeng Rehabil 2016; 13:62. [PMID: 27357107 PMCID: PMC4928331 DOI: 10.1186/s12984-016-0168-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/10/2016] [Indexed: 11/10/2022] Open
Abstract
The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient's individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.
Collapse
Affiliation(s)
- Ronald A. Bos
- />Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| | - Claudia J.W. Haarman
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Teun Stortelder
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Kostas Nizamis
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
| | - Just L. Herder
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
- />Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| | - Arno H.A. Stienen
- />Department of Biomechanical Engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede The Netherlands
- />Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N. Michigan Ave. Suite 1100, Chicago, 60611 IL USA
| | - Dick H. Plettenburg
- />Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft The Netherlands
| |
Collapse
|
17
|
The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J Med Biol Eng 2016; 36:1-11. [PMID: 27069459 PMCID: PMC4791450 DOI: 10.1007/s40846-016-0115-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023]
Abstract
Most studies and reviews on robots for neurorehabilitation focus on their effectiveness. These studies often report inconsistent results. This and many other reasons limit the credit given to these robots by therapists and patients. Further, neurorehabilitation is often still based on therapists' expertise, with competition among different schools of thought, generating substantial uncertainty about what exactly a neurorehabilitation robot should do. Little attention has been given to ethics. This review adopts a new approach, inspired by Asimov's three laws of robotics and based on the most recent studies in neurorobotics, for proposing new guidelines for designing and using robots for neurorehabilitation. We propose three laws of neurorobotics based on the ethical need for safe and effective robots, the redefinition of their role as therapist helpers, and the need for clear and transparent human-machine interfaces. These laws may allow engineers and clinicians to work closely together on a new generation of neurorobots.
Collapse
|
18
|
Airò Farulla G, Pianu D, Cempini M, Cortese M, Russo LO, Indaco M, Nerino R, Chimienti A, Oddo CM, Vitiello N. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation. SENSORS 2016; 16:208. [PMID: 26861333 PMCID: PMC4801584 DOI: 10.3390/s16020208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements.
Collapse
Affiliation(s)
- Giuseppe Airò Farulla
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Daniele Pianu
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marco Cempini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, Pontedera 56025, Italy.
| | - Mario Cortese
- The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, Pontedera 56025, Italy.
| | - Ludovico O Russo
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marco Indaco
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Roberto Nerino
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Antonio Chimienti
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Calogero M Oddo
- The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, Pontedera 56025, Italy.
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, viale Rinaldo Piaggio 34, Pontedera 56025, Italy.
| |
Collapse
|
19
|
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2015; 2015:CD006876. [PMID: 26559225 PMCID: PMC6465047 DOI: 10.1002/14651858.cd006876.pub4] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke. OBJECTIVES To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy. SEARCH METHODS We searched the Cochrane Stroke Group's Trials Register (last searched February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2015, Issue 3), MEDLINE (1950 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), AMED (1985 to March 2015), SPORTDiscus (1949 to March 2015), PEDro (searched April 2015), Compendex (1972 to March 2015), and Inspec (1969 to March 2015). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices. SELECTION CRITERIA Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables. MAIN RESULTS We included 34 trials (involving 1160 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.37, 95% confidence interval (CI) 0.11 to 0.64, P = 0.005, I² = 62%), arm function (SMD 0.35, 95% CI 0.18 to 0.51, P < 0.0001, I² = 36%), and arm muscle strength (SMD 0.36, 95% CI 0.01 to 0.70, P = 0.04, I² = 72%), but the quality of the evidence was low to very low. Electromechanical and robot-assisted arm training did not increase the risk of participant drop-out (RD 0.00, 95% CI -0.02 to 0.03, P = 0.84, I² = 0%) with moderate-quality evidence, and adverse events were rare. AUTHORS' CONCLUSIONS People who receive electromechanical and robot-assisted arm and hand training after stroke might improve their activities of daily living, arm and hand function, and arm and hand muscle strength. However, the results must be interpreted with caution because the quality of the evidence was low to very low, and there were variations between the trials in the intensity, duration, and amount of training; type of treatment; and participant characteristics.
Collapse
Affiliation(s)
| | - Marcus Pohl
- Helios Klinik Schloss PulsnitzNeurological RehabilitationWittgensteiner Str. 1PulsnitzGermany01896
| | | | - Joachim Kugler
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolDresdenGermany
| | - Bernhard Elsner
- Faculty of Medicine Carl Gustav Carus, TU DresdenDepartment of Public HealthFetscherstr. 74DresdenGermany01307
| |
Collapse
|
20
|
Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. J Neuroeng Rehabil 2015; 12:96. [PMID: 26520398 PMCID: PMC4628254 DOI: 10.1186/s12984-015-0088-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Robot-assisted therapy (RT) is a widely used intervention approach to enhance motor recovery in patients after stroke, but its effects on functional improvement remained uncertain. Neuromuscular electrical stimulation (NMES) is one potential adjuvant intervention approach to RT that could directly activate the stimulated muscles and improve functional use of the paretic hand. Methods This was a randomized, double-blind, sham-controlled study. Thirty-nine individuals with chronic stroke were randomly assigned to the RT combined with NMES (RT + ES) or to RT with sham stimulation (RT + Sham) groups. The participants completed the intervention 90 to 100 minutes/day, 5 days/week for 4 weeks. The outcome measures included the upper extremity Fugl-Meyer Assessment (UE-FMA), modified Ashworth scale (MAS), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and Stroke Impact Scale 3.0 (SIS). All outcome measures were assessed before and after intervention, and the UE-FMA, MAL, and SIS were reassessed at 3 months of follow-up. Results Compared with the RT + Sham group, the RT + ES group demonstrated greater improvements in wrist flexor MAS score, WMFT quality of movement, and the hand function domain of the SIS. For other outcome measures, both groups improved significantly after the interventions, but no group differences were found. Conclusion RT + ES induced significant benefits in reducing wrist flexor spasticity and in hand movement quality in patients with chronic stroke. Trial registration ClinicalTrials.gov. NCT01655446
Collapse
|
21
|
Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil 2014; 11:137. [PMID: 25217124 PMCID: PMC4180322 DOI: 10.1186/1743-0003-11-137] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Studies of stroke patients undergoing robot-assisted rehabilitation have revealed various kinematic parameters describing movement quality of the upper limb. However, due to the different level of stroke impairment and different assessment criteria and interventions, the evaluation of the effectiveness of rehabilitation program is undermined. This paper presents a systematic review of kinematic assessments of movement quality of the upper limb and identifies the suitable parameters describing impairments in stroke patients. A total of 41 different clinical and pilot studies on different phases of stroke recovery utilizing kinematic parameters are evaluated. Kinematic parameters describing movement accuracy are mostly reported for chronic patients with statistically significant outcomes and correlate strongly with clinical assessments. Meanwhile, parameters describing feed-forward sensorimotor control are the most frequently reported in studies on sub-acute patients with significant outcomes albeit without correlation to any clinical assessments. However, lack of measures in coordinated movement and proximal component of upper limb enunciate the difficulties to distinguish the exploitation of joint redundancies exhibited by stroke patients in completing the movement. A further study on overall measures of coordinated movement is recommended.
Collapse
|
22
|
Fluet GG, Merians AS, Qiu Q, Davidow A, Adamovich SV. Comparing integrated training of the hand and arm with isolated training of the same effectors in persons with stroke using haptically rendered virtual environments, a randomized clinical trial. J Neuroeng Rehabil 2014; 11:126. [PMID: 25148846 PMCID: PMC4156644 DOI: 10.1186/1743-0003-11-126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Robotically facilitated therapeutic activities, performed in virtual environments have emerged as one approach to upper extremity rehabilitation after stroke. Body function level improvements have been demonstrated for robotically facilitated training of the arm. A smaller group of studies have demonstrated modest activity level improvements by training the hand or by integrated training of the hand and arm. The purpose of this study was to compare a training program of complex hand and finger tasks without arm movement paired with a separate set of reaching activities performed without hand movement, to training the entire upper extremity simultaneously, utilizing integrated activities. Methods Forty individuals with chronic stroke recruited in the community, participated in a randomized, blinded, controlled trial of two interventions. Subjects were required to have residual hand function for inclusion. The first, hand and arm separate (HAS) training (n = 21), included activities controlled by finger movement only, and activities controlled by arm movement only, the second, hand and arm together (HAT) training (n = 20) used simulations controlled by a simultaneous use of arm and fingers. Results No adverse reactions occurred. The entire sample demonstrated mean improvements in Wolf Motor Function Test scores (21%) and Jebsen Test of Hand Function scores (15%), with large effect sizes (partial r2 = .81 and r2 = .67, respectively). There were no differences in improvement between HAS and HAT training immediately after the study. Subjects in the HAT group retained Wolf Motor Function Test gains better than in the HAS group measured three months after the therapy but the size of this interaction effect was small (partial r2 = .17). Conclusions Short term changes in upper extremity motor function were comparable when training the upper extremity with integrated activities or a balanced program of isolated activities. Further study of the retention period is indicated. Trial registration NCT01072461. Electronic supplementary material The online version of this article (doi:10.1186/1743-0003-11-126) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerard G Fluet
- Department of Rehabilitation and Movement Science, Rutgers The State University of New Jersey, Room 714C, 65 Bergen Street, Newark, NJ 07101, USA.
| | | | | | | | | |
Collapse
|
23
|
Sale P, Franceschini M, Mazzoleni S, Palma E, Agosti M, Posteraro F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil 2014; 11:104. [PMID: 24946799 PMCID: PMC4074149 DOI: 10.1186/1743-0003-11-104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE There is little evidence available on the use of robot-assisted therapy in subacute stroke patients. A randomized controlled trial was carried out to evaluate the short-time efficacy of intensive robot-assisted therapy compared to usual physical therapy performed in the early phase after stroke onset. METHODS Fifty-three subacute stroke patients at their first-ever stroke were enrolled 30 ± 7 days after the acute event and randomized into two groups, both exposed to standard therapy. Additional 30 sessions of robot-assisted therapy were provided to the Experimental Group. Additional 30 sessions of usual therapy were provided to the Control Group.The following impairment evaluations were performed at the beginning (T0), after 15 sessions (T1), and at the end of the treatment (T2): Fugl-Meyer Assessment Scale (FM), Modified Ashworth Scale-Shoulder (MAS-S), Modified Ashworth Scale-Elbow (MAS-E), Total Passive Range of Motion-Shoulder/Elbow (pROM), and Motricity Index (MI). RESULTS Evidence of significant improvements in MAS-S (p = 0.004), MAS-E (p = 0.018) and pROM (p < 0.0001) was found in the Experimental Group. Significant improvement was demonstrated in both Experimental and Control Group in FM (EG: p < 0.0001, CG: p < 0.0001) and MI (EG: p < 0.0001, CG: p < 0.0001), with an higher improvement in the Experimental Group. CONCLUSIONS Robot-assisted upper limb rehabilitation treatment can contribute to increasing motor recovery in subacute stroke patients. Focusing on the early phase of stroke recovery has a high potential impact in clinical practice.
Collapse
Affiliation(s)
- Patrizio Sale
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Franceschini
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefano Mazzoleni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Laboratory of Rehabilitation Bioengineering, Auxilium Vitae Rehabilitation Center, Volterra, Italy
| | - Enzo Palma
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Federico Posteraro
- Laboratory of Rehabilitation Bioengineering, Auxilium Vitae Rehabilitation Center, Volterra, Italy
- Rehabilitation Department, Versilia Hospital-AUSL12, Camaiore, Italy
| |
Collapse
|
24
|
Lemmens RJM, Timmermans AAA, Janssen-Potten YJM, Pulles SANTD, Geers RPJ, Bakx WGM, Smeets RJEM, Seelen HAM. Accelerometry measuring the outcome of robot-supported upper limb training in chronic stroke: a randomized controlled trial. PLoS One 2014; 9:e96414. [PMID: 24823925 PMCID: PMC4019639 DOI: 10.1371/journal.pone.0096414] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/05/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. METHODS This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2 × 30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. RESULTS Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of -0.17% in the robot-group and -0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. CONCLUSIONS Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. TRIAL REGISTRATION Controlled-trials.com ISRCTN82787126.
Collapse
Affiliation(s)
- Ryanne J. M. Lemmens
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
| | - Annick A. A. Timmermans
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yvonne J. M. Janssen-Potten
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
| | | | - Richard P. J. Geers
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
| | - Wilbert G. M. Bakx
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
- Adelante Rehabilitation Centre, Hoensbroek, the Netherlands
| | - Rob J. E. M. Smeets
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
- Department of Rehabilitation Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Henk A. M. Seelen
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
| |
Collapse
|
25
|
Timmermans AAA, Lemmens RJM, Monfrance M, Geers RPJ, Bakx W, Smeets RJEM, Seelen HAM. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J Neuroeng Rehabil 2014; 11:45. [PMID: 24684808 PMCID: PMC3973831 DOI: 10.1186/1743-0003-11-45] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/17/2014] [Indexed: 01/19/2023] Open
Abstract
Background Over fifty percent of stroke patients experience chronic arm hand performance problems, compromising independence in daily life activities and quality of life. Task-oriented training may improve arm hand performance after stroke, whereby augmented therapy may lead to a better treatment outcome. Technology-supported training holds opportunities for increasing training intensity. However, the effects of robot-supported task-oriented training with real life objects in stroke patients are not known to date. The aim of the present study was to investigate the effectiveness and added value of the Haptic Master robot combined with task-oriented arm hand training in chronic stroke patients. Methods In a single-blind randomized controlled trial, 22 chronic stroke patients were randomly allocated to receive either task-oriented robot-assisted arm-hand training (experimental group) or task-oriented non-robotic arm-hand training (control group). For training, the T-TOAT (Technology-supported Task-Oriented Arm Training) method was applied. Training was provided during 8 weeks, 4 times/week, 2× 30 min/day. Results A significant improvement after training on the Action Research Arm Test (ARAT) was demonstrated in the experimental group (p = 0.008). Results were maintained until 6 months after cessation of the training. On the perceived performance measure (Motor Activity Log (MAL)), both, the experimental and control group improved significantly after training (control group p = 0.008; experimental group p = 0.013). The improvements on MAL in both groups were maintained until 6 months after cessation of the training. With regard to quality of life, only in the control group a significant improvement after training was found (EuroQol-5D p = 0.015, SF-36 physical p = 0.01). However, the improvement on SF-36 in the control group was not maintained (p = 0.012). No between-group differences could be demonstrated on any of the outcome measures. Conclusion Arm hand performance improved in chronic stroke patients, after eight weeks of task oriented training. The use of a Haptic Master robot in support of task-oriented arm training did not show additional value over the video-instructed task-oriented exercises in highly functional stroke patients. Clinical trial registration information Current Controlled Trials ISRCTN82787126
Collapse
Affiliation(s)
- Annick A A Timmermans
- Adelante, Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Hughes AM, Burridge JH, Demain SH, Ellis-Hill C, Meagher C, Tedesco-Triccas L, Turk R, Swain I. Translation of evidence-based Assistive Technologies into stroke rehabilitation: users' perceptions of the barriers and opportunities. BMC Health Serv Res 2014; 14:124. [PMID: 24620739 PMCID: PMC4007558 DOI: 10.1186/1472-6963-14-124] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/23/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Assistive Technologies (ATs), defined as "electrical or mechanical devices designed to help people recover movement", demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients', carers' (P&Cs) and healthcare professionals' (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems. METHODS Two structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development. RESULTS 292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly. CONCLUSION Key barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation.
Collapse
Affiliation(s)
- Ann-Marie Hughes
- Faculty of Health Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Sciences, Faculty of Physical & Applied Sciences, University of Southampton, Southampton, UK
| | | | | | | | - Claire Meagher
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | | | - Ruth Turk
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Ian Swain
- School of Design, Engineering and Computing, Bournemouth University, Bournemouth, UK
- Clinical Science and Engineering, Salisbury NHS Foundation Trust, Salisbury, UK
| |
Collapse
|
27
|
Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9:e87987. [PMID: 24505342 PMCID: PMC3913786 DOI: 10.1371/journal.pone.0087987] [Citation(s) in RCA: 708] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physical therapy (PT) is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT. METHODS AND FINDINGS Randomized controlled trials (RCTs) regarding PT in stroke rehabilitation were retrieved through a systematic search. Outcomes were classified according to the ICF. RCTs with a low risk of bias were quantitatively analyzed. Differences between phases poststroke were explored in subgroup analyses. A best evidence synthesis was performed for neurological treatment approaches. The search yielded 467 RCTs (N = 25373; median PEDro score 6 [IQR 5-7]), identifying 53 interventions. No adverse events were reported. Strong evidence was found for significant positive effects of 13 interventions related to gait, 11 interventions related to arm-hand activities, 1 intervention for ADL, and 3 interventions for physical fitness. Summary Effect Sizes (SESs) ranged from 0.17 (95%CI 0.03-0.70; I(2) = 0%) for therapeutic positioning of the paretic arm to 2.47 (95%CI 0.84-4.11; I(2) = 77%) for training of sitting balance. There is strong evidence that a higher dose of practice is better, with SESs ranging from 0.21 (95%CI 0.02-0.39; I(2) = 6%) for motor function of the paretic arm to 0.61 (95%CI 0.41-0.82; I(2) = 41%) for muscle strength of the paretic leg. Subgroup analyses yielded significant differences with respect to timing poststroke for 10 interventions. Neurological treatment approaches to training of body functions and activities showed equal or unfavorable effects when compared to other training interventions. Main limitations of the present review are not using individual patient data for meta-analyses and absence of correction for multiple testing. CONCLUSIONS There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke. Effects are mostly restricted to the actually trained functions and activities. Suggestions for prioritizing PT stroke research are given.
Collapse
Affiliation(s)
- Janne Marieke Veerbeek
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin van Wegen
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland van Peppen
- Department of Physiotherapy, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Philip Jan van der Wees
- Scientific Institute for Quality of Healthcare (IQ healthcare), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Hendriks
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Marc Rietberg
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurorehabilitation, Reade Center for Rehabilitation and Rheumatology, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014; 11:3. [PMID: 24401110 PMCID: PMC4029785 DOI: 10.1186/1743-0003-11-3] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.
Collapse
Affiliation(s)
- Paweł Maciejasz
- DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Kurt Gerlach-Hahn
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Arne Jansen-Troy
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Steffen Leonhardt
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
29
|
Can force feedback and science learning enhance the effectiveness of neuro-rehabilitation? An experimental study on using a low-cost 3D joystick and a virtual visit to a zoo. PLoS One 2013; 8:e83945. [PMID: 24349562 PMCID: PMC3862801 DOI: 10.1371/journal.pone.0083945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022] Open
Abstract
In this paper, we demonstrate that healthy adults respond differentially to the administration of force feedback and the presentation of scientific content in a virtual environment, where they interact with a low-cost haptic device. Subjects are tasked with controlling the movement of a cursor on a predefined trajectory that is superimposed on a map of New York City’s Bronx Zoo. The system is characterized in terms of a suite of objective indices quantifying the subjects’ dexterity in planning and generating the multijoint visuomotor tasks. We find that force feedback regulates the smoothness, accuracy, and duration of the subject’s movement, whereby converging or diverging force fields influence the range of variations of the hand speed. Finally, our findings provide preliminary evidence that using educational content increases subjects’ satisfaction. Improving the level of interest through the inclusion of learning elements can increase the time spent performing rehabilitation tasks and promote learning in a new context.
Collapse
|
30
|
Rosati G, Rodà A, Avanzini F, Masiero S. On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2013; 2013:586138. [PMID: 24382952 PMCID: PMC3871505 DOI: 10.1155/2013/586138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/09/2013] [Indexed: 01/03/2023]
Abstract
The goal of this paper is to address a topic that is rarely investigated in the literature of technology-assisted motor rehabilitation, that is, the integration of auditory feedback in the rehabilitation device. After a brief introduction on rehabilitation robotics, the main concepts of auditory feedback are presented, together with relevant approaches, techniques, and technologies available in this domain. Current uses of auditory feedback in the context of technology-assisted rehabilitation are then reviewed. In particular, a comparative quantitative analysis over a large corpus of the recent literature suggests that the potential of auditory feedback in rehabilitation systems is currently and largely underexploited. Finally, several scenarios are proposed in which the use of auditory feedback may contribute to overcome some of the main limitations of current rehabilitation systems, in terms of user engagement, development of acute-phase and home rehabilitation devices, learning of more complex motor tasks, and improving activities of daily living.
Collapse
Affiliation(s)
- Giulio Rosati
- Department of Management and Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy
| | - Antonio Rodà
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
| | - Federico Avanzini
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
| | - Stefano Masiero
- Department of Medical and Surgical Sciences, University of Padova, Via Giustiniani 2, 35121 Padova, Italy
| |
Collapse
|
31
|
|
32
|
Chemuturi R, Amirabdollahian F, Dautenhahn K. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction. J Neuroeng Rehabil 2013; 10:102. [PMID: 24073670 PMCID: PMC3849953 DOI: 10.1186/1743-0003-10-102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 09/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rehabilitation robotics is progressing towards developing robots that can be used as advanced tools to augment the role of a therapist. These robots are capable of not only offering more frequent and more accessible therapies but also providing new insights into treatment effectiveness based on their ability to measure interaction parameters. A requirement for having more advanced therapies is to identify how robots can 'adapt' to each individual's needs at different stages of recovery. Hence, our research focused on developing an adaptive interface for the GENTLE/A rehabilitation system. The interface was based on a lead-lag performance model utilising the interaction between the human and the robot. The goal of the present study was to test the adaptability of the GENTLE/A system to the performance of the user. METHODS Point-to-point movements were executed using the HapticMaster (HM) robotic arm, the main component of the GENTLE/A rehabilitation system. The points were displayed as balls on the screen and some of the points also had a real object, providing a test-bed for the human-robot interaction (HRI) experiment. The HM was operated in various modes to test the adaptability of the GENTLE/A system based on the leading/lagging performance of the user. Thirty-two healthy participants took part in the experiment comprising of a training phase followed by the actual-performance phase. RESULTS The leading or lagging role of the participant could be used successfully to adjust the duration required by that participant to execute point-to-point movements, in various modes of robot operation and under various conditions. The adaptability of the GENTLE/A system was clearly evident from the durations recorded. The regression results showed that the participants required lower execution times with the help from a real object when compared to just a virtual object. The 'reaching away' movements were longer to execute when compared to the 'returning towards' movements irrespective of the influence of the gravity on the direction of the movement. CONCLUSIONS The GENTLE/A system was able to adapt so that the duration required to execute point-to-point movement was according to the leading or lagging performance of the user with respect to the robot. This adaptability could be useful in the clinical settings when stroke subjects interact with the system and could also serve as an assessment parameter across various interaction sessions. As the system adapts to user input, and as the task becomes easier through practice, the robot would auto-tune for more demanding and challenging interactions. The improvement in performance of the participants in an embedded environment when compared to a virtual environment also shows promise for clinical applicability, to be tested in due time. Studying the physiology of upper arm to understand the muscle groups involved, and their influence on various movements executed during this study forms a key part of our future work.
Collapse
Affiliation(s)
- Radhika Chemuturi
- Adaptive Systems Research Group, Department of Computer Science, University of Hertfordshire, College Lane campus, Hatfield AL10 9AB, UK
| | - Farshid Amirabdollahian
- Adaptive Systems Research Group, Department of Computer Science, University of Hertfordshire, College Lane campus, Hatfield AL10 9AB, UK
| | - Kerstin Dautenhahn
- Adaptive Systems Research Group, Department of Computer Science, University of Hertfordshire, College Lane campus, Hatfield AL10 9AB, UK
| |
Collapse
|
33
|
Abstract
Stroke is a major cause of death and disability. International and national guidelines are available to help clinicians provide evidence-based care for stroke prevention, acute treatment, and rehabilitation. Stroke is a medical emergency and rapid assessment is needed to establish the diagnosis, identify the underlying cause, provide acute treatment, and prevent complications. Although stroke is a clinical diagnosis based upon a history of sudden onset of neurological symptoms, which include unilateral weakness or sensory loss, dysphasia, hemianopia, inattention, and reduced coordination, brain imaging with CT or MRI scan is needed to distinguish cerebral infarction from primary intracerebral haemorrhage. Stroke units are the cornerstones of stroke care and should be available to all stroke patients throughout their inpatient stay. Multidisciplinary stroke care should address the physical, psychological, and social consequences of stroke and consider the needs of both patients and carers. Good communication with patients and carers and between members of the multidisciplinary team is fundamental to quality care. Ongoing assessment and treatment may be needed for: dysphagia; nutrition and hydration; continence and skin care; mobility and upper limb function; comprehension and communication; concentration and memory; spatial awareness and inattention; mood; pain and spasticity. Patients and carers should be fully informed about the diagnosis, prognosis, treatment and available care. Discharge requires careful planning and consultation. Early supported discharge can improve outcome for carefully selected patients. It is important to recognize and address the long-term needs in order to maximize choice, independence, and wellbeing. Targeted rehabilitation to address issues such as mobility and leisure may be effective.
Collapse
Affiliation(s)
- Helen Rodgers
- Institute of Ageing and Health, Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Tropea P, Cesqui B, Monaco V, Aliboni S, Posteraro F, Micera S. Effects of the Alternate Combination of "Error-Enhancing" and "Active Assistive" Robot-Mediated Treatments on Stroke Patients. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2013; 1:2100109. [PMID: 27170850 PMCID: PMC4819227 DOI: 10.1109/jtehm.2013.2271898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/13/2013] [Accepted: 06/01/2013] [Indexed: 12/03/2022]
Abstract
This paper aimed at investigating the effects of a novel robotic-aided rehabilitation treatment for the recovery of the upper limb related capabilities in chronic post stroke patients. Eighteen post-stroke patients were enrolled in a six-week therapy program and divided into two groups. They were all required to perform horizontal pointing movements both in the presence of a robot-generated divergent force field (DF) that pushed their hands proportional to the trajectory error and perpendicular to the direction of motion, and according to the typical active assistive (AA) approach used in robotic therapy. We used a crossover experimental paradigm where the two groups switched from one therapy treatment to the other. The hypothesis underlying this paper was that the use of the destabilizing scenario forced the patient to keep the end-point position as close as possible to the ideal path, hence requiring a more active control of the arm with respect to the AA approach. Our findings confirmed this hypothesis. In addition, when the DF treatment was provided in the first therapy cycle, patients also showed straighter and smoother paths during the subsequent AA therapy cycle, while this was not true in the opposite case. In conclusion, the results herein reported provide evidence that the use of an unstable DF field can lead to better recovery outcomes, and therefore it potentially more effective than solely active assistance therapy alone.
Collapse
Affiliation(s)
- Peppino Tropea
- Scuola Superiore Sant'AnnaThe BioRobotics InstitutePisaItaly56037
| | - Benedetta Cesqui
- Santa Lucia FoundationLaboratory of Neuromotor PhysiologyRomeItaly00133
| | - Vito Monaco
- Scuola Superiore Sant'AnnaThe BioRobotics InstitutePisaItaly56037
| | - Sara Aliboni
- Ospedale Versilia—CamaioreDepartment of Physical Medicine and RehabilitationLuccaItaly55041
| | - Federico Posteraro
- Auxilium Vitae Rehabilitation CenterNeurological Rehabilitation UnitVolterraItaly56048
| | - Silvestro Micera
- Scuola Superiore Sant'AnnaThe BioRobotics InstitutePisaItaly56037
- Swiss Federal Institute of Technology LausanneTranslational Neural Engineering LaboratoryCenter for NeuroprostheticsLausanneSwitzerland1015
| |
Collapse
|
35
|
Noninvasive strategies to promote functional recovery after stroke. Neural Plast 2013; 2013:854597. [PMID: 23864962 PMCID: PMC3707231 DOI: 10.1155/2013/854597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/02/2013] [Indexed: 01/17/2023] Open
Abstract
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.
Collapse
|
36
|
Prange GBG, Kottink AA, Buurke JHJ, Rietman JSH. Application of arm support training in sub-acute stroke rehabilitation: first results on effectiveness and user experiences. IEEE Int Conf Rehabil Robot 2013; 2013:6650470. [PMID: 24187287 DOI: 10.1109/icorr.2013.6650470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A multi-center randomized clinical trial was performed in 7 Dutch rehabilitation centers, in the context of an implementation project (ROBAR), to compare the effect of an arm support (AS) training device to equally intensive conventional reach training (CON) on recovery of arm-hand function in sub-acute stroke. The Fugl-Meyer assessment (FM) and user experiences of therapists and patients were examined in both groups. An improvement of 10 and 8 points on the FM was found for respectively the CON and AS group. Both therapists and patients reported positive experiences on several aspects of user acceptance. These findings indicate that a low-tech system for arm support results in similar gains in arm function as conventional reach training in equal intensity, and is suitable for application in clinical practice.
Collapse
|
37
|
Zondervan DK, Palafox L, Hernandez J, Reinkensmeyer DJ. The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance. J Neuroeng Rehabil 2013; 10:39. [PMID: 23597303 PMCID: PMC3654939 DOI: 10.1186/1743-0003-10-39] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/10/2013] [Indexed: 11/10/2022] Open
Abstract
Background Robotic arm therapy devices that incorporate actuated assistance can enhance arm recovery, motivate patients to practice, and allow therapists to deliver semi-autonomous training. However, because such devices are often complex and actively apply forces, they have not achieved widespread use in rehabilitation clinics or at home. This paper describes the design and pilot testing of a simple, mechanically passive device that provides robot-like assistance for active arm training using the principle of mechanical resonance. Methods The Resonating Arm Exerciser (RAE) consists of a lever that attaches to the push rim of a wheelchair, a forearm support, and an elastic band that stores energy. Patients push and pull on the lever to roll the wheelchair back and forth by about 20 cm around a neutral position. We performed two separate pilot studies of the device. In the first, we tested whether the predicted resonant properties of RAE amplified a user’s arm mobility by comparing his or her active range of motion (AROM) in the device achieved during a single, sustained push and pull to the AROM achieved during rocking. In a second pilot study designed to test the therapeutic potential of the device, eight participants with chronic stroke (35 ± 24 months since injury) and a mean, stable, initial upper extremity Fugl-Meyer (FM) score of 17 ± 8 / 66 exercised with RAE for eight 45 minute sessions over three weeks. The primary outcome measure was the average AROM measured with a tilt sensor during a one minute test, and the secondary outcome measures were the FM score and the visual analog scale for arm pain. Results In the first pilot study, we found people with a severe motor impairment after stroke intuitively found the resonant frequency of the chair, and the mechanical resonance of RAE amplified their arm AROM by a factor of about 2. In the second pilot study, AROM increased by 66% ± 20% (p = 0.003). The mean FM score increase was 8.5 ± 4 pts (p = 0.009). Subjects did not report discomfort or an increase in arm pain with rocking. Improvements were sustained at three months. Conclusions These results demonstrate that a simple mechanical device that snaps onto a manual wheelchair can use resonance to assist arm training, and that such training shows potential for safely increasing arm movement ability for people with severe chronic hemiparetic stroke.
Collapse
Affiliation(s)
- Daniel K Zondervan
- Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, USA.
| | | | | | | |
Collapse
|
38
|
Carmichael MG, Liu D. A task description model for robotic rehabilitation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3086-9. [PMID: 23366577 DOI: 10.1109/embc.2012.6346616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The desire to produce robots to aid in physical neurorehabilitation has led to the control paradigm Assistance-As-Needed. This paradigm aims to assist patients in performing physical rehabilitation tasks whilst providing the least amount of assistance required, maximizing the patient's effort which is essential for recovery. Ideally the provided assistance equals the gap between the capability required to perform the task and the patient's available capability. Current implementations derive a measure of this gap by critiquing task performance based on some criteria. This paper presents a task description model for tasks performed by a patient's limb, allowing physical requirements to be calculated. Applied to two upper limb tasks typical of rehabilitation and daily activities, the effect of task variations on the task's physical requirements are observed. It is proposed that using the task description model to compensate for changing task requirements will allow better support by providing assistance closer to the true needs of the patient.
Collapse
Affiliation(s)
- Marc G Carmichael
- Centre for Autonomous Systems (CAS), Faculty of Engineering and IT, University of Technology Sydney (UTS), NSW 2007, Australia.
| | | |
Collapse
|
39
|
Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat 2012; 2012:820931. [PMID: 23320252 PMCID: PMC3540892 DOI: 10.1155/2012/820931] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria). Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week). Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes), passive/plus modality (5 minutes), assisted therapy (10 minutes), and balloon (10 minutes). The following impairment and functional evaluations, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI), and modified Ashworth Scale for wrist and hand muscles (AS), were performed at the beginning (T0), after 10 sessions (T1), and at the end of the treatment (T2). The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale) were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P < 0.0123). Evidence of an improvement was demonstrated for AS, FM, and MI. Conclusions. This original rehabilitation treatment could contribute to increase the hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this treatment, in association with physiotherapy and/or occupational therapy.
Collapse
|
40
|
A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke Res Treat 2012; 2012:972069. [PMID: 23251833 PMCID: PMC3517854 DOI: 10.1155/2012/972069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction. In stroke rehabilitation, bilateral upper limb training is gaining ground. As a result, a growing number of mechanical and robotic bilateral upper limb training devices have been proposed. Objective. To provide an overview and qualitative evaluation of the clinical applicability of bilateral upper limb training devices. Methods. Potentially relevant literature was searched in the PubMed, Web of Science, and Google Scholar databases from 1990 onwards. Devices were categorized as mechanical or robotic (according to the PubMed MeSH term of robotics). Results. In total, 6 mechanical and 14 robotic bilateral upper limb training devices were evaluated in terms of mechanical and electromechanical characteristics, supported movement patterns, targeted part and active involvement of the upper limb, training protocols, outcomes of clinical trials, and commercial availability. Conclusion. Initial clinical results are not yet of such caliber that the devices in question and the concepts on which they are based are firmly established. However, the clinical outcomes do not rule out the possibility that the concept of bilateral training and the accompanied devices may provide a useful extension of currently available forms of therapy. To actually demonstrate their (surplus) value, more research with adequate experimental, dose-matched designs, and sufficient statistical power are required.
Collapse
|
41
|
Rosati G, Oscari F, Spagnol S, Avanzini F, Masiero S. Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J Neuroeng Rehabil 2012; 9:79. [PMID: 23046683 PMCID: PMC3554473 DOI: 10.1186/1743-0003-9-79] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller) with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel) yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video), to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel visuomotor perturbation, whereas controller-task-related sound feedback did not. This result was particularly interesting, as the subjects relied more on auditory augmentation of the visualized target motion (which was altered with respect to arm motion by the visuomotor perturbation), rather than on sound feedback provided in the controller space, i.e., information directly related to the effective target motion of their arm. Conclusions Our results indicate that auditory augmentation of visual feedback can be beneficial during the execution of upper limb movement exercises. In particular, we found that continuous task-related information provided through sound, in addition to visual feedback can improve not only performance but also the learning of a novel visuomotor perturbation. However, error-related information provided through sound did not improve performance and negatively affected learning in the presence of the visuomotor perturbation.
Collapse
Affiliation(s)
- Giulio Rosati
- Rehabrobotics Lab, Dept, of Management and Engineering, University of Padua, Via Venezia 1, I-35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
42
|
Colombo R, Sterpi I, Mazzone A, Delconte C, Pisano F. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2012; 20:276-85. [PMID: 22623406 DOI: 10.1109/tnsre.2012.2195679] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In robot-assisted neurorehabilitation, matching the task difficulty level to the patient's needs and abilities, both initially and as the relearning process progresses, can enhance the effectiveness of training and improve patients' motivation and outcome. This study presents a Progressive Task Regulation algorithm implemented in a robot for upper limb rehabilitation. It evaluates the patient's performance during training through the computation of robot-measured parameters, and automatically changes the features of the reaching movements, adapting the difficulty level of the motor task to the patient's abilities. In particular, it can select different types of assistance (time-triggered, activity-triggered, and negative assistance) and implement varied therapy practice to promote generalization processes. The algorithm was tuned by assessing the performance data obtained in 22 chronic stroke patients who underwent robotic rehabilitation, in which the difficulty level of the task was manually adjusted by the therapist. Thus, we could verify the patient's recovery strategies and implement task transition rules to match both the patient's and therapist's behavior. In addition, the algorithm was tested in a sample of five chronic stroke patients. The findings show good agreement with the therapist decisions so indicating that it could be useful for the implementation of training protocols allowing individualized and gradual treatment of upper limb disabilities in patients after stroke. The application of this algorithm during robot-assisted therapy should allow an easier management of the different motor tasks administered during training, thereby facilitating the therapist's activity in the treatment of different pathologic conditions of the neuromuscular system.
Collapse
Affiliation(s)
- Roberto Colombo
- Salvatore Maugeri Foundation, IRCCS, Service of Rehabilitation Engineering, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
43
|
Hochstenbach-Waelen A, Seelen HAM. Embracing change: practical and theoretical considerations for successful implementation of technology assisting upper limb training in stroke. J Neuroeng Rehabil 2012; 9:52. [PMID: 22856548 PMCID: PMC3480833 DOI: 10.1186/1743-0003-9-52] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 07/03/2012] [Indexed: 11/21/2022] Open
Abstract
Background Rehabilitation technology for upper limb training of stroke patients may play an important role as therapy tool in future, in order to meet the increasing therapy demand. Currently, implementation of this technology in the clinic remains low. This study aimed at identifying criteria and conditions that people, involved in development of such technology, should take into account to achieve a (more) successful implementation of the technology in the clinic. Methods A literature search was performed in PubMed and IEEE databases, and semi-structured interviews with therapists in stroke rehabilitation were held, to identify criteria and conditions technology should meet to facilitate (implementation of) technology-assisted arm-hand skills training in rehabilitation therapy of stroke patients. In addition, an implementation strategy frequently applied in general health care was used to compose a stepwise guidance to facilitate successful implementation of this technology in therapy of stroke patients. Implementation-related criteria mentioned by therapists during the interviews were integrated in this guidance. Results Results indicate that, related to therapy content, technology should facilitate repetition of task-related movements, tailored to the patient and patient’s goals, in a meaningful context. Variability and increasing levels of difficulty in exercises should be on offer. Regarding hardware and software design of technology, the system should facilitate quick familiarisation and be easily adjustable to individual patients during therapy by therapists (and assistants). The system should facilitate adaptation to individual patients’ needs and their progression over time, should be adjustable as to various task-related variables, should be able to provide instructions and feedback, and should be able to document patient’s progression. The implementation process of technology in the clinic is provided as a stepwise guidance that consists of five phases therapists have to go through. The guidance includes criteria and conditions that motivate therapists, and make it possible for them, to actually use technology in their daily clinical practice. Conclusions The reported requirements are important as guidance for people involved in the development of rehabilitation technology for arm-hand therapy of stroke patients. The stepwise guide provides a tool for facilitating successful implementation of technology in clinical practice, thus meeting future therapy demand.
Collapse
Affiliation(s)
- Ananda Hochstenbach-Waelen
- Adelante Centre of Expertise in Rehabilitation and Audiology, Zandbergsweg 111, 6432 CC, Hoensbroek, The Netherlands.
| | | |
Collapse
|
44
|
Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair 2012; 25:788-98. [PMID: 21989632 DOI: 10.1177/1545968311425908] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mobile health tools that enable clinicians and researchers to monitor the type, quantity, and quality of everyday activities of patients and trial participants have long been needed to improve daily care, design more clinically meaningful randomized trials of interventions, and establish cost-effective, evidence-based practices. Inexpensive, unobtrusive wireless sensors, including accelerometers, gyroscopes, and pressure-sensitive textiles, combined with Internet-based communications and machine-learning algorithms trained to recognize upper- and lower-extremity movements, have begun to fulfill this need. Continuous data from ankle triaxial accelerometers, for example, can be transmitted from the home and community via WiFi or a smartphone to a remote data analysis server. Reports can include the walking speed and duration of every bout of ambulation, spatiotemporal symmetries between the legs, and the type, duration, and energy used during exercise. For daily care, this readily accessible flow of real-world information allows clinicians to monitor the amount and quality of exercise for risk factor management and compliance in the practice of skills. Feedback may motivate better self-management as well as serve home-based rehabilitation efforts. Monitoring patients with chronic diseases and after hospitalization or the start of new medications for a decline in daily activity may help detect medical complications before rehospitalization becomes necessary. For clinical trials, repeated laboratory-quality assessments of key activities in the community, rather than by clinic testing, self-report, and ordinal scales, may reduce the cost and burden of travel, improve recruitment and retention, and capture more reliable, valid, and responsive ratio-scaled outcome measures that are not mere surrogates for changes in daily impairment, disability, and functioning.
Collapse
Affiliation(s)
- Bruce H Dobkin
- Department of Neurology, Geffen UCLA School of Medicine, Los Angeles, CA, USA.
| | | |
Collapse
|
45
|
Meadmore KL, Cai Z, Tong D, Hughes AM, Freeman CT, Rogers E, Burridge JH. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL). IEEE Int Conf Rehabil Robot 2012; 2011:5975502. [PMID: 22275698 DOI: 10.1109/icorr.2011.5975502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation.
Collapse
|
46
|
Lambercy O, Robles AJ, Kim Y, Gassert R. Design of a robotic device for assessment and rehabilitation of hand sensory function. IEEE Int Conf Rehabil Robot 2012; 2011:5975436. [PMID: 22275636 DOI: 10.1109/icorr.2011.5975436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies.
Collapse
|
47
|
Trlep M, Mihelj M, Munih M. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance. J Neuroeng Rehabil 2012; 9:43. [PMID: 22805223 PMCID: PMC3543208 DOI: 10.1186/1743-0003-9-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 07/05/2012] [Indexed: 11/13/2022] Open
Abstract
Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems.
Collapse
Affiliation(s)
- Matic Trlep
- University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
48
|
Coupar F, Pollock A, Legg LA, Sackley C, van Vliet P. Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst Rev 2012; 2012:CD006755. [PMID: 22592715 PMCID: PMC6464926 DOI: 10.1002/14651858.cd006755.pub2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. OBJECTIVES To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. SEARCH METHODS We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. PRIMARY OUTCOMES were performance in activities of daily living (ADL) and functional movement of the upper limb. SECONDARY OUTCOMES were performance in extended ADL and motor impairment of the arm. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. MAIN RESULTS We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. PRIMARY OUTCOMES we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). SECONDARY OUTCOMES no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). AUTHORS' CONCLUSIONS There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care.
Collapse
Affiliation(s)
- Fiona Coupar
- Academic Section of Geriatric Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
49
|
Casadio M, Sanguineti V. Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy. IEEE Trans Neural Syst Rehabil Eng 2012; 20:286-96. [PMID: 22531822 DOI: 10.1109/tnsre.2012.2190827] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quantitative descriptions of the process of recovery of motor functions in impaired subjects during robot-assisted exercise might help to understand how to use these devices to make recovery faster and more effective. Linear dynamical models have been used to describe the dynamics of sensorimotor adaptation. Here, we extend this formalism to characterize the neuromotor recovery process. We focus on a robot therapy experiment that involved chronic stroke survivors, based on a robot-assisted arm extension task. The results suggest that modeling the recovery process with dynamical models is feasible, and could allow predicting the long-term outcome of a robot-assisted rehabilitation treatment.
Collapse
Affiliation(s)
- Maura Casadio
- Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | | |
Collapse
|
50
|
Abstract
BACKGROUND Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the patient's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. OBJECTIVES To summarise the effectiveness of mirror therapy for improving motor function, activities of daily living, pain and visuospatial neglect in patients after stroke. SEARCH METHODS We searched the Cochrane Stroke Group's Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011) and PEDro (June 2011). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists and contacted trialists, researchers and experts in our field of study. SELECTION CRITERIA We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for patients after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies and extracted data. We analysed the results as standardised mean differences (SMDs) for continuous variables. MAIN RESULTS We included 14 studies with a total of 567 participants that compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy may have a significant effect on motor function (post-intervention data: SMD 0.61; 95% confidence interval (CI) 0.22 to 1.0; P = 0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P < 0.0001). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy may improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P = 0.02). We found a significant positive effect on pain (SMD -1.10; 95% CI -2.10 to -0.09; P = 0.03) which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P = 0.01). The effects on motor function were stable at follow-up assessment after six months. AUTHORS' CONCLUSIONS The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, activities of daily living and pain, at least as an adjunct to normal rehabilitation for patients after stroke. Limitations are due to small sample sizes of most included studies, control interventions that are not used routinely in stroke rehabilitation and some methodological limitations of the studies.
Collapse
Affiliation(s)
- Holm Thieme
- Erste Europäische Schule für Physiotherapie, Ergotherapie und Logopädie, Klinik Bavaria Kreischa, Kreischa, Sachen, Germany.
| | | | | | | | | |
Collapse
|