1
|
Paul AK, Bose A, Kalmady SV, Shivakumar V, Sreeraj VS, Parlikar R, Narayanaswamy JC, Dursun SM, Greenshaw AJ, Greiner R, Venkatasubramanian G. Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study. Front Psychiatry 2022; 13:923938. [PMID: 35990061 PMCID: PMC9388779 DOI: 10.3389/fpsyt.2022.923938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising adjuvant treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia (SZ). Nonetheless, there is considerable inter-patient variability in the treatment response of AVH to tDCS in SZ. Machine-learned models have the potential to predict clinical response to tDCS in SZ. This study aims to examine the feasibility of identifying SZ patients with persistent AVH (SZ-AVH) who will respond to tDCS based on resting-state functional connectivity (rs-FC). Thirty-four SZ-AVH patients underwent resting-state functional MRI at baseline followed by add-on, twice-daily, 20-min sessions with tDCS (conventional/high-definition) for 5 days. A machine learning model was developed to identify tDCS treatment responders based on the rs-FC pattern, using the left superior temporal gyrus (LSTG) as the seed region. Functional connectivity between LSTG and brain regions involved in auditory and sensorimotor processing emerged as the important predictors of the tDCS treatment response. L1-regularized logistic regression model had an overall accuracy of 72.5% in classifying responders vs. non-responders. This model outperformed the state-of-the-art convolutional neural networks (CNN) model-both without (59.41%) and with pre-training (68.82%). It also outperformed the L1-logistic regression model trained with baseline demographic features and clinical scores of SZ patients. This study reports the first evidence that rs-fMRI-derived brain connectivity pattern can predict the clinical response of persistent AVH to add-on tDCS in SZ patients with 72.5% accuracy.
Collapse
Affiliation(s)
- Animesh Kumar Paul
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Anushree Bose
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Sunil Vasu Kalmady
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Venkataram Shivakumar
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Vanteemar S Sreeraj
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Rujuta Parlikar
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Janardhanan C Narayanaswamy
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Serdar M Dursun
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | - Russell Greiner
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ganesan Venkatasubramanian
- Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| |
Collapse
|