1
|
Smith S, Rowbotham NJ. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2022; 11:CD001021. [PMID: 36373968 PMCID: PMC9662285 DOI: 10.1002/14651858.cd001021.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhaled antibiotics are commonly used to treat persistent airway infection with Pseudomonas aeruginosa that contributes to lung damage in people with cystic fibrosis. Current guidelines recommend inhaled tobramycin for individuals with cystic fibrosis and persistent Pseudomonas aeruginosa infection who are aged six years or older. The aim is to reduce bacterial load in the lungs so as to reduce inflammation and deterioration of lung function. This is an update of a previously published review. OBJECTIVES To evaluate the effects of long-term inhaled antibiotic therapy in people with cystic fibrosis on clinical outcomes (lung function, frequency of exacerbations and nutrition), quality of life and adverse events (including drug-sensitivity reactions and survival). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials registries. Date of last search: 28 June 2022. SELECTION CRITERIA We selected trials where people with cystic fibrosis received inhaled anti-pseudomonal antibiotic treatment for at least three months, treatment allocation was randomised or quasi-randomised, and there was a control group (either placebo, no placebo or another inhaled antibiotic). DATA COLLECTION AND ANALYSIS Two authors independently selected trials, judged the risk of bias, extracted data from these trials and judged the certainty of the evidence using the GRADE system. MAIN RESULTS The searches identified 410 citations to 125 trials; 18 trials (3042 participants aged between five and 45 years) met the inclusion criteria. Limited data were available for meta-analyses due to the variability of trial design and reporting of results. A total of 11 trials (1130 participants) compared an inhaled antibiotic to placebo or usual treatment for a duration between three and 33 months. Five trials (1255 participants) compared different antibiotics, two trials (585 participants) compared different regimens of tobramycin and one trial (90 participants) compared intermittent tobramycin with continuous tobramycin alternating with aztreonam. One trial (18 participants) compared an antibiotic to placebo and also to a different antibiotic and so fell into both groups. The most commonly studied antibiotic was tobramycin which was studied in 12 trials. Inhaled antibiotics compared to placebo We found that inhaled antibiotics may improve lung function measured in a variety of ways (4 trials, 814 participants). Compared to placebo, inhaled antibiotics may also reduce the frequency of exacerbations (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.47 to 0.93; 3 trials, 946 participants; low-certainty evidence). Inhaled antibiotics may lead to fewer days off school or work (quality of life measure) (mean difference (MD) -5.30 days, 95% CI -8.59 to -2.01; 1 trial, 245 participants; low-certainty evidence). There were insufficient data for us to be able to report an effect on nutritional outcomes and there was no effect on survival. There was no effect on antibiotic resistance seen in the two trials that were included in meta-analyses. We are uncertain of the effect of the intervention on adverse events (very low-certainty evidence), but tinnitus and voice alteration were the only events occurring more often in the inhaled antibiotics group. The overall certainty of evidence was deemed to be low for most outcomes due to risk of bias within the trials and imprecision due to low event rates. Different antibiotics or regimens compared Of the eight trials comparing different inhaled antibiotics or different antibiotic regimens, there was only one trial for each unique comparison. We found no differences between groups for any outcomes except for the following. Aztreonam lysine for inhalation probably improved forced expiratory volume at one second (FEV1) % predicted compared to tobramycin (MD -3.40%, 95% CI -6.63 to -0.17; 1 trial, 273 participants; moderate-certainty evidence). However, the method of defining the endpoint was different to the remaining trials and the participants were exposed to tobramycin for a long period making interpretation of the results problematic. We found no differences in any measure of lung function in the remaining comparisons. Trials measured pulmonary exacerbations in different ways and showed no differences between groups except for aztreonam lysine probably leading to fewer people needing treatment with additional antibiotics than with tobramycin (RR 0.66, 95% CI 0.51 to 0.86; 1 trial, 273 participants; moderate-certainty evidence); and there were fewer hospitalisations due to respiratory exacerbations with levofloxacin compared to tobramycin (RR 0.62, 95% CI 0.40 to 0.98; 1 trial, 282 participants; high-certainty evidence). Important treatment-related adverse events were not very common across comparisons, but were reported less often in the tobramycin group compared to both aztreonam lysine and colistimethate. We found the certainty of evidence for these comparisons to be directly related to the risk of bias within the individual trials and varied from low to high. AUTHORS' CONCLUSIONS Long-term treatment with inhaled anti-pseudomonal antibiotics probably improves lung function and reduces exacerbation rates, but pooled estimates of the level of benefit were very limited. The best evidence available is for inhaled tobramycin. More evidence from trials measuring similar outcomes in the same way is needed to determine a better measure of benefit. Longer-term trials are needed to look at the effect of inhaled antibiotics on quality of life, survival and nutritional outcomes.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Abstract
BACKGROUND Cystic fibrosis is a genetic disorder in which abnormal mucus in the lungs is associated with susceptibility to persistent infection. Pulmonary exacerbations are when symptoms of infection become more severe. Antibiotics are an essential part of treatment for exacerbations and inhaled antibiotics may be used alone or in conjunction with oral antibiotics for milder exacerbations or with intravenous antibiotics for more severe infections. Inhaled antibiotics do not cause the same adverse effects as intravenous antibiotics and may prove an alternative in people with poor access to their veins. This is an update of a previously published review. OBJECTIVES To determine if treatment of pulmonary exacerbations with inhaled antibiotics in people with cystic fibrosis improves their quality of life, reduces time off school or work, and improves their long-term lung function. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Group's Cystic Fibrosis Trials Register. Date of the last search: 7 March 2022. We also searched ClinicalTrials.gov, the Australia and New Zealand Clinical Trials Registry and WHO ICTRP for relevant trials. Date of last search: 3 May 2022. SELECTION CRITERIA Randomised controlled trials in people with cystic fibrosis with a pulmonary exacerbation in whom treatment with inhaled antibiotics was compared to placebo, standard treatment or another inhaled antibiotic for between one and four weeks. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed the risk of bias in each trial and extracted data. They assessed the certainty of the evidence using the GRADE criteria. Authors of the included trials were contacted for more information. MAIN RESULTS Five trials with 183 participants are included in the review. Two trials (77 participants) compared inhaled antibiotics alone to intravenous antibiotics alone and three trials (106 participants) compared a combination of inhaled and intravenous antibiotics to intravenous antibiotics alone. Trials were heterogenous in design and two were only available in abstract form. Risk of bias was difficult to assess in most trials but, for four out of five trials, we judged there to be a high risk from lack of blinding and an unclear risk with regards to randomisation. Results were not fully reported and only limited data were available for analysis. One trial was a cross-over design and we only included data from the first intervention arm. Inhaled antibiotics alone versus intravenous antibiotics alone Only one trial (18 participants) reported a perceived improvement in lifestyle (quality of life) in both groups (very low-certainty evidence). Neither trial reported on time off work or school. Both trials measured lung function, but there was no difference reported between treatment groups (very low-certainty evidence). With regards to our secondary outcomes, one trial (18 participants) reported no difference in the need for additional antibiotics and the second trial (59 participants) reported on the time to next exacerbation. In neither case was a difference between treatments identified (both very low-certainty evidence). The single trial (18 participants) measuring adverse events and sputum microbiology did not observe any in either treatment group for either outcome (very low-certainty evidence). Inhaled antibiotics plus intravenous antibiotics versus intravenous antibiotics alone Inhaled antibiotics plus intravenous antibiotics may make little or no difference to quality of life compared to intravenous antibiotics alone. None of the trials reported time off work or school. All three trials measured lung function, but found no difference between groups in forced expiratory volume in one second (two trials; 44 participants; very low-certainty evidence) or vital capacity (one trial; 62 participants). None of the trials reported on the need for additional antibiotics. Inhaled plus intravenous antibiotics may make little difference to the time to next exacerbation; however, one trial (28 participants) reported on hospital admissions and found no difference between groups. There is likely no difference between groups in adverse events (very low-certainty evidence) and one trial (62 participants) reported no difference in the emergence of antibiotic-resistant organisms (very low-certainty evidence). AUTHORS' CONCLUSIONS We identified only low- or very low-certainty evidence to judge the effectiveness of inhaled antibiotics for the treatment of pulmonary exacerbations in people with cystic fibrosis. The included trials were not sufficiently powered to achieve their goals. Hence, we are unable to demonstrate whether one treatment was superior to the other or not. Further research is needed to establish whether inhaled tobramycin may be used as an alternative to intravenous tobramycin for some pulmonary exacerbations.
Collapse
Affiliation(s)
- Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Nicola J Rowbotham
- Division of Child Health, Obstetrics & Gynaecology, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Edward Charbek
- Division of Pulmonary, Critical Care and Sleep Medicine, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Pontefract BA, Ho HT, Crain A, Kharel MK, Nybo SE. Drugs for Gram-Negative Bugs From 2010-2019: A Decade in Review. Open Forum Infect Dis 2020; 7:ofaa276. [PMID: 32760748 PMCID: PMC7393798 DOI: 10.1093/ofid/ofaa276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 11/14/2022] Open
Abstract
A literature review spanning January 1, 2010, to December 31, 2019, was conducted using the PubMed and ISI Web of Science databases to determine the breadth of publication activity in the area of gram-negative bacteria antimicrobial therapy. The number of articles was used as a reflection of scholarly activity. First, PubMed was searched using the following Medical Subject Headings (MeSH): antibacterial agents, Enterobacteriaceae, Acinetobacter, and Pseudomonas. A total of 12 643 articles were identified within PubMed, and 77 862 articles were identified within ISI Web of Science that included these terms. Second, these articles were categorized by antibiotic class to identify relative contributions to the literature by drug category. Third, these studies were used to identify key trends in the treatment of gram-negative bacterial infections from the past decade. This review highlights advances made in the past 10 years in antibacterial pharmacotherapy and some of the challenges that await the next decade of practice.
Collapse
Affiliation(s)
| | - Hong T Ho
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| | - Alexandria Crain
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| | - Madan K Kharel
- University of Maryland Eastern Shore, Department of Pharmaceutical Sciences, Princess Anne, Maryland, USA
| | - S Eric Nybo
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| |
Collapse
|
4
|
Abstract
BACKGROUND Cystic fibrosis is a genetic disorder in which abnormal mucus in the lungs is associated with susceptibility to persistent infection. Pulmonary exacerbations are when symptoms of infection become more severe. Antibiotics are an essential part of treatment for exacerbations and inhaled antibiotics may be used alone or in conjunction with oral antibiotics for milder exacerbations or with intravenous antibiotics for more severe infections. Inhaled antibiotics do not cause the same adverse effects as intravenous antibiotics and may prove an alternative in people with poor access to their veins. This is an update of a previously published review. OBJECTIVES To determine if treatment of pulmonary exacerbations with inhaled antibiotics in people with cystic fibrosis improves their quality of life, reduces time off school or work and improves their long-term survival. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Group's Cystic Fibrosis Trials Register. Date of the last search: 03 October 2018.We searched ClinicalTrials.gov, the Australia and New Zealand Clinical Trials Registry and WHO ICTRP for relevant trials. Date of last search: 09 October 2018. SELECTION CRITERIA Randomised controlled trials in people with cystic fibrosis with a pulmonary exacerbation in whom treatment with inhaled antibiotics was compared to placebo, standard treatment or another inhaled antibiotic for between one and four weeks. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed the risk of bias in each trial and extracted data. They assessed the quality of the evidence using the GRADE criteria. Authors of the included trials were contacted for more information. MAIN RESULTS Four trials with 167 participants are included in the review. Two trials (77 participants) compared inhaled antibiotics alone to intravenous antibiotics alone and two trials (90 participants) compared a combination of inhaled and intravenous antibiotics to intravenous antibiotics alone. Trials were heterogenous in design and two were only available in abstract form. Risk of bias was difficult to assess in most trials, but for all trials we judged there to be a high risk from lack of blinding and an unclear risk with regards to randomisation. Results were not fully reported and only limited data were available for analysis.Inhaled antibiotics alone versus intravenous antibiotics aloneOnly one trial (n = 18) reported a perceived improvement in lifestyle (quality of life) in both groups (very low-quality of evidence). Neither trial reported on time off work or school. Both trials measured lung function, but there was no difference reported between treatment groups (very low-quality evidence). With regards to our secondary outcomes, one trial (n = 18) reported no difference in the need for additional antibiotics and the second trial (n = 59) reported on the time to next exacerbation. In neither case was a difference between treatments identified (both very low-quality evidence). The single trial (n = 18) measuring adverse events and sputum microbiology did not observe any in either treatment group for either outcome (very low-quality evidence).Inhaled antibiotics plus intravenous antibiotics versus intravenous antibiotics aloneNeither trial reported on quality of life or time off work or school. Both trials measured lung function, but found no difference between groups in forced expiratory volume in one second (one trial, n = 28, very low-quality evidence) or vital capacity (one trial, n = 62). Neither trial reported on the need for additional antibiotics or the time to the next exacerbation; however, one trial (n = 28) reported on hospital admissions and found no difference between groups. Both trials reported no difference between groups in adverse events (very low-quality evidence) and one trial (n = 62) reported no difference in the emergence of antibiotic-resistant organisms (very low-quality evidence). AUTHORS' CONCLUSIONS There is little useful high-level evidence to judge the effectiveness of inhaled antibiotics for the treatment of pulmonary exacerbations in people with cystic fibrosis. The included trials were not sufficiently powered to achieve their goals. Hence, we are unable to demonstrate whether one treatment was superior to the other or not. Further research is needed to establish whether inhaled tobramycin may be used as an alternative to intravenous tobramycin for some pulmonary exacerbations.
Collapse
Affiliation(s)
- Sherie Smith
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Nicola J Rowbotham
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Edward Charbek
- St Louis University School of MedicineDivision of Pulmonary, Critical Care and Sleep Medicine1402 S. Grand Ave, 7‐S‐FDTSt LouisMOUSA63104‐1004
| | | |
Collapse
|
5
|
Smith S, Rowbotham NJ, Regan KH. Inhaled anti-pseudomonal antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev 2018; 3:CD001021. [PMID: 29607494 PMCID: PMC8407188 DOI: 10.1002/14651858.cd001021.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inhaled antibiotics are commonly used to treat persistent airway infection with Pseudomonas aeruginosa that contributes to lung damage in people with cystic fibrosis. Current guidelines recommend inhaled tobramycin for individuals with cystic fibrosis and persistent Pseudomonas aeruginosa infection who are aged six years or older. The aim is to reduce bacterial load in the lungs so as to reduce inflammation and deterioration of lung function. This is an update of a previously published review. OBJECTIVES To evaluate the effects long-term inhaled antibiotic therapy in people with cystic fibrosis on clinical outcomes (lung function, frequency of exacerbations and nutrition), quality of life and adverse events (including drug sensitivity reactions and survival). SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched ongoing trials registries.Date of last search: 13 February 2018. SELECTION CRITERIA We selected trials if inhaled anti-pseudomonal antibiotic treatment was used for at least three months in people with cystic fibrosis, treatment allocation was randomised or quasi-randomised, and there was a control group (either placebo, no placebo or another inhaled antibiotic). DATA COLLECTION AND ANALYSIS Two authors independently selected trials, judged the risk of bias, extracted data from these trials and judged the quality of the evidence using the GRADE system. MAIN RESULTS The searches identified 333 citations to 98 trials; 18 trials (3042 participants aged between five and 56 years) met the inclusion criteria. Limited data were available for meta-analyses due to the variability of trial design and reporting of results. A total of 11 trials (1130 participants) compared an inhaled antibiotic to placebo or usual treatment for a duration between three and 33 months. Five trials (1255 participants) compared different antibiotics, two trials (585 participants) compared different regimens of tobramycin and one trial (90 participants) compared intermittent tobramycin with continuous tobramycin alternating with aztreonam. One of the trials (18 participants) compared to placebo and a different antibiotic and so fell into both groups. The most commonly studied antibiotic was tobramycin which was studied in 12 trials.We found limited evidence that inhaled antibiotics improved lung function (four of the 11 placebo-controlled trials, n = 814). Compared to placebo, inhaled antibiotics also reduced the frequency of exacerbations (three trials, n = 946), risk ratio 0.66 (95% confidence interval (CI) 0.47 to 0.93). There were insufficient data for us to be able to report an effect on nutritional outcomes or survival and there were insufficient data for us to ascertain the effect on quality of life. There was no significant effect on antibiotic resistance seen in the two trials that were included in meta-analyses. Tinnitus and voice alteration were the only adverse events significantly more common in the inhaled antibiotics group. The overall quality of evidence was deemed to be low for most outcomes due to risk of bias within the trials and imprecision due to low event rates.Of the eight trials that compared different inhaled antibiotics or different antibiotic regimens, there was only one trial in each comparison. Forced expiratory volume at one second (FEV1) % predicted was only found to be significantly improved with aztreonam lysine for inhalation compared to tobramycin (n = 273), mean difference -3.40% (95% CI -6.63 to -0.17). However, the method of defining the endpoint was different to the remaining trials and the participants were exposed to tobramycin for a long period making interpretation of the results problematic. No significant differences were found in the remaining comparisons with regard to lung function. Pulmonary exacerbations were measured in different ways, but one trial (n = 273) found that the number of people treated with antibiotics was lower in those receiving aztreonam than tobramycin, risk ratio 0.66 (95% CI 0.51 to 0.86). We found the quality of evidence for these comparisons to be directly related to the risk of bias within the individual trials and varied from low to high. AUTHORS' CONCLUSIONS Inhaled anti-pseudomonal antibiotic treatment probably improves lung function and reduces exacerbation rate, but pooled estimates of the level of benefit were very limited. The best evidence is for inhaled tobramycin. More evidence from trials measuring similar outcomes in the same way is needed to determine a better measure of benefit. Longer-term trials are needed to look at the effect of inhaled antibiotics on quality of life, survival and nutritional outcomes.
Collapse
Affiliation(s)
- Sherie Smith
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Nicola J Rowbotham
- The University of NottinghamDivision of Child Health, Obstetrics & Gynaecology, School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Kate H Regan
- NHS LothianRoyal Infirmary of Edinburgh51 Little France CrescentEdinburghUKEH16 4SA
| | | |
Collapse
|
6
|
Mann N, Murray S, Hoo ZH, Curley R, Wildman MJ. Case Report: Dual nebulised antibiotics among adults with cystic fibrosis and chronic Pseudomonas infection. F1000Res 2018; 6:2079. [PMID: 29560254 PMCID: PMC5832909 DOI: 10.12688/f1000research.13298.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
Pulmonary exacerbations in adults with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa (Psae) infection are usually treated with dual intravenous antibiotics for 14 days, despite the lack of evidence for best practice. Intravenous antibiotics are commonly associated with various systemic adverse effects, including renal failure and ototoxicity. Inhaled antibiotics are less likely to cause systematic adverse effects, yet can achieve airway concentrations well above conventional minimum inhibitory concentrations. Typically one inhaled antibiotic is used at a time, but dual inhaled antibiotics (i.e. concomitant use of two different inhaled antibiotics) may have synergistic effect and achieve better results in the treatment of exacerbations. We presented anecdotal evidence for the use of dual inhaled antibiotics as an acute treatment for exacerbations, in the form of a case report. A female in her early thirties with CF and chronic Psae infection improved her FEV 1 by 5% and 2% with two courses of dual inhaled antibiotics to treat exacerbations in 2016. In contrast, her FEV 1 changed by 2%, -2%, 0% and 2%, respectively, with four courses of dual intravenous antibiotics in 2016. Baseline FEV 1 was similar prior to all six courses of treatments. The greater FEV 1 improvements with dual inhaled antibiotics compared to dual intravenous antibiotics suggest the potential role of using dual inhaled antibiotics to treat exacerbations among adults with CF and chronic Psae infection, especially since a greater choice of inhaled anti-pseudomonal antibiotics is now available. A previous study in 1985 has looked at the concomitant administration of inhaled tobramycin and carbenicillin, by reconstituting antibiotics designed for parenteral administration. To our knowledge, this is the first literature to describe the concomitant use of two different antibiotics specifically developed for delivery via the inhaled route.
Collapse
Affiliation(s)
- Nina Mann
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, Sheffield, S5 7AU, UK
| | - Shirley Murray
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, Sheffield, S5 7AU, UK
| | - Zhe Hui Hoo
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, Sheffield, S5 7AU, UK.,School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| | - Rachael Curley
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, Sheffield, S5 7AU, UK.,School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| | - Martin J Wildman
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, Sheffield, S5 7AU, UK.,School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DA, UK
| |
Collapse
|
7
|
Sheikh Z, Ong HX, Pozzoli M, Young PM, Traini D. Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment? Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, Suzuki S, Sugiura H, Yamada Y, Nishimura T, Fujiwara H, Funatsu Y, Uwamino Y, Kamo T, Tasaka S, Betsuyaku T, Hasegawa N. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis 2017; 17:558. [PMID: 28793869 PMCID: PMC5550988 DOI: 10.1186/s12879-017-2665-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/02/2017] [Indexed: 12/04/2022] Open
Abstract
Background In multidrug regimens, including an intravenous aminoglycoside (e.g. amikacin [AMK]) is recommended for difficult-to-treat non-tuberculous mycobacterial (NTM) lung diseases. We aimed to evaluate the efficacy, safety, and feasibility of inhaled AMK therapy in patients with difficult-to-treat NTM lung diseases in a retrospective chart review. Methods The study population consisted of patients with NTM lung diseases who received combination therapy, including inhaled AMK therapy, at Keio University Hospital (Tokyo, Japan), from January 2014 through May 2016. A total of 26 cases, consisting of 23 Mycobacterium avium complex (MAC) and three Mycobacterium abscessus complex (MABC) infections cases, were included in this study. The efficacy, safety, and feasibility of inhaled AMK therapy were retrospectively investigated. The Research Ethics Committee of Keio University Hospital approved this study, and informed consent was obtained from all patients. Results All 26 patients were culture-positive at enrolment. Twenty-three of the 26 patients (88.5%), including 21/23 MAC patients (91.3%) and 2/3 MABC patients (66.7%), were administered inhaled AMK therapy for >3 months. The proportion of patients who had clinical symptoms, including, cough and sputum, declined after inhalation AMK therapy. Ten of the 23 patients (43.5%) who received AMK inhalation, including 8/21 MAC (38.1%) and 2/2 MABC patients (100%), showed sputum conversion, defined as at least three consecutive negative sputum cultures. Seven of the 23 patients, including, 5/21 MAC and 2/2 MABC patients, showed improvements in high-resolution computed tomography imaging of the chest. In addition, the serum AMK trough levels before the second inhalation were <1.2 μg/mL in all 26 patients, with no occurrence of severe adverse events, such as renal toxicity. One patient (3.8%) experienced auditory toxicity, in the form of tinnitus. However, this symptom was reversible, after temporary interruption of AMK, the patient was able to safely resume the therapy. Conclusions Inhaled AMK therapy is an effective and feasible therapy for difficult-to-treat NTM lung disease. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2665-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takahiro Asami
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Iketani
- Department of Pharmacy, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroaki Sugiura
- Department of Diagnostic Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Hiroshi Fujiwara
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Funatsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshifumi Uwamino
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tetsuro Kamo
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sadatomo Tasaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
9
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
10
|
Abstract
There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.
Collapse
Affiliation(s)
- Jaideep S Talwalkar
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, PO Box 208086, New Haven, CT 06520-8086, USA; Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, PO Box 208084, New Haven, CT 06520-8084, USA.
| | - Thomas S Murray
- Department of Medical Sciences, Frank H Netter MD School of Medicine, Quinnipiac University, 275 Mount Carmel Avenue, Hamden, CT 06518, USA; Division of Infectious Diseases and Immunology, Connecticut Children's Medical Center, 282 Washington Street, Suite 2L, Hartford, CT 06106, USA
| |
Collapse
|
11
|
Murphy MP, Caraher E. Current and Emerging Therapies for the Treatment of Cystic Fibrosis or Mitigation of Its Symptoms. Drugs R D 2016; 16:1-17. [PMID: 26747453 PMCID: PMC4767716 DOI: 10.1007/s40268-015-0121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clinical presentation of the chronic, heritable condition cystic fibrosis (CF) is complex, with a diverse range of symptoms often affecting multiple organs with varying severity. The primary source of morbidity and mortality is due to progressive destruction of the airways attributable to chronic inflammation arising from microbial colonisation. Antimicrobial therapy combined with practises to remove obstructive mucopurulent deposits form the cornerstone of current therapy. However, new treatment options are emerging which offer, for the first time, the opportunity to effect remission from the underlying cause of CF. Here, we discuss these therapies, their mechanisms of action, and their successes and failures in order to illustrate the shift in the nature of how CF will likely be managed into the future.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| |
Collapse
|
12
|
Fox DJ, Cooper MD, Speil CA, Roberts MH, Yanik SC, Meech RP, Hargrove TL, Verhulst SJ, Rybak LP, Campbell KCM. d-Methionine reduces tobramycin-induced ototoxicity without antimicrobial interference in animal models. J Cyst Fibros 2015; 15:518-30. [PMID: 26166286 DOI: 10.1016/j.jcf.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tobramycin is a critical cystic fibrosis treatment however it causes ototoxicity. This study tested d-methionine protection from tobramycin-induced ototoxicity and potential antimicrobial interference. METHODS Auditory brainstem responses (ABRs) and outer hair cell (OHC) quantifications measured protection in guinea pigs treated with tobramycin and a range of d-methionine doses. In vitro antimicrobial interference studies tested inhibition and post antibiotic effect assays. In vivo antimicrobial interference studies tested normal and neutropenic Escherichia coli murine survival and intraperitoneal lavage bacterial counts. RESULTS d-Methionine conferred significant ABR threshold shift reductions. OHC protection was less robust but significant at 20kHz in the 420mg/kg/day group. In vitro studies did not detect d-methionine-induced antimicrobial interference. In vivo studies did not detect d-methionine-induced interference in normal or neutropenic mice. CONCLUSIONS d-Methionine protects from tobramycin-induced ototoxicity without antimicrobial interference. The study results suggest d-met as a potential otoprotectant from clinical tobramycin use in cystic fibrosis patients.
Collapse
Affiliation(s)
- Daniel J Fox
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Morris D Cooper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Cristian A Speil
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Melissa H Roberts
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Susan C Yanik
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Robert P Meech
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Tim L Hargrove
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Steven J Verhulst
- Statistics and Research Consulting, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen C M Campbell
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
13
|
Velkov T, Abdul Rahim N, Zhou Q(T, Chan HK, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv Drug Deliv Rev 2015; 85:65-82. [PMID: 25446140 PMCID: PMC4429008 DOI: 10.1016/j.addr.2014.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
One of the most common causes of illnesses in humans is from respiratory tract infections caused by bacterial, viral or fungal pathogens. Inhaled anti-infective drugs are crucial for the prophylaxis and treatment of respiratory tract infections. The benefit of anti-infective drug delivery via inhalation is that it affords delivery of sufficient therapeutic dosages directly to the primary site of infection, while minimizing the risks of systemic toxicity or avoiding potential suboptimal pharmacokinetics/pharmacodynamics associated with systemic drug exposure. This review provides an up-to-date treatise of approved and novel developmental inhaled anti-infective agents, with particular attention to effective strategies for their use, pulmonary pharmacokinetic properties and safety.
Collapse
|
14
|
Koerner-Rettberg C, Ballmann M. Colistimethate sodium for the treatment of chronic pulmonary infection in cystic fibrosis: an evidence-based review of its place in therapy. CORE EVIDENCE 2014; 9:99-112. [PMID: 25278817 PMCID: PMC4178503 DOI: 10.2147/ce.s64980] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic bacterial respiratory-tract infections are a major driving force in the pathogenesis of cystic fibrosis (CF) lung disease and promote chronic lung-function decline, destruction, and progression to respiratory failure at a premature age. Gram-negative bacteria colonizing the airways in CF are a major problem in CF therapy due to their tendency to develop a high degree of resistance to antibiotic agents over time. Pseudomonas aeruginosa is the dominating bacterial strain infecting the CF lung from early childhood on, and multiresistant strains frequently develop after years of therapy. Colistin has been used for treating pulmonary bacterial infections in CF for decades due to its very good Gram-negative activity. However, drawbacks include concerns regarding toxicity when being applied systemically, and the lack of approval for application by inhalation in the USA for many years. Other antibiotic substances for systemic use are available with good to excellent Gram-negative and anti-Pseudomonas activity, while there are only three substances approved for inhalation use in the treatment of chronic pulmonary infection with proven benefit in CF. The emergence of multiresistant strains leaving nearly no antibiotic substance as a treatment option, the limited number of antibiotics with high activity against P. aeruginosa, the concerns about increasing the risk of antibiotic resistance by continuous antibiotic therapy, the development of new drug formulations and drug-delivery devices, and, finally, the differing treatment strategies used in CF centers call for defining the place of this "old" drug, colistimethate, in today's CF therapy. This article reviews the available evidence to reflect on the place of colistimethate sodium in the therapy of chronic pulmonary infection in CF.
Collapse
Affiliation(s)
- Cordula Koerner-Rettberg
- Department of Pediatric Pneumology, University Children's Hospital of Ruhr University Bochum at St Josef-Hospital, Bochum, Germany
| | - Manfred Ballmann
- Department of Pediatric Pneumology, University Children's Hospital of Ruhr University Bochum at St Josef-Hospital, Bochum, Germany
| |
Collapse
|
15
|
Head MG, Fitchett JR, Cooke MK, Wurie FB, Hayward AC, Lipman MC, Atun R. Investments in respiratory infectious disease research 1997-2010: a systematic analysis of UK funding. BMJ Open 2014; 4:e004600. [PMID: 24670431 PMCID: PMC3975787 DOI: 10.1136/bmjopen-2013-004600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Respiratory infections are responsible for a large global burden of disease. We assessed the public and philanthropic investments awarded to UK institutions for respiratory infectious disease research to identify areas of underinvestment. We aimed to identify projects and categorise them by pathogen, disease and position along the research and development value chain. SETTING The UK. PARTICIPANTS Institutions that host and carry out infectious disease research. PRIMARY AND SECONDARY OUTCOME MEASURES The total amount spent and number of studies with a focus on several different respiratory pathogens or diseases, and to correlate these against the global burden of disease; also the total amount spent and number of studies relating to the type of science, the predominant funder in each category and the mean and median award size. RESULTS We identified 6165 infectious disease studies with a total investment of £2·6 billion. Respiratory research received £419 million (16.1%) across 1192 (19.3%) studies. The Wellcome Trust provided greatest investment (£135.2 million; 32.3%). Tuberculosis received £155 million (37.1%), influenza £80 million (19.1%) and pneumonia £27.8 million (6.6%). Despite high burden, there was relatively little investment in vaccine-preventable diseases including diphtheria (£0.1 million, 0.03%), measles (£5.0 million, 1.2%) and drug-resistant tuberculosis. There were 802 preclinical studies (67.3%) receiving £273 million (65.2%), while implementation research received £81 million (19.3%) across 274 studies (23%). There were comparatively few phase I-IV trials or product development studies. Global health research received £68.3 million (16.3%). Relative investment was strongly correlated with 2010 disease burden. CONCLUSIONS The UK predominantly funds preclinical science. Tuberculosis is the most studied respiratory disease. The high global burden of pneumonia-related disease warrants greater investment than it has historically received. Other priority areas include antimicrobial resistance (particularly within tuberculosis), economics and proactive investments for emerging infectious threats.
Collapse
Affiliation(s)
- Michael G Head
- Research Department of Infection and Population Health, University College London, London, UK
| | | | - Mary K Cooke
- Research Department of Infection and Population Health, University College London, London, UK
| | - Fatima B Wurie
- Research Department of Infection and Population Health, University College London, London, UK
| | - Andrew C Hayward
- Research Department of Infection and Population Health, University College London, London, UK
| | - Marc C Lipman
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, University College London, London, UK
| | - Rifat Atun
- Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
- Imperial College Business School and the Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 2014; 11:425-34. [PMID: 24673698 PMCID: PMC4028738 DOI: 10.1513/annalsats.201311-395fr] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 12/29/2022] Open
Abstract
Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post-lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized "off-label" to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated.
Collapse
Affiliation(s)
- Bradley S. Quon
- James Hogg Research Centre, St. Paul’s Hospital, and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher H. Goss
- University of Washington, Department of Medicine, Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, Washington
| | - Bonnie W. Ramsey
- Center for Clinical and Translational Research, Seattle Children’s Research Institute and Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
17
|
Ryan G, Jahnke N, Remmington T, Smyth A. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Paediatr Respir Rev 2013; 14:27-8. [PMID: 23228327 DOI: 10.1016/j.prrv.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gerard Ryan
- Sir Charles Gardner Hospital, Nedlands Western Australia, Australia
| | | | | | | |
Collapse
|