1
|
Sanna A, Lambert Y, Jimeno Maroto I, Galindo MS, Plessis L, Bardon T, Carboni C, Bordalo J, Hiwat H, Cairo H, Musset L, Lazrek Y, Pelleau S, White M, Suárez Mutis M, Vreden S, Douine M. CUREMA project: a further step towards malaria elimination among hard-to-reach and mobile populations. Malar J 2024; 23:271. [PMID: 39256842 PMCID: PMC11385508 DOI: 10.1186/s12936-024-05040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND In most countries engaged on the last mile towards malaria elimination, residual transmission mainly persists among vulnerable populations represented by isolated and mobile (often cross-border) communities. These populations are sometimes involved in informal or even illegal activities. In regions with Plasmodium vivax transmission, the specific biology of this parasite poses additional difficulties related to the need for a radical treatment against hypnozoites to prevent relapses. Among hard-to-reach communities, case management, a pillar of elimination strategy, is deficient: acute malaria attacks often occur in remote areas, where there is limited access to care, and drugs acquired outside formal healthcare are often inadequately used for treatment, which typically does not include radical treatment against P. vivax. For these reasons, P. vivax circulation among these communities represents one of the main challenges for malaria elimination in many non-African countries. The objective of this article is to describe the protocol of the CUREMA study, which aims to meet the challenge of targeting malaria in hard-to-reach populations with a focus on P. vivax. RESULTS CUREMA is a multi-centre, international public health intervention research project. The study population is represented by persons involved in artisanal and small-scale gold mining who are active and mobile in the Guiana Shield, deep inside the Amazon Forest. The CUREMA project includes a complex intervention composed of a package of actions: (1) health education activities; (2) targeted administration of treatment against P. vivax after screening against G6PD deficiency to asymptomatic persons considered at risk of silently carrying the parasite; (3) distribution of a self-testing and self-treatment kit (malakit) associated with user training for self-management of malaria symptoms occurring while in extreme isolation. These actions are offered by community health workers at settlements and neighbourhoods (often cross-border) that represent transit and logistic bases of gold miners. The study relies on hybrid design, aiming to evaluate both the effectiveness of the intervention on malaria transmission with a pre/post quasi-experimental design, and its implementation with a mixed methods approach. CONCLUSIONS The purpose of this study is to experiment an intervention that addresses both Plasmodium falciparum and P. vivax malaria elimination in a mobile and isolated population and to produce results that can be transferred to many contexts facing the same challenges around the world.
Collapse
Affiliation(s)
- Alice Sanna
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France.
| | - Yann Lambert
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Irene Jimeno Maroto
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Muriel Suzanne Galindo
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Lorraine Plessis
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Teddy Bardon
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Carlotta Carboni
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Jane Bordalo
- Associação Desenvolvimento, Prevenção, Acompanhamento e Cooperação de Fronteiras (DPAC), Oiapoque, Brazil
| | - Helene Hiwat
- National Malaria Programme, Ministry of Health, Paramaribo, Suriname
| | - Hedley Cairo
- National Malaria Programme, Ministry of Health, Paramaribo, Suriname
| | - Lise Musset
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Centre National de Référence du Paludisme, Cayenne, French Guiana, France
| | - Yassamine Lazrek
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Centre National de Référence du Paludisme, Cayenne, French Guiana, France
| | - Stéphane Pelleau
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Martha Suárez Mutis
- Laboratory of Parasitic Diseases, Graduate Program in Tropical Medicine, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Stephen Vreden
- Foundation for the Advancement of Scientific Research in Suriname (SWOS), Paramaribo, Suriname
| | - Maylis Douine
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| |
Collapse
|
2
|
Verma R, Commons RJ, Gupta A, Rahi M, Nitika, Bharti PK, Thriemer K, Rajasekhar M, Singh-Phulgenda S, Adhikari B, Alam MS, Ghimire P, Khan WA, Kumar R, Leslie T, Ley B, Llanos-Cuentas A, Pukrittayakamee S, Rijal KR, Rowland M, Saravu K, Simpson JA, Guerin PJ, Price RN, Sharma A. Safety and efficacy of primaquine in patients with Plasmodium vivax malaria from South Asia: a systematic review and individual patient data meta-analysis. BMJ Glob Health 2023; 8:e012675. [PMID: 38123228 DOI: 10.1136/bmjgh-2023-012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The optimal dosing of primaquine to prevent relapsing Plasmodium vivax malaria in South Asia remains unclear. We investigated the efficacy and safety of different primaquine regimens to prevent P. vivax relapse. METHODS A systematic review identified P. vivax efficacy studies from South Asia published between 1 January 2000 and 23 August 2021. In a one-stage meta-analysis of available individual patient data, the cumulative risks of P. vivax recurrence at day 42 and 180 were assessed by primaquine total mg/kg dose and duration. The risk of recurrence by day 180 was also determined in a two-stage meta-analysis. Patients with a >25% drop in haemoglobin to <70 g/L, or an absolute drop of >50 g/L between days 1 and 14 were categorised by daily mg/kg primaquine dose. RESULTS In 791 patients from 7 studies in the one-stage meta-analysis, the day 180 cumulative risk of recurrence was 61.1% (95% CI 42.2% to 80.4%; 201 patients; 25 recurrences) after treatment without primaquine, 28.8% (95% CI 8.2% to 74.1%; 398 patients; 4 recurrences) following low total (2 to <5 mg/kg) and 0% (96 patients; 0 recurrences) following high total dose primaquine (≥5 mg/kg). In the subsequent two-stage meta-analysis of nine studies (3529 patients), the pooled proportions of P. vivax recurrences by day 180 were 12.1% (95% CI 7.7% to 17.2%), 2.3% (95% CI 0.3% to 5.4%) and 0.7% (95% CI 0% to 6.1%), respectively. No patients had a >25% drop in haemoglobin to <70 g/L. CONCLUSIONS Primaquine treatment led to a marked decrease in P. vivax recurrences following low (~3.5 mg/kg) and high (~7 mg/kg) total doses, with no reported severe haemolytic events. PROSPERO REGISTRATION NUMBER CRD42022313730.
Collapse
Affiliation(s)
- Reena Verma
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Robert J Commons
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia Pacific Regional Hub - Australia, Melbourne, Victoria, Australia
- General and Subspecialty Medicine, Grampians Health Ballarat, Ballarat, Victoria, Australia
| | - Apoorv Gupta
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Manju Rahi
- ICMR-National Institute of Malaria Research, New Delhi, India
- Indian Council of Medical Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nitika
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sauman Singh-Phulgenda
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Bipin Adhikari
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rishikesh Kumar
- ICMR-National Institute of Malaria Research, New Delhi, India
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- HealthNet TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
| | - Alejandro Llanos-Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Julie A Simpson
- WorldWide Antimalarial Resistance Network, Asia Pacific Regional Hub - Australia, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Infectious Diseases Data Observatory (IDDO), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Tiwi, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia Pacific Regional Hub - Australia, Melbourne, Victoria, Australia
| | - Amit Sharma
- International Centre For Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Khan W, Wang YH, Chaurasiya ND, Nanayakkara NPD, Bandara Herath HM, Harrison KA, Dale G, Stanford DA, Dahl EP, McChesney JD, Gul W, ElSohly MA, Jollow D, Tekwani BL, Walker LA. Comparative metabolism and tolerability of racemic primaquine and its enantiomers in human volunteers during 7-day administration. Front Pharmacol 2023; 13:1104735. [PMID: 36726785 PMCID: PMC9885159 DOI: 10.3389/fphar.2022.1104735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.
Collapse
Affiliation(s)
- Washim Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Yan-Hong Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Narayan D. Chaurasiya
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - H. M. Bandara Herath
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Kerri A. Harrison
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Gray Dale
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Donald A. Stanford
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Eric P. Dahl
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | | | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, United States
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,ElSohly Laboratories Inc., Oxford, MS, United States,Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - David Jollow
- Professor Emeritus, Department Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| |
Collapse
|
4
|
Measurements of 5,6 orthoquinone, surrogate for presumed active primaquine metabolite 5-hydroxyprimaquine, in the urine of Cambodian adults. Antimicrob Agents Chemother 2022; 66:e0182121. [DOI: 10.1128/aac.01821-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6 orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6 orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for
Plasmodium vivax
infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma PQ area under the curve (AUC) was lower in the NM group (460 hr*ng/mL) compared to the IM group (561 hr*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6 orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6 orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (T
max
) at 4 hours. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6 orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.
Collapse
|
5
|
Devine A, Battle KE, Meagher N, Howes RE, Dini S, Gething PW, Simpson JA, Price RN, Lubell Y. Global economic costs due to vivax malaria and the potential impact of its radical cure: A modelling study. PLoS Med 2021; 18:e1003614. [PMID: 34061843 PMCID: PMC8168905 DOI: 10.1371/journal.pmed.1003614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In 2017, an estimated 14 million cases of Plasmodium vivax malaria were reported from Asia, Central and South America, and the Horn of Africa. The clinical burden of vivax malaria is largely driven by its ability to form dormant liver stages (hypnozoites) that can reactivate to cause recurrent episodes of malaria. Elimination of both the blood and liver stages of the parasites ("radical cure") is required to achieve a sustained clinical response and prevent ongoing transmission of the parasite. Novel treatment options and point-of-care diagnostics are now available to ensure that radical cure can be administered safely and effectively. We quantified the global economic cost of vivax malaria and estimated the potential cost benefit of a policy of radical cure after testing patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency. METHODS AND FINDINGS Estimates of the healthcare provider and household costs due to vivax malaria were collated and combined with national case estimates for 44 endemic countries in 2017. These provider and household costs were compared with those that would be incurred under 2 scenarios for radical cure following G6PD screening: (1) complete adherence following daily supervised primaquine therapy and (2) unsupervised treatment with an assumed 40% effectiveness. A probabilistic sensitivity analysis generated credible intervals (CrIs) for the estimates. Globally, the annual cost of vivax malaria was US$359 million (95% CrI: US$222 to 563 million), attributable to 14.2 million cases of vivax malaria in 2017. From a societal perspective, adopting a policy of G6PD deficiency screening and supervision of primaquine to all eligible patients would prevent 6.1 million cases and reduce the global cost of vivax malaria to US$266 million (95% CrI: US$161 to 415 million), although healthcare provider costs would increase by US$39 million. If perfect adherence could be achieved with a single visit, then the global cost would fall further to US$225 million, equivalent to $135 million in cost savings from the baseline global costs. A policy of unsupervised primaquine reduced the cost to US$342 million (95% CrI: US$209 to 532 million) while preventing 2.1 million cases. Limitations of the study include partial availability of country-level cost data and parameter uncertainty for the proportion of patients prescribed primaquine, patient adherence to a full course of primaquine, and effectiveness of primaquine when unsupervised. CONCLUSIONS Our modelling study highlights a substantial global economic burden of vivax malaria that could be reduced through investment in safe and effective radical cure achieved by routine screening for G6PD deficiency and supervision of treatment. Novel, low-cost interventions for improving adherence to primaquine to ensure effective radical cure and widespread access to screening for G6PD deficiency will be critical to achieving the timely global elimination of P. vivax.
Collapse
Affiliation(s)
- Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - Niamh Meagher
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, Royal Melbourne Hospital, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rosalind E. Howes
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter W. Gething
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- Curtin University, Bentley, Western Australia, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ric N. Price
- Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Yoel Lubell
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|