1
|
Svirkin Y, Lee J, Marx R, Yoon S, Landrau N, Kaisar MA, Qin B, Park JH, Alam K, Kozak D, Wang Y, Xu X, Zheng J, Rivnay B. Amphotericin B release rate is the link between drug status in the liposomal bilayer and toxicity. Asian J Pharm Sci 2022; 17:544-556. [PMID: 36105314 PMCID: PMC9459057 DOI: 10.1016/j.ajps.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Amphotericin B (AmB) is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections. Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer, which heat treatment (curing) modifies. Although toxicity was found related to aggregation status - loose aggregates significantly more toxic than tight aggregates - the precise mechanism linking aggregation and toxicity was not well understood. This study directly measured drug release rate from various AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state, drug release, and in vitro toxicity. UV–Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features: a ∼25 nm blue-shift of the main absorption peak (λmax) in aqueous buffer and a decrease in the OD346/OD322 ratio upon thermal curing, reflecting tighter aggregation. In vitro release testing (IVRT) data showed, by applying and fitting first-order release kinetic models for one or two pools, that curing impacts two significant changes: a 3–5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated, more thermodynamically stable drug pool. The kinetic data thus corroborated the trend independently deduced from the UV–Vis spectral data. The in vitro toxicity assay indicated a decreased toxicity with curing, as shown by the significantly increased concentration, causing half-maximal potassium release (TC50). The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation. This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release (directly measured rate constants), providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.
Collapse
|
2
|
Zhang J, Xu H, Dong Y, Chen M, Zhang Y, Shangguan W, Zhao W, Feng J. Design, synthesis and biological evaluation of a novel N-aminoacyl derivative of amphotericin B methyl ester as an antifungal agent. Eur J Med Chem 2020; 211:113104. [PMID: 33360798 DOI: 10.1016/j.ejmech.2020.113104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Jinhua Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjiang Xu
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yuanzhen Dong
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - Minwei Chen
- Shanghai Duomirui Biotechnology Ltd., Shanghai, China
| | - You Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | | | - Wenjie Zhao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Duomirui Biotechnology Ltd., Shanghai, China.
| |
Collapse
|
3
|
Alonso L, Mendanha SA, Dorta ML, Alonso A. Analysis of the Interactions of Amphotericin B with the Leishmania Plasma Membrane Using EPR Spectroscopy. J Phys Chem B 2020; 124:10157-10165. [DOI: 10.1021/acs.jpcb.0c07721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lais Alonso
- Instituto Federal Goiano, Trindade 76300-000, Goiás, Brazil
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | | | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| |
Collapse
|
4
|
Synthesis and biological evaluation of esterified and acylated derivatives of NH 2-(AEEA) 5-amphotericin B. J Antibiot (Tokyo) 2020; 74:133-142. [PMID: 32939075 DOI: 10.1038/s41429-020-00365-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/08/2022]
Abstract
Based on NH2-(AEEA)5-amphotericin B (DMR005; AEEA is 8-amino-3,6-dioxaoctanoic acid), a series of novel esterified and acylated derivatives of DMR005 were synthesized. These derivatives were evaluated for their antifungal activities using the broth dilution method, for their hemolytic toxicity with sterile defibrinated sheep blood, and for their self-association through UV-visible spectroscopy. The preliminary screening tests indicated that NH2-(AEEA)5-amphotericin B methyl ester (DMR031) was an ideal compound. The results of minimum inhibitory concentration and time-kill assays showed that antifungal activities of DMR031 (4 μg ml-1) against Candida albicans ATCC10231 and ATCC90028 were reduced by four times compared to these of amphotericin B (AmB) (1 μg ml-1). DMR031 (142 ± 1 mg ml-1) significantly improved the water solubility of AmB as DMR005 did. Preliminary safety assessments of DMR031 were carried out via cell toxicity assay of HEK293T in vitro, which turned out to be much better than AmB. AmB had good efficacy in vivo at a dose of 1 mg ml-1. However, DMR031 still had no efficacy in vivo even at a dose of 16 mg ml-1, merely prolonged the survival time of mice.
Collapse
|
5
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
6
|
Zhang J, Ma J, Dong Y, Zhao W, Feng J. Synthesis and characterization of NH 2-(AEEA)n-amphotericin B derivatives. J Antibiot (Tokyo) 2019; 72:210-217. [PMID: 30635615 DOI: 10.1038/s41429-018-0138-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022]
Abstract
To find novel amphotericin B (AmB) derivatives with high therapeutic potential, low toxicity, and water solubility, a series of nine N-substituted AmB derivatives were evaluated for their antifungal activity using the broth dilution method and for their hemolytic toxicity with sterile defibrinated sheep blood. Qualitative screening of the effect of the derivatives on two reference Candida albicans strains and of their solubility was performed based on the value of n (n is a positive integer), resulting in the identification of an optimal compound, NH2-(AEEA)5-AmB (DMR005; AEEA is 8-amino-3,6- dioxaoctanoic acid). Preliminary safety assessments of DMR005 were carried out via the MTT cell viability assay in vitro and acute toxicity assay in vivo. In general, DMR005 not only has higher water solubility and less toxicity than the parent polyene but also retains antifungal potency.
Collapse
Affiliation(s)
- Jinhua Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jie Ma
- Shanghai Duomirui Biotechnology Ltd, Shanghai, China
| | - Yuanzhen Dong
- Shanghai Duomirui Biotechnology Ltd, Shanghai, China
| | - Wenjie Zhao
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jun Feng
- Shanghai Duomirui Biotechnology Ltd, Shanghai, China. .,State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
7
|
Gurudevan S, Francis AP, Jayakrishnan A. Amphotericin B-albumin conjugates: Synthesis, toxicity and anti-fungal activity. Eur J Pharm Sci 2018; 115:167-174. [DOI: 10.1016/j.ejps.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
8
|
Halperin A, Shadkchan Y, Pisarevsky E, Szpilman AM, Sandovsky H, Osherov N, Benhar I. Novel Water-Soluble Amphotericin B-PEG Conjugates with Low Toxicity and Potent in Vivo Efficacy. J Med Chem 2016; 59:1197-206. [DOI: 10.1021/acs.jmedchem.5b01862] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Evgeni Pisarevsky
- Schulich
Faculty of Chemistry, Israel Institute of Technology, 3200008 Technion-City, Haifa, Israel
| | - Alex M. Szpilman
- Schulich
Faculty of Chemistry, Israel Institute of Technology, 3200008 Technion-City, Haifa, Israel
| | | | | | | |
Collapse
|
9
|
Sasaki J, Matsumoto K, Fujishima S, Morita K, Hori S. Pharmacokinetics of a polyene antifungal agent, liposomal amphotericin B (L-AMB), in a severely burned patient. J Chemother 2013; 26:312-4. [PMID: 24070023 DOI: 10.1179/1973947813y.0000000141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int J Pharm 2013; 447:38-46. [DOI: 10.1016/j.ijpharm.2013.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/24/2022]
|
11
|
Silva-Filho MAD, Siqueira SDVDS, Freire LB, Araújo IBD, Holanda e Silva KGD, Medeiros ADC, Araújo-Filho I, Oliveira AGD, Egito ESTD. How can micelle systems be rebuilt by a heating process? Int J Nanomedicine 2012; 7:141-50. [PMID: 22275830 PMCID: PMC3263407 DOI: 10.2147/ijn.s25761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to evaluate how an aqueous micellar system containing Amphotericin B (AmB) and sodium deoxycholate (DOC) can be rebuilt after heating treatment. Also, a review of the literature on the physicochemical and biological properties of this new system was conducted. Heated (AmB-DOC-H) and unheated (AmB-DOC) micelles were then diluted at four different concentrations (50 mg · L(-1), 5 mg · L(-1), 0.5 mg · L(-1), and 0.05 mg · L(-1)) to perform physicochemical studies and a pharmacotoxicity assay, in which two cell models were used for the in vitro experiments: red blood cells (RBC) from human donors and Candida parapsilosis (Cp). While potassium (K(+)) and hemoglobin leakage from RBC were the parameters used to evaluate acute and chronic toxicity, respectively, the efficacy of AmB-DOC and AmB-DOC-H were assessed by K(+) leakage and cell survival rate from Cp. The spectral study revealed a slight change in the AmB-DOC aggregate peak from 327 nm to 323 nm, which is the peak for AmB-DOC-H. Although AmB-DOC and AmB-DOC-H exhibited different behavior for hemoglobin leakage, AmB-DOC produced higher leakage than AmB-DOC-H at high concentrations (from 5 mg · L(-1)). For K(+) leakage, both AmB-DOC and AmB-DOC-H showed a similar profile for both cell models, RBC and Cp (P < 0.05). AmB-DOC-H and AmB-DOC also revealed a similar profile of activity against Cp with an equivalent survival rate. In short, AmB-DOC-H showed much less toxicity than AmB-DOC, but remained as active as AmB-DOC against fungal cells. The results highlight the importance of this new procedure as a simple, inexpensive, and safe way to produce a new kind of micelle system for the treatment of systemic fungal infections.
Collapse
|
12
|
Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm 2008; 361:64-9. [DOI: 10.1016/j.ijpharm.2008.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 11/16/2022]
|
13
|
Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B Formulations and Drug Targeting. J Pharm Sci 2008; 97:2405-25. [PMID: 17893903 DOI: 10.1002/jps.21179] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome, Abelcet, and Amphotec) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations.
Collapse
Affiliation(s)
- J J Torrado
- Dpto Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Complutense University of Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 2008; 7:84-99. [DOI: 10.1038/nrd2353] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Hong Y, Shaw PJ, Tattam BN, Nath CE, Earl JW, Stephen KR, McLachlan AJ. Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol 2006; 63:165-72. [PMID: 17180621 DOI: 10.1007/s00228-006-0240-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study investigates the association of liposomal amphotericin B (L-AmB) with plasma proteins and its impact on the pharmacokinetics of L-AmB in paediatric patients with malignant diseases. METHODS Paediatric oncology patients (n = 39) who received multiple-doses of L-AmB were recruited into this study. The association of the drug with plasma lipoprotein was investigated using single vertical spin density gradient ultracentrifugation and quantitated with a validated HPLC assay. The unbound amphotericin B (AmB) in the plasma was separated by ultrafiltration and determined with a validated LC/MS/MS assay. RESULTS The ex vivo lipoprotein distribution of L-AmB found that 68.3 +/- 11.8% of the drug was associated with the high density lipoprotein (HDL) fraction, which demonstrated a significant inverse correlation with posterior Bayesian estimates of L-AmB clearance (r = -0.690, p < 0.01). The average of unbound fraction of AmB in plasma of patients administered with L-AmB was 0.005, but its relationship with L-AmB clearance did not reach a statistical significance. CONCLUSION L-AmB displays different lipoprotein distribution profile from that of the conventional AmB formulation, with L-AmB preferentially associated with HDL in plasma. The inverse correlation of L-AmB clearance to its HDL distribution contributes to the difference in the pharmacokinetic profile of L-AmB.
Collapse
Affiliation(s)
- Ying Hong
- Faculty of Pharmacy, University of Sydney, Pharmacy Building (A15), Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Meletiadis J, Chanock S, Walsh TJ. Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 2006; 19:763-87. [PMID: 17041143 PMCID: PMC1592689 DOI: 10.1128/cmr.00059-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pharmacogenomics is defined as the study of the impacts of heritable traits on pharmacology and toxicology. Candidate genes with potential pharmacogenomic importance include drug transporters involved in absorption and excretion, phase I enzymes (e.g., cytochrome P450-dependent mixed-function oxidases) and phase II enzymes (e.g., glucuronosyltransferases) contributing to metabolism, and those molecules (e.g., albumin, A1-acid glycoprotein, and lipoproteins) involved in the distribution of antifungal compounds. By using the tools of population genetics to define interindividual differences in drug absorption, distribution, metabolism, and excretion, pharmacogenomic models for genetic variations in antifungal pharmacokinetics can be derived. Pharmacogenomic factors may become especially important in the treatment of immunocompromised patients or those with persistent or refractory mycoses that cannot be explained by elevated MICs and where rational dosage optimization of the antifungal agent may be particularly critical. Pharmacogenomics has the potential to shift the paradigm of therapy and to improve the selection of antifungal compounds and adjustment of dosage based upon individual variations in drug absorption, metabolism, and excretion.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Pediatric Oncology Branch, National Cancer Institute, CRC, 1-5750 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Rama Iñiguez S, Dea-Ayuela MA, Sanchez-Brunete JA, Torrado JJ, Alunda JM, Bolas-Fernández F. Real-time reverse transcription-PCR quantification of cytokine mRNA expression in golden Syrian hamster infected with Leishmania infantum and treated with a new amphotericin B formulation. Antimicrob Agents Chemother 2006; 50:1195-201. [PMID: 16569829 PMCID: PMC1426985 DOI: 10.1128/aac.50.4.1195-1201.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A real-time quantitative reverse transcription-PCR assay was developed for the quantification of cytokine mRNA expression in the golden Syrian hamster Mesocricetus auratus infected with Leishmania infantum and treated with amphotericin B (AMB) formulated in microspheres made of human serum albumin (HSA). Treatment was administered intravenously on days 69, 71, and 73 postinfection (p.i.) with 10(7) metacyclic promastigotes, at doses of 2 and 40 mg/kg of AMB. High infection levels were recorded for untreated animals by day 76 p.i., with parasite loads always about 2 log10 per gram higher in the liver than in the spleen. Treatment was highly effective with both doses, but at 40 mg/kg, almost complete parasite elimination was achieved. mRNA expression of gamma interferon (IFN-gamma) and, to a lesser extent, tumor necrosis factor alpha (TNF-alpha) and transforming growth factor beta (TGF-beta) in spleen cells was up-regulated in most animals of the untreated group. The mRNA expression of interleukin-4 was strongly down-regulated in untreated as well as treated infected animals. Treatment with the lower dose of AMB-HSA down-regulated the mRNA expression of IFN-gamma and TNF-alpha, with no effect on the deactivating cytokine TGF-beta. In contrast, treatment with the higher dose (40 mg/kg) of the formulation caused moderate up-regulation of IFN-gamma and TNF-alpha and strong suppression of TGF-beta. Treatment of noninfected animals did not alter the cytokine expression pattern with regard to untreated controls. Our results suggest that treatment of L. infantum-infected Syrian hamsters with highly effective nontoxic doses of AMB-HSA causes deactivation of the anti-inflammatory cytokine TGF-beta, which in turn results in up-regulation of the Th1 cytokines IFN-gamma and TNF-alpha.
Collapse
Affiliation(s)
- S Rama Iñiguez
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Baginski M, Cybulska B, Gruszecki WI. Chapter 9 Interaction of Polyene Macrolide Antibiotics with Lipid Model Membranes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(05)03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
19
|
Leon C, Taylor R, Bartlett KH, Wasan KM. Effect of heat-treatment and the role of phospholipases on Fungizone®-induced cytotoxicity within human kidney proximal tubular (HK-2) cells and Aspergillus fumigatus. Int J Pharm 2005; 298:211-8. [PMID: 15950412 DOI: 10.1016/j.ijpharm.2005.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
The objectives of this study were to determine the effects of heat-treatment on Fungizone (FZ)-induced cytotoxicity in human kidney (HK-2) cells and fungal isolates of Aspergillus fumigatus, and to determine the possible role of phospholipases (PLA2 and PLC) on heat-treated FZ (HFZ)-associated renal cell toxicity. HK-2 cells were grown at 37 degrees C in T75 flasks and seeded in 96-well plates at 20,000 cells/well. FZ and HFZ concentrations of 10, 25 and 50 microg/mL of AmpB were prepared. Snake venom PLA2 and PLC (2.15 U/mL) were pre-incubated with HFZ for 1h prior to addition to the cells. After 18 h of incubation, an MTS assay was performed to assess cell viability through mitochondrial respiration. A spore suspension of A. fumigatus was prepared and 96-well plates were seeded at 500,000 spores/well. HFZ and FZ were prepared as above and incubated with the fungi at 35 degrees C. After 72 h, the minimum inhibitory concentration (MIC) was determined as the lowest concentration of drug that inhibited visible growth. Student-Newman-Keuls multiple comparisons tests were conducted to determine statistical significance. FZ-induced cytotoxicity was significantly greater than for HFZ in HK-2 cells at amphotericin B (AmpB) concentrations between 10 and 50 microg AmpB/mL (n = 5-9, p < 0.05). HFZ and FZ were found to have similar minimum inhibitory concentration (MIC) ranges for A. fumigatus (0.225-0.25 microg) AmpB/mL; (n = 6). The addition of PLA2 and PLC to 50 microg heat-treated AmpB/mL significantly enhanced the cytotoxicity compared to controls (n = 6, p < 0.05). The presence of the phospholipases did not alter FZ-associated renal cell toxicity. Taken together, these findings suggest heat-treatment significantly decreased FZ-induced cytotoxicity in HK-2 cells without altering toxicity against a reference strain of A. fumigatus. In addition, PLA2 and PLC enhanced the renal toxicity associated with HFZ, but not that of FZ.
Collapse
Affiliation(s)
- Carlos Leon
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
20
|
Falk R, Hacham M, Nyska A, Foley JF, Domb AJ, Polacheck I. Induction of interleukin-1beta, tumour necrosis factor-alpha and apoptosis in mouse organs by amphotericin B is neutralized by conjugation with arabinogalactan. J Antimicrob Chemother 2005; 55:713-20. [PMID: 15814605 DOI: 10.1093/jac/dki090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To investigate the possibilities that: (i) organ toxicity of amphotericin B-deoxycholate (AMB-DOC) is related to induction of interleukin-1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and apoptosis in target organs; and (ii) the reduced toxicity resulting from the conjugation of AMB with water-soluble arabinogalactan (AMB-AG), is related to modulation of these parameters. METHODS Organ expression of IL-1beta and TNF-alpha was evaluated by enzyme-linked immunosorbent assay (ELISA) in mouse organ biological fluids and in situ by immunohistochemistry. Tissue damage was evaluated histologically, and apoptosis was demonstrated by terminal dUTP nick end-labelling (TUNEL) staining. AMB-AG conjugate was compared with the micellar (AMB-DOC) and liposomal (AmBisome) AMB formulations. RESULTS Treatment with AMB-AG or AmBisome caused no observable histopathological damage in the kidneys. In contrast, treatment with AMB-DOC resulted in disruptive changes and apoptosis in renal tubular cells. These effects were found to correlate with induction of high levels of IL-1beta and TNF-alpha in kidney lysates. Unlike AMB-AG, AMB-DOC also induced enhanced IL-1beta and TNF-alpha expression in lysates of lungs, brain, liver and spleen. The marked elevation of these inflammation-apoptosis-promoting cytokines after treatment with AMB-DOC may mediate its systemic and local renal damage. Treatment with AMB-AG (but not AmBisome) appears to uniquely modulate the in situ expression of IL-1beta and enhance secretion of TNF-alpha in kidneys, effects possibly involved in prevention of apoptosis. CONCLUSIONS AMB-related toxicity is associated with induction of IL-1beta, TNF-alpha and apoptosis in organs. These effects were not observed with AMB-AG conjugate, suggesting its potential as a safer formulation for therapy.
Collapse
Affiliation(s)
- Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, The Hebrew University-Hadassah Medical Center, PO Box 12000, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Chung NS, Wasan KM. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv Drug Deliv Rev 2004; 56:1315-34. [PMID: 15109771 DOI: 10.1016/j.addr.2003.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 12/20/2003] [Indexed: 12/12/2022]
Abstract
We highlight the importance of the low-density lipoprotein (LDL) receptor family and its pharmaceutical implications in the field of drug delivery. The members of the LDL receptor family are a group of cell surface receptors that transport a number of macromolecules into cells through a process called receptor-mediated endocytosis. This process involves the receptor recognizing a ligand from the extracellular membrane (ECM), internalizing it through clathrin-coated pits and degrading it upon fusion with lysosomes. There are nine members of the receptor family, which include the LDL receptor, low-density lipoprotein-related protein (LRP), megalin, very low-density lipoprotein (VLDL) receptor, apoER2 and sorLA/LRP11, LRP1b, MEGF7, LRP5/6; the former six having been identified in humans. Each member is expressed in a number of different tissues and has a wide range of different ligands, not specific to the recognition of the LDL particle. Thus, rather than the original hypothesis that the receptor is only a mediator of cholesterol uptake, it may also be involved in a number of other physiological functions, including the progression of certain disease states and, potentially, cellular drug uptake. A number of studies have suggested that the LDL receptors are involved in endocytosis of drugs and drug formulations including aminoglycosides, anionic liposomes and cyclosporine A (CsA). This article reviews the importance of lipoproteins as a drug delivery system and how LDL receptors are relevant to the design and targeting of specific drugs.
Collapse
Affiliation(s)
- Nancy S Chung
- Faculty of Pharmaceutical Sciences, Division of Pharmaceutics and Biopharmaceutics, University of British Columbia, 2146 East Mall Ave., Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
22
|
Bartlett K, Yau E, Hartsel SC, Hamer A, Tsai G, Bizzotto D, Wasan KM. Effect of heat-treated amphotericin B on renal and fungal cytotoxicity. Antimicrob Agents Chemother 2004; 48:333-6. [PMID: 14693561 PMCID: PMC310175 DOI: 10.1128/aac.48.1.333-336.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 07/19/2003] [Accepted: 09/07/2003] [Indexed: 11/20/2022] Open
Abstract
The purpose of this investigation was to determine the cytotoxicity of amphotericin B (AMB; trade name Fungizone [FZ]) following the administration of FZ and a heat-treated form of FZ (HFZ) to LLC-PK(1) pig kidney cells and Cryptococcus neoformans var. gattii cells. HFZ was significantly less toxic to kidney cells than FZ at all concentrations tested. For both FZ and HFZ, the concentration range which resulted in a 50% reduction of the growth of fungal cells was 0.125 to 1 mg/ml. These findings suggest that heat treatment decreases AMB's renal cytotoxicity without modifying its antifungal activity.
Collapse
Affiliation(s)
- Karen Bartlett
- School of Occupational and Environmental Hygiene, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
23
|
Hartsel SC, Weiland TR. Amphotericin B binds to amyloid fibrils and delays their formation: a therapeutic mechanism? Biochemistry 2003; 42:6228-33. [PMID: 12755626 DOI: 10.1021/bi0270384] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane-active antifungal agent amphotericin B (AmB) is one of the few agents shown to slow the course of prion diseases in animals. Congo Red and other small molecules have been reported to directly inhibit amyloidogenesis in both prion and Alzheimer peptide model systems via specific binding. We propose that it is possible that AmB may act similarly to physically prevent conversion of the largely alpha-helical prion protein (PrP) to the pathological beta-sheet aggregate protease-resistant isoform (PrP(res)) in prion disease and by analogy prevent fibrillization in amyloid diseases. To assess whether AmB is capable of binding specifically to amyloid fibrils as does Congo Red, we have used the insulin fibril and Abeta 25-35 amyloid model fibril system. We find that AmB does bind strongly to both insulin (K(d) = 1.1 microM) and Abeta 25-35 amyloid (K(d) = 6.4 microM) fibrils but not to native insulin. Binding is characterized by a red-shifted AmB spectrum indicative of a more hydrophobic environment. Thus AmB seems to have a complementary face for amyloid fibrils but not the native protein. In addition, AmB interacts specifically with Congo Red, a known fibril-binding agent. In kinetic fibril formation studies, AmB was able to significantly kinetically delay the formation of Abeta 25-35 fibrils at pH 7.4 but not insulin fibrils at pH 2.
Collapse
Affiliation(s)
- Scott C Hartsel
- Department of Chemistry, University of Wisconsin-Eau Claire, 54702-4004, USA.
| | | |
Collapse
|
24
|
Barwicz J, Beauregard M, Tancrède P. Circular dichroism study of interactions of Fungizone or AmBisome forms of amphotericin B with human low density lipoproteins. Biopolymers 2002; 67:49-55. [PMID: 11842413 DOI: 10.1002/bip.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amphotericin B (AmB), a potent antifungal agent used to treat invasive fungal infections, is still employed more than 40 years after its introduction in the pharmacopea. When injected into the blood stream, this antibiotic is carried by low density lipoproteins (LDLs) to which it induces the formation of oxidation products responsible in part for some of the severe adverse effects of the drug. However, the oxidative damages induced to LDLs are not yet understood. We present here the effects of the Fungizone and AmBisome forms of AmB on LDLs as compared to those of CuSO(4), a well-known powerful oxidant of LDLs. We use circular dichroism (CD) spectroscopy, which is particularly useful because it allows the investigation of the structural integrity of the proteic moiety of LDL upon interaction with AmB. The CD spectra also yield information on the drug itself because in its oligomer form it presents a strong dichroic signal in a spectral region different from that of the protein. Our results show that neither form of AmB changes the secondary structure of the protein while the helical content of the LDL is increased either in the presence of CuSO(4) alone or in the presence of CuSO(4) and AmBisome or Fungizone. On the other hand, the CD spectra of the antibiotic indicate that Fungizone AmB suffers important oxidative damage in the presence of LDLs and CuSO(4) while this damage is not present with AmBisome AmB. These observations lead us to propose that the structural modifications of the proteic part of LDLs induced by the Cu(2+) ions are involved in the important oxidative damage suffered by Fungizone AmB, which in this form is much more susceptible to interaction with its environment than AmBisome.
Collapse
Affiliation(s)
- Joanna Barwicz
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, B.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | | | | |
Collapse
|
25
|
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 2002; 46:834-40. [PMID: 11850269 PMCID: PMC127463 DOI: 10.1128/aac.46.3.834-840.2002] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unilamellar liposomal amphotericin B (AmBisome) (liposomal AMB) reduces the toxicity of this antifungal drug. The unique composition of liposomal AMB stabilizes the liposomes, producing higher sustained drug levels in plasma and reducing renal and hepatic excretion. When liposomes release their drug payload, unbound, protein-bound, and liposomal drug pools may exist simultaneously in the body. To determine the amounts of drug in these pools, we developed a procedure to measure unbound AMB in human plasma by ultrafiltration and then used it to characterize AMB binding in vitro and to assess the pharmacokinetics of nonliposomal pools of AMB in a phase IV study of liposomal AMB and AMB deoxycholate in healthy subjects. We confirmed that AMB is highly bound (>95%) in human plasma and showed that both human serum albumin and alpha(1)-acid glycoprotein contribute to this binding. AMB binding exhibited an unusual concentration dependence in plasma: the percentage of bound drug increased as the AMB concentration increased. This was attributed to the low solubility of AMB in plasma, which limits the unbound drug concentration to <1 microg/ml. Subjects given 2 mg of liposomal AMB/kg of body weight had lower exposures (as measured by the maximum concentration of drug in serum and the area under the concentration-time curve) to both unbound and nonliposomal drug than those receiving 0.6 mg of AMB deoxycholate/kg. Most of the AMB in plasma remained liposome associated (97% at 4 h, 55% at 168 h) after liposomal AMB administration, so that unbound drug concentrations remained at <25 ng/ml in all liposomal AMB-treated subjects. Although liposomal AMB markedly reduces the total urinary and fecal recoveries of AMB, urinary and fecal clearances based on unbound AMB were similar (94 to 121 ml h(-1) kg(-1)) for both formulations. Unbound drug urinary clearances were equal to the glomerular filtration rate, and tubular transit rates were <16% of the urinary excretion rate, suggesting that net filtration of unbound drug, with little secretion or reabsorption, is the mechanism of renal clearance for both conventional and liposomal AMB in humans. Unbound drug fecal clearances were also similar for the two formulations. Thus, liposomal AMB increases total AMB concentrations while decreasing unbound AMB concentrations in plasma as a result of sequestration of the drug in long-circulating liposomes.
Collapse
Affiliation(s)
- Ihor Bekersky
- Fujisawa Healthcare, Inc., Deerfield, Illinois 60015-2548, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hartsel SC, Bauer E, Kwong EH, Wasan KM. The effect of serum albumin on amphotericin B aggregate structure and activity. Pharm Res 2001; 18:1305-9. [PMID: 11683244 DOI: 10.1023/a:1013090011952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Mild heat treatment of Fungizone (FZ, an amphotericin B:deoxycholate preparation) leads to a new self-associated form (HFZ) that demonstrates improved therapeutic index in vivo. The origin of the improvement may lie in the differential stability in the presence of serum proteins. The purpose of this study is to assess the effect of human serum albumin (HSA) on the structure and stability and in vitro channel forming ability of these two preparations against model fungal and mammalian membrane vesicles. METHODS Kinetic absorption and CD spectroscopy were used to assess the kinetic and equilibrium stability of the characteristic amphotericin B complexes in the presence of HSA. Kinetic fluorescence spectroscopy of pyranine entrapped in model fungal and mammalian membrane vesicles was used to measure the cation-selective channel forming ability of HZ and HFZ delivered from HSA. RESULTS It is shown that FZ is rapidly converted from its aggregated form to a protein-bound monomer in the presence of HSA, whereas HFZ demonstrates greater stability by persisting as a stable inactive aggregate. Fluorescence measurements of ion currents show that HSA attenuates the membrane-activity of both preparations. However, the activity of both HFZ and FZ remains significant against ergosterol-containing membranes. This is the first direct measurement of the intrinsic channel forming abilities of these amphotericin B preparations in the presence of serum proteins. CONCLUSION These data provide a mechanistic rationale for the similar efficacy and lower toxicity of HFZ.
Collapse
Affiliation(s)
- S C Hartsel
- Department of Chemistry, University of Wisconsin-Eau Claire, 54702-4004, USA.
| | | | | | | |
Collapse
|
27
|
Kwong EH, Ramaswamy M, Bauer EA, Hartsel SC, Wasan KM. Heat treatment of amphotericin b modifies its serum pharmacokinetics, tissue distribution, and renal toxicity following administration of a single intravenous dose to rabbits. Antimicrob Agents Chemother 2001; 45:2060-3. [PMID: 11408223 PMCID: PMC90600 DOI: 10.1128/aac.45.7.2060-2063.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 03/29/2001] [Indexed: 11/20/2022] Open
Abstract
The purpose of this investigation was to determine the serum pharmacokinetics, tissue distribution, and renal toxicity of amphotericin B (AmpB) following administration of a single intravenous dose (1 mg/kg of body weight) of Fungizone (FZ) and a heat-treated form of FZ (HFZ) to New Zealand White female rabbits. FZ solutions were heated at 70 degrees C for 20 min to produce HFZ. Blood samples were obtained before drug administration and serially thereafter. After collection of the 48-h blood sample, each rabbit was humanely sacrificed and the right kidney, spleen, lungs, liver, and heart were harvested for AmpB analysis. Serum creatinine levels were measured before and 10 h after drug administration. AmpB concentrations in the serum and tissues were analyzed using high-performance liquid chromatography. FZ administration to rabbits resulted in a greater-than-50% increase in serum creatinine concentrations compared to baseline. However, HFZ administration resulted in no difference in serum creatinine concentrations compared to baseline. The AmpB area under the concentration-time curve (AUC) after HFZ administration was significantly lower than the AmpB AUC in rabbits administered FZ. However, AmpB systemic total body clearance was significantly greater in rabbits administered HFZ than in rabbits administered FZ without any differences in volume of distribution at steady state. Kidney tissue AmpB concentrations, although not significantly different, were greater in rabbits administered FZ than in rabbits administered HFZ. Likewise, lung and spleen AmpB concentrations, although not significantly different, were greater in rabbits administered FZ than in rabbits administered HFZ. However, liver AmpB concentrations were significantly lower in rabbits administered FZ than in rabbits administered HFZ. No significant differences in heart AmpB concentration between rabbits administered FZ and those given HFZ were found. These findings suggest that the pharmacokinetics, tissue distribution, and renal toxicity of AmpB are modified following administration of HFZ. HFZ could be an improved low-cost AmpB drug delivery system that has a potentially higher therapeutic index than FZ.
Collapse
Affiliation(s)
- E H Kwong
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|