1
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
2
|
Ohki Y, Tatsumi K. Thiolate‐Bridged Iron–Nickel Models for the Active Site of [NiFe] Hydrogenase. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201001087] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| |
Collapse
|
3
|
Pal S, Ohki Y, Yoshikawa T, Kuge K, Tatsumi K. Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase. Chem Asian J 2009; 4:961-968. [PMID: 19130447 DOI: 10.1002/asia.200800434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A dithiolate-bridged Fe-Ni-Fe trinuclear carbonyl complex [(CO)(3)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(3)] (1, ndt = norbornane-exo-2,3-dithiolate) has been synthesized from the reaction of [Fe(CO)(4)I(2)] and Li(2)[Ni(ndt)(2)]. This reaction was found to occur with concomitant formation of a tetranuclear cluster [Ni(3)(mu-ndt)(4)FeI] (2). Treatment of 1 with Na[N(SiMe(3))(2)] transforms some of the CO ligands into CN(-), and the monocyanide complex (PPh(4))[(CO)(2)(CN)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(3)] (3) and the dicyanide complex (PPh(4))(2)[(CO)(2)(CN)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(2)(CN)] (4) were isolated. X-ray structural analyses of the trinuclear complexes revealed a Fe-Ni-Fe array in which the metal centers are connected by the ndt sulfur bridges and direct Fe-Ni bonds. Hydrogen bonding between the CN ligand in 3 and cocrystallized ethanol was found in the solid-state structure. The monocyanide complex 3 and dicyanide complex 4 reacted with acids such as HOTf or HCl generating insoluble materials, whereas complex 1 did not react.
Collapse
Affiliation(s)
- Satyanarayan Pal
- Department of Chemistry, Graduate School of Science and Research Center for Materials, Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
4
|
Ohki Y, Takikawa Y, Sadohara H, Kesenheimer C, Engendahl B, Kapatina E, Tatsumi K. Reactions at the Ru-S Bonds of Coordinatively Unsaturated Ruthenium Complexes with Tethered 2,6-Dimesitylphenyl Thiolate. Chem Asian J 2008; 3:1625-35. [DOI: 10.1002/asia.200800106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Stenson P, Board A, Marin-Becerra A, Blake A, Davies E, Wilson C, McMaster J, Schröder M. Molecular and Electronic Structures of One-Electron Oxidized NiII–(Dithiosalicylidenediamine) Complexes: NiIII–Thiolate versus NiII–Thiyl Radical States. Chemistry 2008; 14:2564-76. [DOI: 10.1002/chem.200701108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Lauderbach F, Prakash R, Götz AW, Munoz M, Heinemann FW, Nickel U, Hess BA, Sellmann D. Alternative Synthesis, Density Functional Calculations and Proton Reactivity Study of a Trinuclear [NiFe] Hydrogenase Model Compound. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|