1
|
Okumu F, Moore SJ, Selvaraj P, Yafin AH, Juma EO, Shirima GG, Majambere S, Hardy A, Knols BGJ, Msugupakulya BJ, Finda M, Kahamba N, Thomsen E, Ahmed A, Zohdy S, Chaki P, DeChant P, Fornace K, Govella N, Gowelo S, Hakizimana E, Hamainza B, Ijumba JN, Jany W, Kafy HT, Kaindoa EW, Kariuki L, Kiware S, Kweka EJ, Lobo NF, Marrenjo D, Matoke-Muhia D, Mbogo C, McCann RS, Monroe A, Ndenga BA, Ngowo HS, Ochomo E, Opiyo M, Reithinger R, Sikaala CH, Tatarsky A, Takudzwa D, Trujillano F, Sherrard-Smith E. Elevating larval source management as a key strategy for controlling malaria and other vector-borne diseases in Africa. Parasit Vectors 2025; 18:45. [PMID: 39915825 PMCID: PMC11803969 DOI: 10.1186/s13071-024-06621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 02/09/2025] Open
Abstract
Larval source management (LSM) has a long history of advocacy and successes but is rarely adopted where funds are limited. The World Health Organization (WHO) guidelines on malaria prevention recommend the use of LSM as a supplementary intervention to the core vector control methods (insecticide-treated nets and indoor residual spraying), arguing that its feasibility in many settings can be limited by larval habitats being numerous, transient, and difficult to find or treat. Another key argument is that there is insufficient high-quality evidence for its effectiveness to support wide-scale implementation. However, the stagnation of progress towards malaria elimination demands that we consider additional options to the current emphasis on insecticidal commodities targeting adult mosquitoes inside homes. This letter is the result of a global, crossdisciplinary collaboration comprising: (a) detailed online expert discussions, (b) a narrative review of countries that have eliminated local malaria transmission, and (c) a mathematical modeling exercise using two different approaches. Together, these efforts culminated in seven key recommendations for elevating larval source management as a strategy for controlling malaria and other mosquito-borne diseases in Africa (Box 1). LSM encompasses the use of larvicide (a commodity) as well as various environmental sanitation measures. Together, these efforts lead to the long-term reduction of mosquito populations, which benefits the entire community by controlling both disease vector and nuisance mosquitoes. In this paper, we argue that the heavy reliance on large-scale cluster-randomized controlled trials (CRTs) to generate evidence on epidemiological endpoints restricts the recommendation of approaches to only those interventions that can be measured by functional units and deliver relatively uniform impact and, therefore, are more likely to receive financial support for conducting these trials. The explicit impacts of LSM may be better captured by using alternative evaluation approaches, especially high-quality operational data and a recognition of locally distinct outcomes and tailored strategies. LSM contributions are also evidenced by the widespread use of LSM strategies in nearly all countries that have successfully achieved malaria elimination. Two modelling approaches demonstrate that a multifaceted strategy, which incorporates LSM as a central intervention alongside other vector control methods, can effectively mitigate key biological threats such as insecticide resistance and outdoor biting, leading to substantial reductions in malaria cases in representative African settings. This argument is extended to show that the available evidence is sufficient to establish the link between LSM approaches and reduced disease transmission of mosquito-borne illnesses. What is needed now is a significant boost in the financial resources and public health administration structures necessary to train, employ and deploy local-level workforces tasked with suppressing mosquito populations in scientifically driven and ecologically sensitive ways. In conclusion, having WHO guidelines that recognize LSM as a key intervention to be delivered in multiple contextualized forms would open the door to increased flexibility for funding and aid countries in implementing the strategies that they deem appropriate. Financially supporting the scale-up of LSM with high-quality operations monitoring for vector control in combination with other core tools can facilitate better health. The global health community should reconsider how evidence and funding are used to support LSM initiatives.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania.
| | - Sarah J Moore
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | | | - Elijah O Juma
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - GloriaSalome G Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | | | - Andy Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, UK
| | - Bart G J Knols
- K&S Consulting, Kalkestraat 20, 6669 CP, Dodewaard, The Netherlands
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Marceline Finda
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Najat Kahamba
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Edward Thomsen
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | - Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, 11111, Sudan
| | - Sarah Zohdy
- Division of Parasitic Diseases and Malaria, Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Prosper Chaki
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Peter DeChant
- DeChant Vector Solutions LLC, 1755 9th St, Columbia, OR, 97018, USA
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases and Centre for Climate Change and Planetary Health, London School Hygiene and Tropical Medicine, London, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Nicodem Govella
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Steven Gowelo
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Busiku Hamainza
- National Malaria Elimination Centre, P.O. Box 32509, 10101, Lusaka, Zambia
| | | | | | - Hmooda Toto Kafy
- Global Fund Program Management Unit, RSSH and Malaria Grant, Federal Ministry of Health, Khartoum, Sudan
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Lenson Kariuki
- Ministry of Health-Vector Borne and Neglected Tropical Diseases, Nairobi, Kenya
| | - Samson Kiware
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Pan-African Mosquito Control Association (PAMCA), Dar es Salaam, Tanzania
| | - Eliningaya J Kweka
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Neil F Lobo
- University of Notre Dame, Notre Dame, IN, USA
| | | | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Charles Mbogo
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Public Health Unit, KEMRI-Wellcome Trust Research Programme, PO Box 43640‑00100, Nairobi, Kenya
| | - Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - April Monroe
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | | | - Halfan S Ngowo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Eric Ochomo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Public Health Unit, KEMRI-Wellcome Trust Research Programme, PO Box 43640‑00100, Nairobi, Kenya
| | - Mercy Opiyo
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
- University of California San Francisco Malaria Elimination Initiative (UCSF MEI), San Francisco, USA
| | | | | | - Allison Tatarsky
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, USA
| | | | - Fedra Trujillano
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ellie Sherrard-Smith
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- Malaria Modelling Group, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
2
|
Burnett SM, Davis KM, Assefa G, Gogue C, Hinneh LD, Littrell M, Mwesigwa J, Okoko OO, Rabeherisoa S, Sillah-Kanu M, Sheahan W, Slater HC, Uhomoibhi P, Yamba F, Ambrose K, Stillman K. Process and Methodological Considerations for Observational Analyses of Vector Control Interventions in Sub-Saharan Africa Using Routine Malaria Data. Am J Trop Med Hyg 2025; 112:17-34. [PMID: 37604476 PMCID: PMC11720682 DOI: 10.4269/ajtmh.22-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/23/2023] Open
Abstract
Progress in malaria control has stalled in recent years. With growing resistance to existing malaria vector control insecticides and the introduction of new vector control products, national malaria control programs (NMCPs) increasingly need to make data-driven, subnational decisions to inform vector control deployment. As NMCPs are increasingly conducting subnational stratification of malaria control interventions, including malaria vector control, country-specific frameworks and platforms are increasingly needed to guide data use for vector control deployment. Integration of routine health systems data, entomological data, and vector control program data in observational longitudinal analyses offers an opportunity for NMCPs and research institutions to conduct evaluations of existing and novel vector control interventions. Drawing on the experience of implementing 22 vector control evaluations across 14 countries in sub-Saharan Africa, as well as published and gray literature on vector control impact evaluations using routine health information system data, this article provides practical guidance on the design of these evaluations, makes recommendations for key variables and data sources, and proposes methods to address challenges in data quality. Key recommendations include appropriate parameterization of impact and coverage indicators, incorporating explanatory covariates and contextual factors from multiple sources (including rapid diagnostic testing stockouts; insecticide susceptibility; vector density measures; vector control coverage, use, and durability; climate and other malaria and non-malaria health programs), and assessing data quality before the evaluation through either on-the-ground or remote data quality assessments. These recommendations may increase the frequency, rigor, and utilization of routine data sources to inform national program decision-making for vector control.
Collapse
Affiliation(s)
- Sarah M. Burnett
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Kelly M. Davis
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Gudissa Assefa
- National Malaria Elimination Programme, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Antananarivo, Madagascar
| | | | | | | | | | | | - Kelley Ambrose
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| | - Kathryn Stillman
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| |
Collapse
|
3
|
Hilton ER, Tougri G, Camara T, Pagabelem A, Ouedraogo JB, Millar J, Jacob D, Kone A, Diouf M, Belemvire A, Burnett S. An observational analysis of the impact of indoor residual spraying in two distinct contexts of Burkina Faso. Malar J 2024; 23:229. [PMID: 39095782 PMCID: PMC11295511 DOI: 10.1186/s12936-024-05054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a cornerstone malaria control intervention in Burkina Faso. From 2018 to 2021, non-pyrethroid IRS was implemented annually in two regions of Burkina Faso with distinct malaria transmission patterns, concurrently with annual seasonal malaria chemoprevention (SMC), and a mass insecticide-treated net (ITN) distribution in 2019. METHODS A retrospective quasi-experimental approach was used to evaluate the impact of the 2018, 2020, and 2021 IRS campaigns on routinely reported confirmed malaria case incidence at health facilities. The 2019 campaign was excluded due to lack of data reporting during a health sector strike. Controlled interrupted time series models were fit to detect changes in level and trend in malaria case incidence rates following each IRS campaign when compared to the baseline period 24-months before IRS. IRS districts Solenzo (Sudano-Sahelien climate), and Kampti (tropical climate) were compared with neighbouring control districts and the analyses were stratified by region. Modelled health facility catchment population estimates based on travel time to health facilities and weighted by non-malaria outpatient visits were used as an offset. The study period encompassed July 2016 through June 2022, excluding July 2018 to June 2019. RESULTS District-level population and structure coverage achieved by IRS campaigns was greater than 85% in 2018, 2020, and 2021 in Solenzo and Kampti. In Solenzo a significant difference in malaria case incidence rates was detected after the 2018 campaign (IRR = 0.683; 95% CI 0.564-0.827) when compared to the control district. The effect was not detected following the 2020 or 2021 IRS campaigns. In Kampti, estimated malaria incidence rates were between 36 and 38% lower than in the control district following all three IRS campaigns compared to the baseline period. CONCLUSIONS Implementation of IRS in Kampti, a tropical region of Burkina Faso, appeared to have a consistent significant beneficial impact on malaria case rates. An initial positive impact in Solenzo after the first IRS campaign was not sustained in the successive evaluated IRS campaigns. This study points to a differential effect of IRS in different malaria transmission settings and in combination with ITN and SMC implementation.
Collapse
Affiliation(s)
- Emily R Hilton
- PMI VectorLink Project, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA.
| | - Gauthier Tougri
- Programme National de Lutte Contre le Paludisme, Ouagadougou, Burkina Faso
| | - Tiécoura Camara
- Programme National de Lutte Contre le Paludisme, Ouagadougou, Burkina Faso
| | - Ardjouma Pagabelem
- Programme National de Lutte Contre le Paludisme, Ouagadougou, Burkina Faso
| | | | - Justin Millar
- PMI VectorLink Project, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Djenam Jacob
- PMI VectorLink Project, Abt Associates, Rockville, MD, USA
| | - Adama Kone
- PMI VectorLink Project, Abt Associates, Rockville, MD, USA
| | - Mame Diouf
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Ouagadougou, Burkina Faso
| | - Allison Belemvire
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Sarah Burnett
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| |
Collapse
|
4
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Narrative Review of the Control and Prevention of Knowlesi Malaria. Trop Med Infect Dis 2022; 7:tropicalmed7080178. [PMID: 36006270 PMCID: PMC9414718 DOI: 10.3390/tropicalmed7080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the reduction in the number of cases of human malaria throughout the world, the incidence rate of knowlesi malaria is continuing to rise, especially in Southeast Asia. The conventional strategies for the prevention and control of human malaria can provide some protection against knowlesi malaria. Despite the numerous studies on the risk factors and the innovative methods that may be used to prevent and control the vectors of Plasmodium knowlesi, the incidence rate remains high. An integrated approach that includes environmental intervention should be adopted in order to ensure the successful control of zoonotic malaria. A combination of personal-level protection, vector control and environmental control may mitigate the risk of Plasmodium knowlesi transmission from macaques to humans and, ultimately, reduce the incidence rate of knowlesi malaria.
Collapse
|
6
|
Sherrard-Smith E, Ngufor C, Sanou A, Guelbeogo MW, N'Guessan R, Elobolobo E, Saute F, Varela K, Chaccour CJ, Zulliger R, Wagman J, Robertson ML, Rowland M, Donnelly MJ, Gonahasa S, Staedke SG, Kolaczinski J, Churcher TS. Inferring the epidemiological benefit of indoor vector control interventions against malaria from mosquito data. Nat Commun 2022; 13:3862. [PMID: 35790746 PMCID: PMC9256631 DOI: 10.1038/s41467-022-30700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of malaria transmission has been known for over a century but it is still unclear whether entomological measures are sufficiently reliable to inform policy decisions in human health. Decision-making on the effectiveness of new insecticide-treated nets (ITNs) and the indoor residual spraying of insecticide (IRS) have been based on epidemiological data, typically collected in cluster-randomised control trials. The number of these trials that can be conducted is limited. Here we use a systematic review to highlight that efficacy estimates of the same intervention may vary substantially between trials. Analyses indicate that mosquito data collected in experimental hut trials can be used to parameterize mechanistic models for Plasmodium falciparum malaria and reliably predict the epidemiological efficacy of quick-acting, neuro-acting ITNs and IRS. Results suggest that for certain types of ITNs and IRS using this framework instead of clinical endpoints could support policy and expedite the widespread use of novel technologies.
Collapse
Affiliation(s)
| | - Corine Ngufor
- Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin
- London School of Hygiene and Tropical Medicine, London, UK
| | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Raphael N'Guessan
- London School of Hygiene and Tropical Medicine, London, UK
- Institut Pierre Richet, Bouake, Côte d'Ivoire
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | | | | | - Rose Zulliger
- US President's Malaria Initiative, USAID, Washington, DC, USA
| | | | | | - Mark Rowland
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
7
|
Passah M, Nengnong CB, Wilson ML, Carlton JM, Kharbamon L, Albert S. Implementation and acceptance of government-sponsored malaria control interventions in Meghalaya, India. Malar J 2022; 21:200. [PMID: 35739533 PMCID: PMC9223263 DOI: 10.1186/s12936-022-04223-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022] Open
Abstract
Background India has made considerable progress in malaria reduction over the past two decades, with government-sponsored indoor residual spraying (IRS) and insecticide-treated bed net (ITN) or long-lasting insecticidal nets (LLIN) distribution being the main vector-related prevention efforts. Few investigations have used non-participant observational methods to assess malaria control measures while they were being implemented, nor documented people’s perceptions and acceptance of IRS or LLINs in India, and none have done so in the northeast region. This study evaluated household (HH)-level operation of IRS and distribution of LLINs by India’s National Vector Borne Disease Control Programme (NVBDCP) in 50 villages of Meghalaya state, and documented their acceptance and use. Methods Study field teams accompanied the government health system teams during August-October, 2019 and 2020 to observe deployment of LLINs, and record HH-level data on LLIN numbers and use. In addition, NVBDCP spray teams were followed during 2019–2021 to observe IRS preparation and administration. HH members were interviewed to better understand reasons for acceptance or refusal of spraying. Results A total of 8386 LLINs were distributed to 2727 HHs in 24 villages from five Primary Health Centres, representing 99.5% of planned coverage. Interviews with 80 HH residents indicated that they appreciated the LLIN dissemination programme, and generally made regular and appropriate use of LLINs, except during overnight travel or when working in agricultural fields. However, HH-level IRS application, which was observed at 632 HHs, did not always follow standard insecticide preparation and safety protocols. Of 1,079 occupied HHs visited by the spray team, 632 (58.6%) refused to allow any spraying. Only 198 (18.4%) HHs agreed to be sprayed, comprising 152 (14.1%) that were only partly sprayed, and 46 (4.3%) that were fully sprayed. Reasons for refusal included: inadequate time to rearrange HH items, young children were present, annoying smell, staining of walls, and threat to bee-keeping or Eri silk moth cultivation. Conclusions These findings are among the first in India that independently evaluate people's perceptions and acceptance of ongoing government-sponsored IRS and LLIN programmes for malaria prevention. They represent important insights for achieving India's goal of malaria elimination by 2030.
Collapse
Affiliation(s)
- Mattimi Passah
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Carinthia Balabet Nengnong
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India.,Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Department of Epidemiology, College of Global Public Health, New York University, New York, NY, 10012, USA
| | - Larry Kharbamon
- Department of Health, National Vector Borne Disease Control Programme, Shillong, Meghalaya, India
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| |
Collapse
|
8
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to prevent malaria transmission. Both interventions use insecticides to kill mosquitoes that bite and rest indoors. Adding IRS to ITNs may improve malaria control simply because two interventions can be better than one. Furthermore, IRS may improve malaria control where ITNs are failing due to insecticide resistance. Pyrethroid insecticides are the predominant class of insecticide used for ITNs, as they are more safe than other insecticide classes when in prolonged contact with human skin. While many mosquito populations have developed some resistance to pyrethroid insecticides, a wider range of insecticides can be used for IRS. This review is an update of the previous Cochrane 2019 edition. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL; MEDLINE; and five other databases for records from 1 January 2000 to 8 November 2021, on the basis that ITN programmes did not begin to be implemented as policy before the year 2000. SELECTION CRITERIA We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. We included studies with at least 50% ITN ownership (defined as the proportion of households owning one or more ITN) in both study arms. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide, 'pyrethroid-like' and 'non-pyrethroid-like'; the latter could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the studies to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Eight cRCTs (10 comparisons), one CBA, and one ITS study, all conducted since 2008 in sub-Saharan Africa, met our inclusion criteria. The primary vectors in all sites were mosquitoes belonging to the Anopheles gambiae s.l. complex species; five studies in Benin, Mozambique, Ghana, Sudan, and Tanzania also reported the vector Anopheles funestus. Five cRCTs and both quasi-experimental design studies used insecticides with targets different to pyrethroids (two used bendiocarb, three used pirimiphos-methyl, and one used propoxur. Each of these studies were conducted in areas where the vectors were described as resistant or highly resistant to pyrethroids. Two cRCTs used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids. The remaining cRCT used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second year). Indoor residual spraying using 'non-pyrethroid-like' insecticides Six studies were included (four cRCTs, one CBA, and one ITS). Our main analysis for prevalence excluded a study at high risk of bias due to repeated sampling of the same population. This risk did not apply to other outcomes. Overall, the addition of IRS reduced malaria parasite prevalence (RR 0.61, 95% CI 0.42 to 0.88; 4 cRCTs, 16,394 participants; high-certainty evidence). IRS may also reduce malaria incidence on average (rate ratio 0.86, 95% CI 0.61 to 1.23; 4 cRCTs, 323,631 child-years; low-certainty evidence) but the effect was absent in two studies. Subgroup analyses did not explain the qualitative heterogeneity between studies. One cRCT reported no effect on malaria incidence or parasite prevalence in the first year, when a pyrethroid-like insecticide was used for IRS, but showed an effect on both outcomes in the second year, when a non-pyrethroid-like IRS was used. The addition of IRS may also reduce anaemia prevalence (RR 0.71, 95% CI 0.38 to 1.31; 3 cRCTs, 4288 participants; low-certainty evidence). Four cRCTs reported the impact of IRS on entomological inoculation rate (EIR), with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Studies also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to differences in the reported data. Three studies measured the prevalence of pyrethroid resistance before and after IRS being introduced: there was no difference detected, but these data are limited. Indoor residual spraying using 'pyrethroid-like' insecticides Adding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on EIR were limited so no conclusion was made (very low-certainty evidence). AUTHORS' CONCLUSIONS in communities using ITNs, the addition of IRS with 'non-pyrethroid-like' insecticides was associated with reduced malaria prevalence. Malaria incidence may also be reduced on average, but there was unexplained qualitative heterogeneity, and the effect may therefore not be observed in all settings. When using 'pyrethroid-like' insecticides, there was no detectable additional benefit of IRS in communities using ITNs.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nancy Medley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leslie Choi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
9
|
Kaindoa EW, Mmbando AS, Shirima R, Hape EE, Okumu FO. Insecticide-treated eave ribbons for malaria vector control in low-income communities. Malar J 2021; 20:415. [PMID: 34688285 PMCID: PMC8542300 DOI: 10.1186/s12936-021-03945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Supplementary tools are required to address the limitations of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), which are currently the core vector control methods against malaria in Africa. The eave ribbons technology exploits the natural house-entry behaviours of major malaria vectors to deliver mosquitocidal or repellent actives around eave spaces through which the Anopheles mosquitoes usually enter human dwellings. They confer protection by preventing biting indoors and in the peri-domestic outdoor spaces, and also killing a significant proportion of the mosquitoes. Current versions of eave ribbons are made of low-cost hessian fabric infused with candidate insecticides and can be easily fitted onto multiple house types without any additional modifications. This article reviews the evidence for efficacy of the technology, and discusses its potential as affordable and versatile supplementary approach for targeted and efficient control of mosquito-borne diseases, particularly malaria. Given their simplicity and demonstrated potential in previous studies, future research should investigate ways to optimize scalability and effectiveness of the ribbons. It is also important to assess whether the ribbons may constitute a less-cumbersome, but more affordable substitute for other interventions, such as IRS, by judiciously using lower quantities of selected insecticides targeted around eave spaces to deliver equivalent or greater suppression of malaria transmission.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Department of Biosciences, Durham University, DH13LE, Durham, UK
| | - Ruth Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
10
|
Ngwej LM, Mashat EM, Mukeng CK, Mundongo HT, Malonga FK, Kashala JCK, Bangs MJ. Variable residual activity of K-Othrine® PolyZone and Actellic® 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo. Malar J 2021; 20:358. [PMID: 34461898 PMCID: PMC8406736 DOI: 10.1186/s12936-021-03892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Indoor Residual Spray (IRS) against vector mosquitoes is a primary means for combating malaria transmission. To combat increased patterns of resistance to chemicals against mosquito vectors, alternative candidate insecticide formulations should be screened. With mortality as the primary endpoint, the persistence of residual efficacy of a polymer-enhanced pyrethroid suspension concentrate containing deltamethrin (K-Othrine® PolyZone—KOPZ) applied at 25 mg active ingredient (ai)/m2 was compared with a microencapsulated organophosphate suspension formulation of pirimiphos-methyl (Actellic® 300CS—ACS) applied at 1 g ai/m2. Methods Following standard spray application, periodic contact bioassays were conducted for at least 38 weeks on four types of wall surfaces (unbaked clay, baked clay, cement, and painted cement) sprayed with either KOPZ or ACS in simulated semi-field conditions. Similarly, two types of existing walls in occupied houses (painted cement and baked clay) were sprayed and examined. A colonized strain of female Anopheles arabiensis mosquitoes were exposed to treated or untreated surfaces (controls) for 30 min. For each wall surface test period, 40 treatment mosquitoes (4 cones × 10) in semi-field and 90 (9 cones × 10) in ‘natural’ house conditions were used per wall. 30 mosquitoes (3 cones × 10) on a matching unsprayed surface served as the control. Insecticide, wall material, and sprayed location on wall (in houses) were compared by final mortality at 24 h. Results Insecticide, wall material, and sprayed location on wall surface produced significant difference for mean final mortality over time. In semi-field conditions, KOPZ produced a 72% mean mortality over a 38-week period, while ACS gave 65% (p < 0.001). Painted cement wall performed better than other wall surfaces throughout the study period (73% mean mortality). In the two occupied houses, KOPZ provided a mean mortality of 88%, significantly higher than ACS (p < 0.001). KOPZ provided an effective residual life (≥ 80% mortality) between 7.3 and 14 weeks on experimental walls and between 18.3 and 47.2 weeks in houses, while ACS persisted between 3 and 7.6 weeks under semi-field conditions and between 7.1 and 17.3 weeks in houses. Household painted cement walls provided a longer effective residual activity compared to baked clay for both formulations. Greater mortality was recorded at the top and middle sections of sprayed wall compared to the bottom portion near the floor. Conclusion KOPZ provided longer residual activity on all surfaces compared to ACS. Painted cement walls provided better residual longevity for both insecticides compared to other surfaces. Insecticides also performed better in an occupied house environment compared to semi-field constructed walls. This study illustrates the importance of collecting field-based observations to determine appropriate product active ingredient formulations and timing for recurring IRS cycles.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Emmanuel M Mashat
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Henri T Mundongo
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum/International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of Congo.,Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
11
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
12
|
Qi Y, Zhang Y, Zheng G, Chen B, Zhang M, Li J, Peng T, Huang J, Wang X. In Vivo and In Vitro Genome-Wide Profiling of RNA Secondary Structures Reveals Key Regulatory Features in Plasmodium falciparum. Front Cell Infect Microbiol 2021; 11:673966. [PMID: 34079769 PMCID: PMC8166286 DOI: 10.3389/fcimb.2021.673966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that the structure of RNA plays important roles in a number of biological processes, such as polyadenylation, splicing, and catalytic functions. Dynamic changes in RNA structure are able to regulate the gene expression programme and can be used as a highly specific and subtle mechanism for governing cellular processes. However, the nature of most RNA secondary structures in Plasmodium falciparum has not been determined. To investigate the genome-wide RNA secondary structural features at single-nucleotide resolution in P. falciparum, we applied a novel high-throughput method utilizing the chemical modification of RNA structures to characterize these structures. Structural data from parasites are in close agreement with the known 18S ribosomal RNA secondary structures of P. falciparum and can help to predict the in vivo RNA secondary structure of a total of 3,396 transcripts in the ring-stage and trophozoite-stage developmental cycles. By parallel analysis of RNA structures in vivo and in vitro during the Plasmodium parasite ring-stage and trophozoite-stage intraerythrocytic developmental cycles, we identified some key regulatory features. Recent studies have established that the RNA structure is a ubiquitous and fundamental regulator of gene expression. Our study indicate that there is a critical connection between RNA secondary structure and mRNA abundance during the complex biological programme of P. falciparum. This work presents a useful framework and important results, which may facilitate further research investigating the interactions between RNA secondary structure and the complex biological programme in P. falciparum. The RNA secondary structure characterized in this study has potential applications and important implications regarding the identification of RNA structural elements, which are important for parasite infection and elucidating host-parasite interactions and parasites in the environment.
Collapse
Affiliation(s)
- Yanwei Qi
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuhong Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guixing Zheng
- Department of Blood Transfusion, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Bingxia Chen
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Mengxin Zhang
- The Third Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Namuganga JF, Epstein A, Nankabirwa JI, Mpimbaza A, Kiggundu M, Sserwanga A, Kapisi J, Arinaitwe E, Gonahasa S, Opigo J, Ebong C, Staedke SG, Shililu J, Okia M, Rutazaana D, Maiteki-Sebuguzi C, Belay K, Kamya MR, Dorsey G, Rodriguez-Barraquer I. The impact of stopping and starting indoor residual spraying on malaria burden in Uganda. Nat Commun 2021; 12:2635. [PMID: 33976132 PMCID: PMC8113470 DOI: 10.1038/s41467-021-22896-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
The scale-up of malaria control efforts has led to marked reductions in malaria burden over the past twenty years, but progress has slowed. Implementation of indoor residual spraying (IRS) of insecticide, a proven vector control intervention, has been limited and difficult to sustain partly because questions remain on its added impact over widely accepted interventions such as bed nets. Using data from 14 enhanced surveillance health facilities in Uganda, a country with high bed net coverage yet high malaria burden, we estimate the impact of starting and stopping IRS on changes in malaria incidence. We show that stopping IRS was associated with a 5-fold increase in malaria incidence within 10 months, but reinstating IRS was associated with an over 5-fold decrease within 8 months. In areas where IRS was initiated and sustained, malaria incidence dropped by 85% after year 4. IRS could play a critical role in achieving global malaria targets, particularly in areas where progress has stalled.
Collapse
Affiliation(s)
| | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Arthur Mpimbaza
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Moses Kiggundu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Chris Ebong
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Josephat Shililu
- US President's Malaria Initiative - VectorLink Uganda Project, Kampala, Uganda
| | - Michael Okia
- US President's Malaria Initiative - VectorLink Uganda Project, Kampala, Uganda
| | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | - Kassahun Belay
- US President's Malaria Initiative, USAID/Uganda Senior Malaria Advisor, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
14
|
Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. Protein Sci 2021; 30:1493-1501. [PMID: 33934433 DOI: 10.1002/pro.4095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Malaria is a life-threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood-sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro-domain and chitin-binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form-specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission-blocking activity.
Collapse
Affiliation(s)
- Vysakh K Viswanath
- Tata Institute for Genetics and Society, Center at inStem, Bengaluru, India
| | - Suraj T Gore
- Aurigene Discovery Technologies Ltd, Bengaluru, India
| | | | | | | |
Collapse
|
15
|
Mwandigha LM, Fraser KJ, Racine-Poon A, Mouksassi MS, Ghani AC. Power calculations for cluster randomized trials (CRTs) with right-truncated Poisson-distributed outcomes: a motivating example from a malaria vector control trial. Int J Epidemiol 2021; 49:954-962. [PMID: 32011684 PMCID: PMC7394957 DOI: 10.1093/ije/dyz277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/14/2022] Open
Abstract
Background Cluster randomized trials (CRTs) are increasingly used to study the efficacy of interventions targeted at the population level. Formulae exist to calculate sample sizes for CRTs, but they assume that the domain of the outcomes being considered covers the full range of values of the considered distribution. This assumption is frequently incorrect in epidemiological trials in which counts of infection episodes are right-truncated due to practical constraints on the number of times a person can be tested. Methods Motivated by a malaria vector control trial with right-truncated Poisson-distributed outcomes, we investigated the effect of right-truncation on power using Monte Carlo simulations. Results The results demonstrate that the adverse impact of right-truncation is directly proportional to the magnitude of the event rate, λ, with calculations of power being overestimated in instances where right-truncation was not accounted for. The severity of the adverse impact of right-truncation on power was more pronounced when the number of clusters was ≤30 but decreased the further the right-truncation point was from zero. Conclusions Potential right-truncation should always be accounted for in the calculation of sample size requirements at the study design stage.
Collapse
Affiliation(s)
- Lazaro M Mwandigha
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Keith J Fraser
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Amy Racine-Poon
- Department of Statistical Methodology and Consulting, Novartis Pharma AG, Basel, Switzerland.,Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Mohamad-Samer Mouksassi
- Bill & Melinda Gates Foundation, Seattle, WA, USA.,Department of Strategic Consulting Integrated Drug Development, Certara, Montreal, QC, Canada.,School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon.,Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Montreal, Montreal, QC, Canada
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
16
|
Alonso S, Chaccour CJ, Wagman J, Candrinho B, Muthoni R, Saifodine A, Saute F, Robertson M, Zulliger R. Cost and cost-effectiveness of indoor residual spraying with pirimiphos-methyl in a high malaria transmission district of Mozambique with high access to standard insecticide-treated nets. Malar J 2021; 20:143. [PMID: 33691706 PMCID: PMC7948350 DOI: 10.1186/s12936-021-03687-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As malaria cases increase in some of the highest burden countries, more strategic deployment of new and proven interventions must be evaluated to meet global malaria reduction goals. METHODS The cost and cost-effectiveness of indoor residual spraying (IRS) with pirimiphos-methyl (Actellic®300 CS) were assessed in a high transmission district (Mopeia) with high access to pyrethroid insecticide-treated nets (ITNs), compared to ITNs alone. The major mosquito vectors in the area were susceptible to primiphos-methyl, but resistant to pyrethoids. A decision analysis approach was followed to conduct deterministic and probabilistic sensitivity analyses in a theoretical cohort of 10,000 children under five years of age (U5) and 10,000 individuals of all ages, separately. Model parameters and distributions were based on prospectively collected cost and epidemiological data from a cluster-randomized control trial and a literature review. The primary analysis used health facility-malaria incidence, while community cohort incidence and cross-sectional prevalence rates were used in sensitivity analyses. Lifetime costs, malaria cases, deaths and disability-adjusted life-years (DALYs) were calculated to determine the incremental costs per DALY averted through IRS. RESULTS The average IRS cost per person protected was US$8.26 and 51% of the cost was insecticide. IRS averted 46,609 (95% CI 46,570-46,646) uncomplicated and 242 (95% CI 241-243) severe lifetime cases in a theoretical children U5 cohort, yielding an incremental cost-effectiveness ratio (ICER) of US$400 (95% CI 399-402) per DALY averted. In the all-age cohort, the ICER was higher: US$1,860 (95% CI 1,852-1,868) per DALY averted. Deterministic and probabilistic results were consistent. When adding the community protective effect of IRS, the cost per person protected decreased (US$7.06) and IRS was highly cost-effective in children U5 (ICER = US$312) and cost-effective in individuals of all ages (ICER = US$1,431), compared to ITNs alone. CONCLUSION This study provides robust evidence that IRS with pirimiphos-methyl can be cost-effective in high transmission regions with high pyrethroid ITN coverage where the major vector is susceptible to pirimiphos-methyl but resistant to pyrethroids. The finding that insecticide cost is the main driver of IRS costs highlights the need to reduce the insecticide price without jeopardizing effectiveness. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02910934 (Registered 22 September 2016). https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.
Collapse
Affiliation(s)
- Sergi Alonso
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK. .,Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique. .,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Carlos J Chaccour
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Abuchahama Saifodine
- U.S. President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | - Francisco Saute
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique
| | | | - Rose Zulliger
- U.S. President's Malaria Initiative and Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Maputo, Mozambique
| |
Collapse
|
17
|
Hellewell J, Sherrard-Smith E, Ogoma S, Churcher TS. Assessing the impact of low-technology emanators alongside long-lasting insecticidal nets to control malaria. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190817. [PMID: 33357051 PMCID: PMC7776935 DOI: 10.1098/rstb.2019.0817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 01/19/2023] Open
Abstract
Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Joel Hellewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Sheila Ogoma
- Ifakara Health Institute, Biomedical and Environmental Thematic Group, PO Box 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
18
|
Chaccour C, Zulliger R, Wagman J, Casellas A, Nacima A, Elobolobo E, Savaio B, Saifodine A, Fornadel C, Richardson J, Candrinho B, Robertson M, Saute F. Incremental impact on malaria incidence following indoor residual spraying in a highly endemic area with high standard ITN access in Mozambique: results from a cluster-randomized study. Malar J 2021; 20:84. [PMID: 33568137 PMCID: PMC7877039 DOI: 10.1186/s12936-021-03611-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Attaining the goal of reducing the global malaria burden is threatened by recent setbacks in maintaining the effectiveness of vector control interventions partly due to the emergence of pyrethroid resistant vectors. One potential strategy to address these setbacks could be combining indoor residual spraying (IRS) with non-pyrethroids and standard insecticide-treated nets (ITNs). This study aimed to provide evidence on the incremental epidemiological benefit of using third-generation IRS product in a highly endemic area with high ITN ownership. Methods A cluster-randomized, open-label, parallel-arms, superiority trial was conducted in the Mopeia district in Zambezia, Mozambique from 2016 to 2018. The district had received mass distribution of alphacypermethrin ITNs two years before the trial and again mid-way. 86 clusters were defined, stratified and randomized to receive or not receive IRS with pirimiphos-methyl (Actellic®300 CS). Efficacy of adding IRS was assessed through malaria incidence in a cohort of children under five followed prospectively for two years, enhanced passive surveillance at health facilities and by community health workers, and yearly cross-sectional surveys at the peak of the transmission season. Findings A total of 1536 children were enrolled in the cohort. Children in the IRS arm experienced 4,801 cases (incidence rate of 3,532 per 10,000 children-month at risk) versus 5,758 cases in the no-IRS arm (incidence rate of 4,297 per 10,000 children-month at risk), resulting in a crude risk reduction of 18% and an incidence risk ratio of 0.82 (95% CI 0.79–0.86, p-value < 0.001). Facility and community passive surveillance showed a malaria incidence of 278 per 10,000 person-month in the IRS group (43,974 cases over 22 months) versus 358 (95% CI 355–360) per 10,000 person-month at risk in the no-IRS group (58,030 cases over 22 months), resulting in an incidence rate ratio of 0.65 (95% CI 0.60–0.71, p < 0.001). In the 2018 survey, prevalence in children under five in the IRS arm was significantly lower than in the no-IRS arm (OR 0.54, 95% CI, 0.31–0.92, p = 0.0241). Conclusion In a highly endemic area with high ITN access and emerging pyrethroid resistance, adding IRS with pirimiphos-methyl resulted in significant additional protection for children under five years of age. Trial registration: ClinicalTrials.gov identifier NCT02910934, registered 22 September 2016, https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| | - Rose Zulliger
- President's Malaria Initiative, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | | | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Amilcar Nacima
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Abuchahama Saifodine
- President's Malaria Initiative, United States Agency for International Development, Maputo, Mozambique
| | | | | | | | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
19
|
Syme T, Fongnikin A, Todjinou D, Govoetchan R, Gbegbo M, Rowland M, Akogbeto M, Ngufor C. Which indoor residual spraying insecticide best complements standard pyrethroid long-lasting insecticidal nets for improved control of pyrethroid resistant malaria vectors? PLoS One 2021; 16:e0245804. [PMID: 33507978 PMCID: PMC7842967 DOI: 10.1371/journal.pone.0245804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background Where resources are available, non-pyrethroid IRS can be deployed to complement standard pyrethroid LLINs with the aim of achieving improved vector control and managing insecticide resistance. The impact of the combination may however depend on the type of IRS insecticide deployed. Studies comparing combinations of pyrethroid LLINs with different types of non-pyrethroid IRS products will be necessary for decision making. Methods The efficacy of combining a standard pyrethroid LLIN (DuraNet®) with IRS insecticides from three chemical classes (bendiocarb, chlorfenapyr and pirimiphos-methyl CS) was evaluated in an experimental hut trial against wild pyrethroid-resistant Anopheles gambiae s.l. in Cové, Benin. The combinations were also compared to each intervention alone. WHO cylinder and CDC bottle bioassays were performed to assess susceptibility of the local An. gambiae s.l. vector population at the Cové hut site to insecticides used in the combinations. Results Susceptibility bioassays revealed that the vector population at Cové, was resistant to pyrethroids (<20% mortality) but susceptible to carbamates, chlorfenapyr and organophosphates (≥98% mortality). Mortality of wild free-flying pyrethroid resistant An. gambiae s.l. entering the hut with the untreated net control (4%) did not differ significantly from DuraNet® alone (8%, p = 0.169). Pirimiphos-methyl CS IRS induced the highest mortality both on its own (85%) and in combination with DuraNet® (81%). Mortality with the DuraNet® + chlorfenapyr IRS combination was significantly higher than each intervention alone (46% vs. 33% and 8%, p<0.05) demonstrating an additive effect. The DuraNet® + bendiocarb IRS combination induced significantly lower mortality compared to the other combinations (32%, p<0.05). Blood-feeding inhibition was very low with the IRS treatments alone (3–5%) but increased significantly when they were combined with DuraNet® (61% - 71%, p<0.05). Blood-feeding rates in the combinations were similar to the net alone. Adding bendiocarb IRS to DuraNet® induced significantly lower levels of mosquito feeding compared to adding chlorfenapyr IRS (28% vs. 37%, p = 0.015). Conclusions Adding non-pyrethroid IRS to standard pyrethroid-only LLINs against a pyrethroid-resistant vector population which is susceptible to the IRS insecticide, can provide higher levels of vector mosquito control compared to the pyrethroid net alone or IRS alone. Adding pirimiphos-methyl CS IRS may provide substantial improvements in vector control while adding chlorfenapyr IRS can demonstrate an additive effect relative to both interventions alone. Adding bendiocarb IRS may show limited enhancements in vector control owing to its short residual effect.
Collapse
Affiliation(s)
- Thomas Syme
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Augustin Fongnikin
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Damien Todjinou
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Renaud Govoetchan
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Martial Gbegbo
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Martin Akogbeto
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- Centre de Recherches Entomologiques de Cotonou (CREC), Benin, West Africa
- Panafrican Malaria Vector Research Consortium (PAMVERC), Benin, West Africa
- * E-mail:
| |
Collapse
|
20
|
Hilton Boon M, Thomson H, Shaw B, Akl EA, Lhachimi SK, López-Alcalde J, Klugar M, Choi L, Saz-Parkinson Z, Mustafa RA, Langendam MW, Crane O, Morgan RL, Rehfuess E, Johnston BC, Chong LY, Guyatt GH, Schünemann HJ, Katikireddi SV. Challenges in applying the GRADE approach in public health guidelines and systematic reviews: a concept article from the GRADE Public Health Group. J Clin Epidemiol 2021; 135:42-53. [PMID: 33476768 PMCID: PMC8352629 DOI: 10.1016/j.jclinepi.2021.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE This article explores the need for conceptual advances and practical guidance in the application of the GRADE approach within public health contexts. METHODS We convened an expert workshop and conducted a scoping review to identify challenges experienced by GRADE users in public health contexts. We developed this concept article through thematic analysis and an iterative process of consultation and discussion conducted with members electronically and at three GRADE Working Group meetings. RESULTS Five priority issues can pose challenges for public health guideline developers and systematic reviewers when applying GRADE: (1) incorporating the perspectives of diverse stakeholders; (2) selecting and prioritizing health and "nonhealth" outcomes; (3) interpreting outcomes and identifying a threshold for decision-making; (4) assessing certainty of evidence from diverse sources, including nonrandomized studies; and (5) addressing implications for decision makers, including concerns about conditional recommendations. We illustrate these challenges with examples from public health guidelines and systematic reviews, identifying gaps where conceptual advances may facilitate the consistent application or further development of the methodology and provide solutions. CONCLUSION The GRADE Public Health Group will respond to these challenges with solutions that are coherent with existing guidance and can be consistently implemented across public health decision-making contexts.
Collapse
Affiliation(s)
- Michele Hilton Boon
- MRC/CSO Social and Public Health Sciences Unit, Berkeley Square, 99 Berkeley Street, University of Glasgow, Glasgow G3 7HR, UK.
| | - Hilary Thomson
- MRC/CSO Social and Public Health Sciences Unit, Berkeley Square, 99 Berkeley Street, University of Glasgow, Glasgow G3 7HR, UK
| | - Beth Shaw
- Center for Evidence-based Policy, Oregon Health & Science University, Portland, OR 97201 USA
| | - Elie A Akl
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada; Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Stefan K Lhachimi
- Department for Health Services Research, Institute of Public Health and Nursing Research, University of Bremen, Grazer Straße 4, 28359 Bremen, Germany; Health Sciences Bremen, University of Bremen, 28359 Bremen, Germany
| | - Jesús López-Alcalde
- Department of Paediatrics, Obstetrics & Gynaecology and Preventative Medicine, Universitat Autònoma de Barcelona; Faculty of Health Sciences, Universidad Francisco de Vitoria (UFV)-Madrid; Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS); CIBER Epidemiology and Public Health; Cochrane Associate Centre of Madrid, Madrid, Spain
| | - Miloslav Klugar
- Faculty of Medicine, Czech National Centre for Evidence-Based Healthcare and Knowledge Translation (Cochrane Czech Republic, The Czech Republic Centre for Evidence-Based Healthcare; JBI Centre of Excellence, Masaryk University GRADE Centre), Institute of Biostatistics and Analyses, Masaryk University, 625 00 Brno, Czechia
| | - Leslie Choi
- The Department of Vector Biology, Partnership for Increasing the Impact of Vector Control, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Reem A Mustafa
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada; Departments of Medicine and Biomedical & Health Informatics, University of Missouri-Kansas City, Kansas City, MO 66160 USA
| | - Miranda W Langendam
- Department of Clinical Epidemiology, Amsterdam University Medical Centres, University of Amsterdam, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Olivia Crane
- National Institute for Health and Care Excellence (NICE), Level 1A, City Tower, Piccadilly Plaza, Manchester M1 4BT, UK
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada
| | - Eva Rehfuess
- Institute for Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | | | - Lee Yee Chong
- Cochrane Public Health and Health Systems Network, University of Oxford, Oxford, UK
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada
| | - Holger J Schünemann
- Department of Health Research Methods, Michael G DeGroote Cochrane Canada and McMaster GRADE Centres, and WHO Collaborating Centre for Infectious Diseases, Research Methods and Recommendations, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Srinivasa Vittal Katikireddi
- MRC/CSO Social and Public Health Sciences Unit, Berkeley Square, 99 Berkeley Street, University of Glasgow, Glasgow G3 7HR, UK
| | | |
Collapse
|
21
|
Rek J, Musiime A, Zedi M, Otto G, Kyagamba P, Asiimwe Rwatooro J, Arinaitwe E, Nankabirwa J, Staedke SG, Drakeley C, Rosenthal PJ, Kamya M, Dorsey G, Krezanoski PJ. Non-adherence to long-lasting insecticide treated bednet use following successful malaria control in Tororo, Uganda. PLoS One 2020; 15:e0243303. [PMID: 33270743 PMCID: PMC7714220 DOI: 10.1371/journal.pone.0243303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
Indoor residual spraying (IRS) and long-lasting insecticide-treated bednets (LLINs) are common tools for reducing malaria transmission. We studied a cohort in Uganda with universal access to LLINs after 5 years of sustained IRS to explore LLIN adherence when malaria transmission has been greatly reduced. Eighty households and 526 individuals in Nagongera, Uganda were followed from October 2017 -October 2019. Every two weeks, mosquitoes were collected from sleeping rooms and LLIN adherence the prior night assessed. Episodes of malaria were diagnosed using passive surveillance. Risk factors for LLIN non-adherence were evaluated using multi-level mixed logistic regression. An age-matched case-control design was used to measure the association between LLIN non-adherence and malaria. Across all time periods, and particularly in the last 6 months, non-adherence was higher among both children <5 years (OR 3.31, 95% CI: 2.30-4.75; p<0.001) and school-aged children 5-17 years (OR 6.88, 95% CI: 5.01-9.45; p<0.001) compared to adults. In the first 18 months, collection of fewer mosquitoes was associated with non-adherence (OR 3.25, 95% CI: 2.92-3.63; p<0.001), and, in the last 6 months, residents of poorer households were less adherent (OR 5.1, 95% CI: 1.17-22.2; p = 0.03). Any reported non-adherence over the prior two months was associated with a 15-fold increase in the odds of having malaria (OR 15.0, 95% CI: 1.95 to 114.9; p = 0.009). Knowledge about LLIN use was high, and the most frequently reported barriers to use included heat and low perceived risk of malaria. Children, particularly school-aged, participants exposed to fewer mosquitoes, and those from poorer households, were less likely to use LLINs. Non-adherence to LLINs was associated with an increased risk of malaria. Strategies, such as behavior change communications, should be prioritized to ensure consistent LLIN use even when malaria transmission has been greatly reduced.
Collapse
Affiliation(s)
- John Rek
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Alex Musiime
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Maato Zedi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Geoffrey Otto
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | | | - Emmanuel Arinaitwe
- Infectious Disease Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Moses Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, CA, United States of America
| | | |
Collapse
|
22
|
Martin JA, Hendershot AL, Saá Portilla IA, English DJ, Woodruff M, Vera-Arias CA, Salazar-Costa BE, Bustillos JJ, Saénz FE, Ocaña-Mayorga S, Koepfli C, Lobo NF. Anopheline and human drivers of malaria risk in northern coastal, Ecuador: a pilot study. Malar J 2020; 19:354. [PMID: 33008438 PMCID: PMC7532652 DOI: 10.1186/s12936-020-03426-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022] Open
Abstract
Background Understanding local anopheline vector species and their bionomic traits, as well as related human factors, can help combat gaps in protection. Methods In San José de Chamanga, Esmeraldas, at the Ecuadorian Pacific coast, anopheline mosquitoes were sampled by both human landing collections (HLCs) and indoor-resting aspirations (IAs) and identified using both morphological and molecular methods. Human behaviour observations (HBOs) (including temporal location and bed net use) were documented during HLCs as well as through community surveys to determine exposure to mosquito bites. A cross-sectional evaluation of Plasmodium falciparum and Plasmodium vivax infections was conducted alongside a malaria questionnaire. Results Among 222 anopheline specimens captured, based on molecular analysis, 218 were Nyssorhynchus albimanus, 3 Anopheles calderoni (n = 3), and one remains unidentified. Anopheline mean human-biting rate (HBR) outdoors was (13.69), and indoors (3.38) (p = 0.006). No anophelines were documented resting on walls during IAs. HBO-adjusted human landing rates suggested that the highest risk of being bitten was outdoors between 18.00 and 20.00 h. Human behaviour-adjusted biting rates suggest that overall, long-lasting insecticidal bed nets (LLINs) only protected against 13.2% of exposure to bites, with 86.8% of exposure during the night spent outside of bed net protection. The malaria survey found 2/398 individuals positive for asymptomatic P. falciparum infections. The questionnaire reported high (73.4%) bed net use, with low knowledge of malaria. Conclusion The exophagic feeding of anopheline vectors in San Jose de Chamanga, when analysed in conjunction with human behaviour, indicates a clear gap in protection even with high LLIN coverage. The lack of indoor-resting anophelines suggests that indoor residual spraying (IRS) may have limited effect. The presence of asymptomatic infections implies the presence of a human reservoir that may maintain transmission.
Collapse
Affiliation(s)
- James A Martin
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Allison L Hendershot
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Iván Alejandro Saá Portilla
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Daniel J English
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Woodruff
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Claudia A Vera-Arias
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Bibiana E Salazar-Costa
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Juan José Bustillos
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Fabián E Saénz
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación Para La Salud en América Latina, Facultad de Ciencias Exactas Y Naturales, Pontificia Universidad Católica del Ecuador, Calle San Pedro Y Pambahacienda, 170530, Nayón, Ecuador.
| | - Cristian Koepfli
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
23
|
Tangena JAA, Hendriks CMJ, Devine M, Tammaro M, Trett AE, Williams I, DePina AJ, Sisay A, Herizo R, Kafy HT, Chizema E, Were A, Rozier J, Coleman M, Moyes CL. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malar J 2020; 19:150. [PMID: 32276585 PMCID: PMC7149868 DOI: 10.1186/s12936-020-03216-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub-Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated. METHODS Data on IRS deployment were collated from a variety of sources, including the President's Malaria Initiative spray reports and National Malaria Control Programme reports, for all 46 malaria-endemic countries in sub-Saharan Africa from 1997 to 2017. The data were mapped to the applicable administrative divisions and the proportion of households sprayed for each of the four main insecticide classes; carbamates, organochlorines, organophosphates and pyrethroids was calculated. RESULTS The number of countries implementing IRS increased considerably over time, although the focal nature of deployment means the number of people protected remains low. From 1997 to 2010, DDT and pyrethroids were commonly used, then partly replaced by carbamates from 2011 and by organophosphates from 2013. IRS deployment since the publication of resistance management guidelines has typically avoided overlap between pyrethroid IRS and ITN use. However, annual rotations of insecticide classes with differing modes of action are not routinely used. CONCLUSION This study highlights the gaps between policy and practice, emphasizing the continuing potential of IRS to drive resistance. The data presented here can improve studies on the impact of IRS on malaria incidence and help to guide future malaria control efforts.
Collapse
Affiliation(s)
- Julie-Anne A Tangena
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Chantal M J Hendriks
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Maria Devine
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Meghan Tammaro
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Anna E Trett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ignatius Williams
- Monitoring, & Evaluation Department, AngloGold Ashanti Malaria Limited, AO0540595 Obuasi Mine Road, P. O. Box 10, Obuasi, Ghana
| | - Adilson José DePina
- Malaria Pre-Elimination Program, CCS-SIDA/MSSS, Avenida Cidade Lisboa, "Prédio Bô Casa" 1º Andar, CP, 855, Praia, Cabo Verde
- Ecole Doctorale Des Sciences de La Vie, de la Santé et de l´Environnement (ED‑SEV), Université Cheikh Anta Diop (UCAD) de Dakar, BP 1386, Dakar, Sénégal
| | | | - Ramandimbiarijaona Herizo
- Programme national de lutte contre le paludisme, Androhibe en face ENAM, BP 101, Antananarivo, Madagascar
| | - Hmooda Toto Kafy
- Integrated Vector Management Department, Federal Ministry of Health, Khartoum, Sudan
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, Lusaka, Zambia
| | - Allan Were
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Jennifer Rozier
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Michael Coleman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK.
| |
Collapse
|
24
|
Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A 2019; 116:15086-15095. [PMID: 31285346 PMCID: PMC6660788 DOI: 10.1073/pnas.1820646116] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria transmission persists even when mosquito control is used effectively. This “residual transmission” measures all forms of transmission that are beyond the reach of standard insecticidal nets and indoor residual spraying of insecticides when used optimally. The epidemiological importance of the time of day mosquitoes bite and how much this contributes to residual transmission is unclear. The scale of the problem must be understood to demonstrate the need for outdoor vector control tools. An additional 10.6 million clinical cases of malaria are predicted annually given the 10% higher level of outdoor biting observed here. Mosquito species and behavior data together with people’s resting and sleeping patterns are needed to fully measure indoor intervention efficacy and accurately quantify residual transmission. The antimalarial efficacy of the most important vector control interventions—long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)—primarily protect against mosquitoes’ biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa.
Collapse
|