1
|
Zheng Y, Shen Y, Feng R, Hu W, Huang P. Research progress on the application of anti-gravity treadmill in the rehabilitation of Parkinson's disease patients: a mini review. Front Neurol 2024; 15:1401256. [PMID: 38882698 PMCID: PMC11176542 DOI: 10.3389/fneur.2024.1401256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. It is the second most common chronic progressive neurodegenerative disease. PD still lacks a known cure or prophylactic medication. Current treatments primarily address symptoms without halting the progression of PD, and the side effects of dopaminergic therapy become more apparent over time. In contrast, physical therapy, with its lower risk of side effects and potential cardiovascular benefits, may provide greater benefits to patients. The Anti-Gravity Treadmill is an emerging rehabilitation therapy device with high safety, which minimizes patients' fear and allows them to focus more on a normal, correct gait, and has a promising clinical application. Based on this premise, this study aims to summarize and analyze the relevant studies on the application of the anti-gravity treadmill in PD patients, providing a reference for PD rehabilitation practice and establishing a theoretical basis for future research in this area.
Collapse
Affiliation(s)
- Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yu Shen
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Renzhi Feng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Weiyin Hu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peng Huang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Langer A, Hansen C, Roth D, Santer A, Flotz A, Gruber J, Wizany L, Hasenauer S, Pokan R, Dabnichki P, Treven M, Zimmel S, Schmoeger M, Willinger U, Gassner L, Brücke C, Maetzler W, Zach H. Vertical locomotion improves horizontal locomotion: effects of climbing on gait and other mobility aspects in Parkinson's disease. A secondary analysis from a randomized controlled trial. J Neuroeng Rehabil 2024; 21:63. [PMID: 38678241 PMCID: PMC11055236 DOI: 10.1186/s12984-024-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND In the Climb Up! Head Up! trial, we showed that sport climbing reduces bradykinesia, tremor, and rigidity in mildly to moderately affected participants with Parkinson's disease. This secondary analysis aimed to evaluate the effects of sport climbing on gait and functional mobility in this cohort. METHODS Climb Up! Head Up! was a 1:1 randomized controlled trial. Forty-eight PD participants (Hoehn and Yahr stage 2-3) either participated in a 12-week, 90-min-per-week sport climbing course (intervention group) or were engaged in regular unsupervised physical activity (control group). Relevant outcome measures for this analysis were extracted from six inertial measurement units placed on the extremities, chest, and lower back, that were worn during supervised gait and functional mobility assessments before and after the intervention. Assessments included normal and fast walking, dual-tasking walking, Timed Up and Go test, Instrumented Stand and Walk test, and Five Times Sit to Stand test. RESULTS Compared to baseline, climbing improved gait speed during normal walking by 0.09 m/s (p = 0.005) and during fast walking by 0.1 m/s. Climbing also reduced the time spent in the stance phase during fast walking by 0.03 s. Climbing improved the walking speed in the 7-m- Timed Up and Go test by 0.1 m/s (p < 0.001) and the turning speed by 0.39 s (p = 0.052), the speed in the Instrumented Stand and Walk test by 0.1 m/s (p < 0.001), and the speed in the Five Times Sit to Stand test by 2.5 s (p = 0.014). There was no effect of sport climbing on gait speed or gait variables during dual-task walking. CONCLUSIONS Sport climbing improves gait speed during normal and fast walking, as well as functional mobility in people with Parkinson's disease. Trial registration This study was registered within the U.S. National Library of Medicine (No: NCT04569981, date of registration September 30th, 2020).
Collapse
Affiliation(s)
- Agnes Langer
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, 24105, Kiel, Germany
| | - Dominik Roth
- Department of Emergency Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Agnes Santer
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Anna Flotz
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Jakob Gruber
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Laurenz Wizany
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Sebastian Hasenauer
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Rochus Pokan
- Department of Sport Physiology, Institute of Sports Sciences, University of Vienna, 1090, Vienna, Austria
| | - Peter Dabnichki
- School of Engineering, RMIT University, 3000, Melbourne, VIC, Australia
| | - Marco Treven
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Sarah Zimmel
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Michaela Schmoeger
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Ulrike Willinger
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Lucia Gassner
- Department of Sport Physiology, Institute of Sports Sciences, University of Vienna, 1090, Vienna, Austria
- School of Engineering, RMIT University, 3000, Melbourne, VIC, Australia
| | - Christof Brücke
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, 24105, Kiel, Germany
| | - Heidemarie Zach
- Department of Neurology, Medical University of Vienna, Waehringerstrasse 18-21, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Moraca GAG, Orcioli-Silva D, Legutke BR, Gutierrez PP, Sirico TM, Zampier VC, Beretta VS, Gobbi LTB, Barbieri FA. Aerobic exercise on the treadmill combined with transcranial direct current stimulation on the gait of people with Parkinson's disease: A protocol for a randomized clinical trial. PLoS One 2024; 19:e0300243. [PMID: 38662740 PMCID: PMC11045059 DOI: 10.1371/journal.pone.0300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gait impairments negatively affect the quality of life of people with Parkinson's disease (PwPD). Aerobic exercise (AE) is an alternative to alleviate these impairments and its combination with transcranial direct current stimulation (tDCS) has demonstrated synergistic effects. However, the effect of multitarget tDCS application (i.e., motor, and prefrontal cortices simultaneously) combined with physical exercise on gait impairments is still little known. Thus, the proposed randomized clinical trial will verify the acute effects of AE combined with tDCS applied on motor and prefrontal cortices separately and simultaneously on gait (spatial-temporal and cortical activity parameters) in PwPD. Twenty-four PwPD in Hoehn & Yahr stages I-III will be recruited for this crossover study. PwPD will practice AE on treadmill simultaneously with the application of anodal tDCS during four intervention sessions on different days (∼ one week of interval). Active tDCS will be applied to the primary motor cortex, prefrontal cortex, and both areas simultaneously (multitarget), with an intensity of 2 mA for 20 min. For sham, the stimulation will remain at 2 mA for 10 s. The AE will last a total of 30 min, consisting of warm-up, main part (20 min with application of tDCS), and recovery. Exercise intensity will be controlled by heart rate. Spatial-temporal and cortical activity parameters will be acquired before and after each session during overground walking, walking with obstacle avoidance, and walking with a cognitive dual task at self-preferred velocity. An accelerometer will be positioned on the fifth lumbar vertebra to obtain the spatial-temporal parameters (i.e., step length, duration, velocity, and swing phase duration). Prefrontal cortex activity will be recorded from a portable functional near-infrared spectroscopy system and oxygenated and deoxygenated hemoglobin concentrations will be analyzed. Two-way ANOVAs with repeated measures for stimulation and moment will be performed. The findings of the study may contribute to improving gait in PwPD. Trial registration: Brazilian Clinical Trials Registry (RBR-738zkp7).
Collapse
Affiliation(s)
- Gabriel Antonio Gazziero Moraca
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| | - Diego Orcioli-Silva
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Beatriz Regina Legutke
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Pedro Paulo Gutierrez
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Thiago Martins Sirico
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Vinicius Cavassano Zampier
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| | - Victor Spiandor Beretta
- School of Technology and Sciences, Department of Physical Education, São Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Lilian Teresa Bucken Gobbi
- Posture and Gait Studies Laboratory, Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University, Bauru, São Paulo, Brazil
| |
Collapse
|
4
|
Lombardi G, Baccini M, Gualerzi A, Pancani S, Campagnini S, Doronzio S, Longo D, Maselli A, Cherubini G, Piazzini M, Ciapetti T, Polito C, Pinna S, De Santis C, Bedoni M, Macchi C, Ramat S, Cecchi F. Comparing the effects of augmented virtual reality treadmill training versus conventional treadmill training in patients with stage II-III Parkinson's disease: the VIRTREAD-PD randomized controlled trial protocol. Front Neurol 2024; 15:1338609. [PMID: 38327625 PMCID: PMC10847255 DOI: 10.3389/fneur.2024.1338609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background Intensive treadmill training (TT) has been documented to improve gait parameters and functional independence in Parkinson's Disease (PD), but the optimal intervention protocol and the criteria for tailoring the intervention to patients' performances are lacking. TT may be integrated with augmented virtual reality (AVR), however, evidence of the effectiveness of this combined treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, potentially useful to customize the treatment, are currently missing. The primary aim of this study is to compare the effects on gait performances of TT + AVR versus TT alone in II-III stage PD patients with gait disturbance. Secondary aims are to assess the effects on balance, gait parameters and other motor and non-motor symptoms, and patient's satisfaction and adherence to the treatment. As an exploratory aim, the study attempts to identify biomarkers of neuroplasticity detecting changes in Neurofilament Light Chain concentration T0-T1 and to identify prognostic biomarkers associated to blood-derived Extracellular Vesicles. Methods Single-center, randomized controlled single-blind trial comparing TT + AVR vs. TT in II-III stage PD patients with gait disturbances. Assessment will be performed at baseline (T0), end of training (T1), 3 (T2) and 6 months (T3, phone interview) from T1. The primary outcome is difference in gait performance assessed with the Tinetti Performance-Oriented Mobility Assessment gait scale at T1. Secondary outcomes are differences in gait performance at T2, in balance and spatial-temporal gait parameters at T1 and T2, patients' satisfaction and adherence. Changes in falls, functional mobility, functional autonomy, cognition, mood, and quality of life will be also assessed at different timepoints. The G*Power software was used to estimate a sample size of 20 subjects per group (power 0.95, α < 0.05), raised to 24 per group to compensate for potential drop-outs. Both interventions will be customized and progressive, based on the participant's performance, according to a predefined protocol. Conclusion This study will provide data on the possible superiority of AVR-associated TT over conventional TT in improving gait and other motor and non-motor symptoms in persons with PD and gait disturbances. Results of the exploratory analysis could add information in the field of biomarker research in PD rehabilitation.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Marco Baccini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Silvia Pancani
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Stefano Doronzio
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Diego Longo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Maselli
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Technical-Health Professions, Rehabilitation, and Prevention, Campostaggia Hospital, Poggibonsi (SI), USL Toscana Sudest, Italy
| | - Giulio Cherubini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | | - Samuele Pinna
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara De Santis
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Ramat
- Parkinson Unit, Department of NeuroMuscular-Skeletal and Sensorial Organs, AOU Careggi, Florence, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Declerck L, Gillot M, Goffaux C, Kaux JF, Stoquart G. Neurological conditions and community-based physical activity: physical therapists' belief and actions. Arch Physiother 2024; 14:70-79. [PMID: 39364377 PMCID: PMC11448236 DOI: 10.33393/aop.2024.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Physical therapists (PTs) are key actors in physical activity (PA) promotion. However, it remains unclear whether PTs in community settings promote community-based PA such as adapted physical activity (APA) and adaptive sports (AS) to their patients with neurological conditions (NCs). The main purposes were to evaluate the beliefs PTs have of APA and AS, and to explore actions they undertake to promote it to their patients with NCs. Methods An online survey was created specifically for the study. PT associations and institutions were contacted and licensed PTs working in community-based settings, treating at least one patient with a NC, were invited to participate. Questionnaires were analyzed only if all mandatory questions had been answered. Results A total of 165 questionnaires were analyzed. PTs reported prioritizing active treatment. They viewed APA and AS as beneficial for their patients with NCs; however, its promotion remained largely infrequent due to a number of barriers. The PTs' own level of PA seemed to significantly influence their beliefs of the benefits of APA and AS (p = 0.001), while being specialized in neurologic physical therapy enabled the PTs to increase frequency of promotion (p = 0.003). Conclusion Though community-based PTs are aware of the importance of PA for individuals with NCs, they face difficulties in promoting it to their patients. However, these difficulties are reduced among PTs who are specialized in neurologic physical therapy. Efforts should be made toward educating PTs to neurological pathologies and their specificities when it comes to PA.
Collapse
Affiliation(s)
- Louise Declerck
- Neuromusculoskeletal Lab, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels - Belgium
| | - Mathilde Gillot
- Neuromusculoskeletal Lab, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels - Belgium
| | - Charlotte Goffaux
- Neuromusculoskeletal Lab, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels - Belgium
| | - Jean-François Kaux
- ReFORM IOC Research Centre for Prevention of Injury and Protection of Athlete Health, Liège - Belgium
- Physical Medicine and Sport Traumatology Department, SportS2, FIFA Medical Centre of Excellence, FIMS Collaborative Centre of Sports Medicine, University and University Hospital of Liege, Liège - Belgium
| | - Gaëtan Stoquart
- Neuromusculoskeletal Lab, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels - Belgium
- Physical and Rehabilitation Medicine Department, Cliniques Universitaire Saint-Luc, Brussels - Belgium
| |
Collapse
|
6
|
Aswar S, Yerrabandi V, Moncy MM, Boda SR, Jones J, Purkayastha S. Generalizability of Human Activity Recognition Machine Learning Models from non-Parkinson's to Parkinson's Disease Patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082641 DOI: 10.1109/embc40787.2023.10340065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent evidence shows that high-intensity exercises reduce tremors and stiffness in Parkinson's disease (PD). However, there is insufficient evidence on the types of exercises; in effect, high-intensity may be a personalized measure. Recent progress in automated Human Activity Recognition using machine learning (ML) models shows potential for better monitoring of PD patients. However, ML models must be calibrated to ignore tremors and accurately identify activity and its intensity. We report findings from a study where we trained ML models using data from medically validated triple synchronous sensors connected to 8 non-PD subjects performing 32 exercises. We then tested the models to identify exercises performed by 8 PD patients at different stages of the disease. Our analysis shows that better data preprocessing before modeling can provide some model generalizability. However, it is extremely challenging, as the models work with high accuracy on one group (Healthy or PD patients) (F1=0.88-0.94) but not on both groups.Clinical relevance-Patients with Parkinson's and other motor-generative diseases can now accurately measure physical activity with machine learning approaches. Clinicians, caregivers, and apps can make accurate, personalized exercise recommendations to augment medications that reduce tremors and stiffness.
Collapse
|
7
|
Chen CY, Wang WN, Lu MK, Yang YW, Yu T, Wu TN, Tsai CH. The Rehabilitative Effect of Archery Exercise Intervention in Patients with Parkinson's Disease. PARKINSON'S DISEASE 2023; 2023:9175129. [PMID: 37333719 PMCID: PMC10270763 DOI: 10.1155/2023/9175129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Background Archery exercise exerts a rehabilitative effect on patients with paraplegia and might potentially serve as complementary physiotherapy for patients with Parkinson's disease. Objective This study aimed to examine the rehabilitative effects of an archery intervention. Methods A randomized controlled trial of a 12-week intervention was performed in patients with idiopathic Parkinson's disease. Thirty-one of the 39 eligible patients recruited from a medical center in Taiwan participated in the trial, of whom 16 were in the experimental group practicing archery exercises and 15 were in the control group at the beginning; twenty-nine completed the whole process. The Purdue pegboard test (PPT), the Unified Parkinson's Disease Rating Scale I to III (UPDRS I to III), physical fitness test, and timed up and go test (TUG) were used to assess the intervention effects of archery exercise. Results Compared to the control group, the outcome differences between the posthoc and baseline tests in PPT, UPDRS I to III, lower extremity muscular strength, and TUG in the experimental group (between-group difference in difference's mean: 2.07, 1.59, 1.36, -2.25, -3.81, -9.10, 3.57, and -1.51, respectively) did show positive changes and their effect sizes examined from Mann-Whitney U tests (η: 0.631, 0.544, 0.555, 0.372, 0.411, 0.470, 0.601, and 0.381, respectively; Ps < 0.05) were medium to large, indicating that the archery intervention exerted promising effects on improving hand flexibility and finger dexterity, activity functions in motor movement, lower extremity muscular strength, and gait and balance ability. Conclusions Traditional archery exercise was suggested to have a rehabilitative effect for mild to moderate Parkinson's disease and could be a form of physiotherapy. Nevertheless, studies with larger sample sizes and extended intervention periods are needed to ascertain the long-term effects of archery exercise.
Collapse
Affiliation(s)
- Chiu-Ying Chen
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Nursing and Graduate Institute of Nursing, Asia University, Taichung, Taiwan
| | - Wei-Ning Wang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Kuei Lu
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Ph.D. Program for Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Yu-Wan Yang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Trong-Neng Wu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Kim E, Kim H, Yun SJ, Kang MG, Shin HI, Oh BM, Seo HG. Effects of gait training on structural brain changes in Parkinson's disease. Restor Neurol Neurosci 2023:RNN221295. [PMID: 37066925 DOI: 10.3233/rnn-221295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Gait training may lead to functional brain changes in Parkinson's disease (PD); however, there is a lack of studies investigating structural brain changes after gait training in PD. OBJECTIVE To investigate structural brain changes induced by 4 weeks of gait training in individuals with PD. METHODS Diffusion tensor imaging and structural T1 images were acquired in PD group before and after robot-assisted gait training or treadmill training, and in healthy control group. Tract-based spatial statistics and tensor-based morphometry were conducted to analyze the data. The outcome of gait training was assessed by gait speed and dual-task interference of cognitive or physical tests of the 10-meter walking test representing gait automaticity. The associations between structural brain changes and these outcomes were investigated using correlation analysis. RESULTS A total of 31 individuals with PD (68.5±8.7 years, the Hoehn & Yahr stage of 2.5 or 3) and 28 healthy controls (66.6±8.8 years) participated in this study. Compared to the controls, PD group at baseline showed a significant increased fractional anisotropy (FA) in the right forceps minor and bilateral brainstem and reduced radial diffusivity (RD) in the right superior longitudinal fasciculus, as well as the expanded structural volumes in the several brain areas. After gait training, FA increased in the left internal capsule and it decreased in the left cerebellar Crus I, while the structural volume did not change. The increased FA in the left internal capsule positively correlated with the baseline gait speed and negatively correlated with gait speed improvement; moreover, the decreased FA in the left cerebellum Crus I negatively correlated with the baseline gait speed during the cognitive task. CONCLUSIONS Gait training induces white matter changes in the brain of individuals with PD, which suggests the improvement of brain structural pathology to mitigate the impact of neurodegenerative consequences.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heejae Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Gu Kang
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Iee Shin
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Harro CC, Shoemaker MJ, Coatney CM, Lentine VE, Lieffers LR, Quigley JJ, Rollins SG, Stewart JD, Hall J, Khoo SK. Effects of nordic walking exercise on gait, motor/non-motor symptoms, and serum brain-derived neurotrophic factor in individuals with Parkinson's disease. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1010097. [PMID: 36311206 PMCID: PMC9614339 DOI: 10.3389/fresc.2022.1010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Objective The primary purpose of this study was to investigate the immediate and long-term effects of Nordic Walking (NW) exercise on walking function, motor/non-motor Parkinson's Disease (PD) symptoms, and serum brain-derived neurotrophic factor (BDNF) in persons with idiopathic PD. Methods Twelve community-dwelling participants with mild to moderate idiopathic PD and varied degrees of gait dysfunction were recruited for this prospective, repeated measures design that examined clinical measures and BDNF levels at baseline (T0), post-intervention (T1) and 3-month follow-up (T2). Participants engaged in 6 weeks of supervised NW exercise training with individualized instruction, followed by 14 weeks of independent NW exercise with remote coaching. Outcome measurements included daily step counts, 6-Minute Walk Test (6-MinWT), 10-Meter Walk Test (10MWT), spatiotemporalparameters, Timed Up and Go Test (TUG), dual-task TUG, Revised-Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Revised-Freezing of Gait Questionnaire, MDS-Nonmotor Symptom scale (NMS), Parkinson's Fatigue Scale, and serum BDNF levels. The Friedman test with post hoc Wilcoxon sign-ranked pairwise comparisons were used to compare baseline to T1, baseline to T2, and T1 to T2 timepoints with a Benjamini-Hockberg correction applied. Results Statistically significant improvements found post-training and retained at 3-month follow-up included 6-MinWT, daily step count, 10mWT, MDS-UPDRS, and TUG with effect sizes of 0.57 to 1.03. Serum BDNF at T2 was significantly greater than T0 and T1. Although no statistically significant improvements were observed in the MDS-NMS, 9 of 12 participants had improved non-motor symptoms. There was good adherence, sustained independent exercise engagement, and no adverse events over the 5-month study duration. Conclusions This study demonstrated that NW exercise was a safe, feasible, and sustainable mode of aerobic exercise for this sample of participants with varied Parkinson's disease duration and severity. Following an individualized and progressive NW training intervention, significant improvements in walking function, daily activity level, and motor function were observed. Following the supervised NW training phase, independent three-month engagement in NW exercise was sustained with long-term retention of these clinical improvements and an increase in serum BDNF levels over this five-month NW exercise trial. Impact Nordic walking exercise may be a safe, feasible and sustainable mode of independent exercise for improving daily ambulatory activity, gait and motor function, and serum BDNF in individuals with mild to moderate PD with varied gait abilities. Clinical Trials Registry ID 20-101-H.
Collapse
Affiliation(s)
- Cathy C. Harro
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States,Correspondence: Cathy Harro
| | - Michael J Shoemaker
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Cassandra M. Coatney
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Valerie E. Lentine
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Lillian R. Lieffers
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Jessica J. Quigley
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Shannon G. Rollins
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Jonathan D. Stewart
- Department of Physical Therapy and Athletic Training, Grand Valley State University, Grand Rapids, MI, United States
| | - Julie Hall
- Department of Medical Laboratory Science, Grand Valley State University, Grand Rapids, MI, United States
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, MI, United States
| |
Collapse
|
10
|
Gaßner H, Trutt E, Seifferth S, Friedrich J, Zucker D, Salhani Z, Adler W, Winkler J, Jost WH. Treadmill training and physiotherapy similarly improve dual task gait performance: a randomized-controlled trial in Parkinson's disease. J Neural Transm (Vienna) 2022; 129:1189-1200. [PMID: 35697942 PMCID: PMC9463305 DOI: 10.1007/s00702-022-02514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022]
Abstract
Motor-cognitive dual tasks are used to investigate the interplay between gait and cognition. Dual task walking in patients with Parkinson's disease (PD) results in decreased gait speed and more importantly in an increased fall risk. There is evidence that physical training may improve gait during dual task challenge. Physiotherapy and treadmill walking are known to improve single task gait. The aim of this study was to investigate the impact of individualized physiotherapy or treadmill training on gait during dual task performance. 105 PD patients were randomly assigned to an intervention group (physiotherapy or treadmill). Both groups received 10 individual interventional sessions of 25 min each and additional group therapy sessions for 14 days. Primary outcome measure was the dual task gait speed. Secondary outcomes were additional gait parameters during dual task walking, UPDRS-III, BBS and walking capacity. All gait parameters were recorded using sensor-based gait analysis. Gait speed improved significantly by 4.2% (treadmill) and 8.3% (physiotherapy). Almost all secondary gait parameters, UPDRS-III, BBS, and walking capacity improved significantly and similarly in both groups. However, interaction effects were not observed. Both interventions significantly improved gait in patients with mild to moderate PD. However, treadmill walking did not show significant benefits compared to individualized physiotherapy. Our data suggest that both interventions improve dual task walking and therefore support safe and independent walking. This result may lead to more tailored therapeutic preferences.
Collapse
Affiliation(s)
- Heiko Gaßner
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Molekulare Neurologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
- Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058, Erlangen, Germany.
| | | | - Sarah Seifferth
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Molekulare Neurologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jana Friedrich
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Molekulare Neurologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | - Werner Adler
- Institut für Medizininformatik, Biometrie und Epidemiologie, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Molekulare Neurologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | | |
Collapse
|
11
|
Hendry GJ, Bearne L, Foster NE, Godfrey E, Hider S, Jolly L, Mason H, McConnachie A, McInnes IB, Patience A, Sackley C, Sekhon M, Stanley B, van der Leeden M, Williams AE, Woodburn J, Steultjens MPM. Gait rehabilitation for foot and ankle impairments in early rheumatoid arthritis: a feasibility study of a new gait rehabilitation programme (GREAT Strides). Pilot Feasibility Stud 2022; 8:115. [PMID: 35637495 PMCID: PMC9150324 DOI: 10.1186/s40814-022-01061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Foot impairments in early rheumatoid arthritis are common and lead to progressive deterioration of lower limb function. A gait rehabilitation programme underpinned by psychological techniques to improve adherence, may preserve gait and lower limb function. This study evaluated the feasibility of a novel gait rehabilitation intervention (GREAT Strides) and a future trial. Methods This was a mixed methods feasibility study with embedded qualitative components. People with early (< 2 years) rheumatoid arthritis (RA) and foot pain were eligible. Intervention acceptability was evaluated using a questionnaire. Adherence was evaluated using the Exercise Adherence Rating Scale (EARS). Safety was monitored using case report forms. Participants and therapists were interviewed to explore intervention acceptability. Deductive thematic analysis was applied using the Theoretical Framework of Acceptability. For fidelity, audio recordings of interventions sessions were assessed using the Motivational Interviewing Treatment Integrity (MITI) scale. Measurement properties of four candidate primary outcomes, rates of recruitment, attrition, and data completeness were evaluated. Results Thirty-five participants (68.6% female) with median age (inter-quartile range [IQR]) 60.1 [49.4–68.4] years and disease duration 9.1 [4.0–16.2] months), were recruited and 23 (65.7%) completed 12-week follow-up. Intervention acceptability was excellent; 21/23 were confident that it could help and would recommend it; 22/23 indicated it made sense to them. Adherence was good, with a median [IQR] EARS score of 17/24 [12.5–22.5]. One serious adverse event that was unrelated to the study was reported. Twelve participants’ and 9 therapists’ interviews confirmed intervention acceptability, identified perceptions of benefit, but also highlighted some barriers to completion. Mean MITI scores for relational (4.38) and technical (4.19) aspects of motivational interviewing demonstrated good fidelity. The Foot Function Index disability subscale performed best in terms of theoretical consistency and was deemed most practical. Conclusion GREAT Strides was viewed as acceptable by patients and therapists, and we observed high intervention fidelity, good patient adherence, and no safety concerns. A future trial to test the additional benefit of GREAT Strides to usual care will benefit from amended eligibility criteria, refinement of the intervention and strategies to ensure higher follow-up rates. The Foot Function Index disability subscale was identified as the primary outcome for the future trial. Trial registration ISRCTN14277030 Supplementary Information The online version contains supplementary material available at 10.1186/s40814-022-01061-9.
Collapse
|
12
|
Landers MR, Ellis TD. A Mobile App Specifically Designed to Facilitate Exercise in Parkinson Disease: Single-Cohort Pilot Study on Feasibility, Safety, and Signal of Efficacy. JMIR Mhealth Uhealth 2020; 8:e18985. [PMID: 33016887 PMCID: PMC7573700 DOI: 10.2196/18985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background Many people with Parkinson disease do not have access to exercise programs that are specifically tailored to their needs and capabilities. This mobile app allows people with Parkinson disease to access Parkinson disease–specific exercises that are individually tailored using in-app demographic questions and performance tests which are fed into an algorithm which in turn produces a video-guided exercise program. Objective To test the feasibility, safety, and signal of efficacy of a mobile app that facilitates exercise for people with Parkinson disease. Methods A prospective, single-cohort design of people with Parkinson disease who had downloaded the 9zest app for exercise was used for this 12-week pilot study. Participants, who were recruited online, were encouraged to exercise with the full automated app for ≥150 minutes each week. The primary endpoints were feasibility (app usage and usability questions) and safety (adverse events and falls). The primary endpoints for signal of efficacy were a comparison of the in-app baseline and 8-week outcomes on the 30-second Sit-To-Stand (STS) test, Timed Up and Go (TUG) test, and the Parkinson’s Disease Questionnaire 8 (PDQ8). Results For feasibility, of the 28 participants that completed the study, 12 participants averaged >150 minutes of app usage per week (3 averaged 120-150, 4 averaged 90-120, and 9 averaged less than 90 minutes). A majority of participants (>74%) felt the exercise was of value (16/19; 9 nonrespondents), provided adequate instruction (14/19; 9 nonrespondents), and was appropriate for level of function (16/19; 9 nonrespondents). For safety, there were no serious adverse events that occurred during the app-guided exercise. There were 4 reports of strain/sprain injuries while using the app among 3 participants, none of which necessitated medical attention. For signal of efficacy, there was improvement for each of the primary endpoints: STS (P=.01), TUG (P<.001), and PDQ8 (P=.01). Conclusions Independent, video-guided exercise using a mobile app designed for exercise in Parkinson disease was safe and feasible though there was variability in app usage. Despite this, the results provide evidence for a signal of efficacy as there were improvements in 3 of the 3 outcomes. Trial Registration ClinicalTrials.gov NCT03459586; https://clinicaltrials.gov/ct2/show/NCT03459586
Collapse
Affiliation(s)
- Merrill R Landers
- Department of Physical Therapy, School of Integrative Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Terry D Ellis
- Department of Physical Therapy and Athletic Training, College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Crotty GF, Schwarzschild MA. Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression? Front Aging Neurosci 2020; 12:186. [PMID: 32636740 PMCID: PMC7318912 DOI: 10.3389/fnagi.2020.00186] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise may be the most commonly offered yet least consistently followed therapeutic advice for people with Parkinson's disease (PD). Epidemiological studies of prospectively followed cohorts have shown a lower risk for later developing PD in healthy people who report moderate to high levels of physical activity, and slower rates of motor and non-motor symptom progression in people with PD who report higher baseline physical activity. In animal models of PD, exercise can reduce inflammation, decrease α-synuclein expression, reduce mitochondrial dysfunction, and increase neurotrophic growth factor expression. Randomized controlled trials of exercise in PD have provided clear evidence for short-term benefits on many PD measurements scales, ranging from disease severity to quality of life. In this review, we present these convergent epidemiological and laboratory data with particular attention to translationally relevant features of exercise (e.g., intensity requirements, gender differences, and associated biomarkers). In the context of these findings we will discuss clinical trial experience, design challenges, and emerging opportunities for determining whether exercise can prevent PD or slow its long-term progression.
Collapse
Affiliation(s)
- Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
14
|
Abstract
BACKGROUND AND PURPOSE Impaired gait, balance, and motor function are common in Parkinson disease (PD) and may lead to falls and injuries. Different forms of exercise improve motor function in persons with PD, but determining which form of exercise is most effective requires a direct comparison of various approaches. In this prospective, controlled trial, we evaluated the impact of tango, treadmill walking, and stretching on gait, balance, motor function, and quality of life. We hypothesized tango and treadmill would improve forward walking and motor symptom severity, and tango would also improve backward walking, balance, and quality of life. METHODS Ninety-six participants (age: 67.2 ± 8.9 years, 42% female) with mild to moderate idiopathic PD were serially assigned to tango, treadmill walking, or stretching (active control group) and attended 1-hour classes twice weekly for 12 weeks. Assessments occurred OFF anti-PD medication before and after the intervention and at follow-up 12 weeks after the intervention. RESULTS Forward velocity and backward velocity improved for the treadmill group from baseline to posttest and improvements persisted at follow-up. Backward velocity and motor functioning improved for the stretching group from baseline to posttest, but results did not persist at follow-up. There were no significant changes in the tango group across time points. DISCUSSION AND CONCLUSIONS Contrary to our hypotheses, only treadmill improved forward walking, while backward walking improved with treadmill and stretching. Future research should examine combinations of exercises with a focus on optimizing dosing and examining whether specific characteristics of people with PD correlate with different types of exercise.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A237).
Collapse
|
15
|
Li Q, Liu J, Dai F, Dai F. Tai Chi versus routine exercise in patients with early- or mild-stage Parkinson's disease: a retrospective cohort analysis. Braz J Med Biol Res 2020; 53:e9171. [PMID: 32049101 PMCID: PMC7013627 DOI: 10.1590/1414-431x20199171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease cannot be cured but symptoms can be improved by making use of physical therapy. The objective of the study was to compare the effect of routine exercises and Tai Chi on physical and clinical performance in elderly people suffering from Parkinson's disease. Data from interviews, physical and clinical performance, and levodopa consumption of 500 patients with confirmed Parkinson's disease (severity level I to III) were collected and analyzed. Participants who received 80 min/day Tai Chi 3 times/week for 2 months were included in the Tai Chi (TC) group (n=250) and those who received 90 min/day routine exercise 3 times/week for 2 months were included in routine exercise (RE) group (n=250). Timed up-and-go, 50-foot speed walk, and functional reach were improved by Tai Chi and routine exercise (P<0.05 for all) but intensities of Tai Chi for improvement of such parameters was higher than routine exercise. Incidence of falls was decreased by both physical therapies (P<0.05 for all) but more for the TC group (P<0.0001, q=38.512). In the TC group, at the end of follow-up, 22 (9%) patients were successful in withdrawal of levodopa treatment. Also, the dose of levodopa was decreased in patients of the TC group who had to continue levodopa. Tai Chi had the potential to slow down the progression of symptoms of Parkinson's disease and delayed the introduction of levodopa (level of evidence: III).
Collapse
Affiliation(s)
- Quanhao Li
- Department of Neurology, Gaomi People's Hospital, Gaomi, Shandong, China
| | - Jinmei Liu
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong, China
| | - Fei Dai
- Department of Gastroenterology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Fengling Dai
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong, China
| |
Collapse
|
16
|
Predictive Factors of Concerns about Falling in People with Parkinson's Disease: A 3-Year Longitudinal Study. PARKINSONS DISEASE 2019; 2019:4747320. [PMID: 31915520 PMCID: PMC6930729 DOI: 10.1155/2019/4747320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/14/2019] [Accepted: 11/14/2019] [Indexed: 01/11/2023]
Abstract
Introduction Fear of falling (FOF) is more common in people with Parkinson's disease (PD) than in healthy controls. It can lead to several negative consequences such as restrictions in everyday life. Moreover, FOF is a risk factor for future falls. Aim This study aimed to identify predictive factors of FOF (conceptualized as concerns about falling) after three years, with and without adjusting for concerns about falling at baseline, in people with PD. Methods This study included 151 participants (35% women) with PD. At baseline, their mean (SD) age and PD duration were 68 (±9.0) and 9 (±6.1) years, respectively. The Falls Efficacy Scale-International (FES-I) was used as the dependent variable in multivariable linear regression analyses. Results The mean (SD) FES-I score increased from 28.1 (11.9) to 33.1 (14.0) three years later (p < 0.001). The strongest (according to the standardized regression coefficient, β) predictor of concerns about falling was walking difficulties (β = 0.378), followed by age (0.227), problems maintaining balance while dual tasking (0.172), and needing help in daily activities (0.171). When adjusting for baseline FES-I scores, the strongest predictive factor was problems maintaining balance while dual tasking (β = 0.161), which was followed by age (0.131) and female sex (0.105). Conclusions This study pinpoints several predictive factors of concerns about falling that are modifiable and which could be addressed in rehabilitation: perceived walking difficulties, having problems maintaining balance while dual tasking, and dependence on others in daily activities. The importance of dual tasking is a novel finding, which future studies need to confirm or refute. One should be aware of the fact that an increased age predicts concerns about falling with and without adjusting for baseline FES-I scores, whereas female sex predicts concerns about falling only when adjusting for baseline FES-I scores.
Collapse
|
17
|
Cuperus AA, Disco RT, Sligte IG, van der Kuil MNA, Evers AWM, van der Ham IJM. Memory-related perceptual illusions directly affect physical activity in humans. PLoS One 2019; 14:e0216988. [PMID: 31095650 PMCID: PMC6522029 DOI: 10.1371/journal.pone.0216988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/02/2019] [Indexed: 11/18/2022] Open
Abstract
Perceptual illusions help us understand deficits in human perception, but they also have the potential to serve as treatment methods; e.g., to alleviate phantom limb pain. Treatment effects are usually the direct result of a mismatch between false visual feedback and somatosensory/proprioceptive feedback. We aimed to influence physical activity (walking distance) using a memory-related perceptual illusion that relies on a mismatch between a spatially manipulated virtual reality environment and a weakness of memory for a similar, previously experienced environment. Participants' main task was to reproduce a baseline distance three times, by walking on a treadmill while moving through a virtual reality environment. Depending on condition, the environment was either stretched or compressed relative to the previous session, but participants were not informed about these manipulations. Because false, suggestive information can lead to alterations in memory, especially when conveyed through 'rich' forms of media such as virtual reality, we expected each manipulation to alter memory for the previous environment(s) and we hypothesized that this would influence walking distance. The results for the first time showed that memory-related perceptual illusions can directly affect physical activity in humans. The effects we found are substantial; stretching previously experienced virtual environments led participants to almost double their initial walking distance, whereas compressing the environments resulted in about half of the initial distance. Possible clinical applications arising from these findings are discussed.
Collapse
Affiliation(s)
- Anne A. Cuperus
- Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
| | - Rico T. Disco
- Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilja G. Sligte
- Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Andrea W. M. Evers
- Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Shahidani S, Rajaei Z, Alaei H. Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metab Brain Dis 2019; 34:459-468. [PMID: 30652256 DOI: 10.1007/s11011-018-0379-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) are preceded by non-motorized symptoms including memory deficits. Treatment with dopamine replacement medications, such as L-DOPA only control motor symptoms and does not meet the clinical challenges of the disease, such as dyskinesia, non-motor symptoms, and neuroprotection. The purpose of the current study was to examine the neuroprotective potential of crocin and physical exercise in an animal model of PD. Male Wistar rats ran on a horizontal treadmill and/or pretreated with crocin at a dose of 100 mg/kg. Then, 16 μg of the neurotoxin 6-hydroxydopamine (6-OHDA) was microinjected into left medial forebrain bundle. Crocin treatment and/or exercise continued for 6 more weeks. Spatial and aversive memories, rotational behaviour, inflammatory and oxidative stress parameters were assessed at the end of week 6 post surgery. The results showed that pretreatment with crocin alone and in combination with exercise decreased the total number of rotaions as compared with 6-OHDA-lesioned group. Furthermore, treatment of parkinsonian rats with crocin along with exercise training improved aversive and spatial memories. Biochemical analysis showed that crocin and exercise (alone and in combination) reduced tumor necrosis factor- (TNF) α levels in the striatum. Moreover, treatment with crocin at a dose of 100 mg/kg decreased the lipid peroxidation levels in the hippocampus, while exercise training increased the total thiol concentration. In conclusion, our findings indicated that pretreatment with crocin along with treadmill exercise ameliorated motor and memory deficits induced by 6-OHDA, which is considered to be due to their antioxidant and anti-inflammatory activities. The results suggest that combined therapy with crocin and exercise may be protective for motor and memory deficits in PD patients.
Collapse
Affiliation(s)
- Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Buchman AS, Yu L, Wilson RS, Lim A, Dawe RJ, Gaiteri C, Leurgans SE, Schneider JA, Bennett DA. Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology 2019; 92:e811-e822. [PMID: 30651386 DOI: 10.1212/wnl.0000000000006954] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To examine the associations of physical activity, Alzheimer disease (AD), and other brain pathologies and cognition in older adults. METHODS We studied 454 brain autopsies from decedents in a clinical-pathologic cohort study. Nineteen cognitive tests were summarized in a global cognitive score. Total daily physical activity summarized continuous multiday recordings of activity during everyday living in the community setting. A global motor ability score summarized 10 supervised motor performance tests. A series of regression analyses were used to examine associations of physical activity, AD, and other brain pathologies with global cognition proximate to death controlling for age, sex, education, and motor abilities. RESULTS Higher levels of total daily activity (estimate 0.148, 95% confidence interval 0.053-0.244, SE 0.049, p = 0.003) and better motor abilities (estimate 0.283, 95% confidence interval, 0.175-0.390, SE 0.055, p < 0.001) were independently associated with better cognition. These independent associations remained significant when terms for AD and other pathologies were added as well as in sensitivity analyses excluding cases with poor cognition or dementia. Adding interaction terms, the associations of total daily activity and motor abilities with cognition did not vary in individuals with and without dementia. The associations of AD and other pathologies with cognition did not vary with the levels of total daily activity or motor abilities. CONCLUSIONS Physical activity in older adults may provide cognitive reserve to maintain function independent of the accumulation of diverse brain pathologies. Further studies are needed to identify the molecular mechanisms underlying this potential reserve and to ensure the causal effects of physical activity.
Collapse
Affiliation(s)
- Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada.
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Robert S Wilson
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Andrew Lim
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Robert J Dawe
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Chris Gaiteri
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Sue E Leurgans
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| |
Collapse
|
20
|
Pistoia F, Sarà M, Carolei A, Sacco S. Commentary: Why Your Body Can Jog Your Mind. Front Psychol 2018; 9:33. [PMID: 29472877 PMCID: PMC5809815 DOI: 10.3389/fpsyg.2018.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| | - Marco Sarà
- Post-Coma Rehabilitative Care Unit, San Raffaele Hospital, Cassino, Italy
| | - Antonio Carolei
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, Neurological Institute, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Physiotherapy in Parkinson's Disease: Building ParkinsonNet in Czechia. PARKINSONS DISEASE 2017; 2017:8921932. [PMID: 28611932 PMCID: PMC5458379 DOI: 10.1155/2017/8921932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 11/28/2022]
Abstract
Objective We conducted a questionnaire survey to investigate the availability and quality of physiotherapy (PT) for Parkinson's disease (PD). Background Despite evidence about the benefits of PT, there is no data regarding its use in Czechia. Methods Questionnaires were sent to 368 PD patients seen in a single movement disorders centre within two years (inclusion criteria: idiopathic PD, Hoehn and Yahr stage <5, and residence in Prague) and to 211 physical therapists (PTs) registered in Prague. The patient questionnaire evaluated limitations in 6 core areas and in activities of daily living and inquired about experience with PT. The PTs questionnaire evaluated knowledge about PD, number of PD patients treated yearly, and details of therapy. Results Questionnaires were returned by 248 patients and 157 PTs. PT was prescribed to 70/248 patients. The effects were satisfactory in 79% and lasted >3 months in 60/64. About half of the PTs have no experience with PD patients, 26% reported <3, and 5% see >10 yearly. The most widely used techniques were neurodevelopmental treatments. Conclusion Present PD healthcare model in Czechia is suboptimal (low PT prescription, non-evidence-based PT). Implementation of European PT Guidelines for PD and the introduction of an efficient model of care are needed.
Collapse
|
22
|
Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol 2017; 128:1127-1141. [PMID: 28511125 DOI: 10.1016/j.clinph.2017.03.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/14/2017] [Accepted: 03/19/2017] [Indexed: 12/16/2022]
Abstract
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD.
Collapse
Affiliation(s)
- Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Department of Neuroscience, University of Messina, Italy; The Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Giuseppe Frazzitta
- Department of Parkinson's Disease and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Gravedona ed Uniti, Como, Italy
| | - Maria Felice Ghilardi
- Department of Physiology, Pharmacology & Neuroscience, CUNY School of Medicine, New York, NY, USA; The Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Rehabilitation in progressive supranuclear palsy: Effectiveness of two multidisciplinary treatments. PLoS One 2017; 12:e0170927. [PMID: 28158197 PMCID: PMC5291505 DOI: 10.1371/journal.pone.0170927] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND to date, there are no medical or surgical treatments for progressive supranuclear palsy (PSP). It is possible to speculate that patients with PSP could benefit from rehabilitative treatments designed for Parkinson's disease, including the use of robot-assisted walking training. OBJECTIVE to evaluate whether the use of the robotic device Lokomat® is superior in PSP patients to the use of treadmill with visual cues and auditory feedbacks (treadmill-plus) in the context of an aerobic, multidisciplinary, intensive, motor-cognitive and goal-based rehabilitation treatment (MIRT) conceived for Parkinsonian patients. METHODS we enrolled twenty-four PSP patients. Twelve subjects underwent a 4-week MIRT exploiting the use of the treadmill-plus (MIRT group). Twelve subjects underwent the same treatment, but replacing the treadmill-plus with Lokomat® (MIRT-Lokomat group). Subjects were evaluated with clinical and functional scales at admission and discharge. The primary outcomes were the total PSP Rating Scale (PSPRS) score and its "limb" and "gait" sub-scores. Secondary outcomes were Berg Balance Scale (BBS), Six Minutes Walking test (6MWT) and the number of falls. RESULTS total PSPRS, PSPRS-gait sub-score, BBS, 6MWT and number of falls improved significantly in both groups (p ≤ 0.003 all, except 6MWT, p = 0.032 and p = 0.018 in MIRT-Lokomat and MIRT group respectively). The PSPRS-limb sub-score improved significantly only in the MIRT group (p = 0.002). A significant difference between groups was observed only for total PSPRS, indicating a slightly better improvement for patients in the MIRT group (p = 0.047). No differences between groups were revealed for the other outcomes, indicating that the effect of rehabilitation was similar in both groups. CONCLUSIONS Lokomat® training, in comparison with treadmill-plus training, does not provide further benefits in PSP patients undergoing MIRT. Our findings suggest the usefulness of an aerobic, multidisciplinary, intensive, motor-cognitive and goal-based approach for the rehabilitation of patients suffering from such a complex disease as PSP. TRIAL REGISTRATION This trial was registered on ClinicalTrials.gov, NCT02109393.
Collapse
|
24
|
Khan F, Amatya B, Galea MP, Gonzenbach R, Kesselring J. Neurorehabilitation: applied neuroplasticity. J Neurol 2016; 264:603-615. [PMID: 27778158 DOI: 10.1007/s00415-016-8307-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022]
Abstract
The prevalence of disability due to neurological conditions is escalating worldwide. Neurological disorders have significant disability-burden with long-term functional and psychosocial issues, requiring specialized rehabilitation services for comprehensive management, especially treatments tapping into brain recovery 'neuroplastic' processes. Neurorehabilitation is interdisciplinary and cross-sectorial, requiring coordinated effort of diverse sectors, professions, patients and community to manage complex condition-related disability. This review provides evidence for a range of neurorehabilitation interventions for four common neurological conditions: multiple sclerosis (MS), stroke, traumatic brain injury and Parkinson's disease using the Grade of Recommendation, Assessment, Development and Evaluation tool for quality of evidence. Although, existing best-evidence for many interventions is still sparse, the overall findings suggest 'strong' evidence for physical therapy and psychological intervention for improved patient outcomes; and. 'moderate' evidence for multidisciplinary rehabilitation for longer term gains at the levels of activity (disability) and participation in MS and stroke population. The effect of other rehabilitation interventions is inconclusive, due to a paucity of methodologically robust studies. More research is needed to improve evidence-base for many promising rehabilitation interventions.
Collapse
Affiliation(s)
- Fary Khan
- Department of Rehabilitation Medicine, Royal Melbourne Hospital, 34-54 Poplar Road, Parkville, Victoria, 3052, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Grattan Street, Parkville, Victoria, Australia.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Bhasker Amatya
- Department of Rehabilitation Medicine, Royal Melbourne Hospital, 34-54 Poplar Road, Parkville, Victoria, 3052, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Mary P Galea
- Department of Rehabilitation Medicine, Royal Melbourne Hospital, 34-54 Poplar Road, Parkville, Victoria, 3052, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Roman Gonzenbach
- Department of Neurology and Neurorehabilitation, Rehabilitation Center, Valens, Switzerland
| | - Jürg Kesselring
- Department of Neurology and Neurorehabilitation, Rehabilitation Center, Valens, Switzerland
| |
Collapse
|