1
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
2
|
Kowalewska K, Sipa K, Kaczmarek K, Skrzypek S, Poltorak L. Interfacial Synthesis of Nylon‐6.6 and Its Modification with Silver‐Based Nanoparticles at the Electrified Liquid‐Liquid Interface. ChemElectroChem 2022. [DOI: 10.1002/celc.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Karolina Sipa
- University of Lodz: Uniwersytet Lodzki Faculty of Chemistry POLAND
| | | | | | - Lukasz Poltorak
- Uniwersytet Lodzki Faculty of Chemistry Tamka 12 90-403 Lodz POLAND
| |
Collapse
|
3
|
He P, Shao Y, Yu Z, Liang X, Liu J, Bian Y, Zhu Z, Li M, Pereira CM, Shao Y. Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Anal Chem 2022; 94:9801-9810. [PMID: 35766488 DOI: 10.1021/acs.analchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixuan Bian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4099-002, Portugal
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Zannah S, W M Arrigan D. Electrochemistry of catalase at a liquid|liquid micro-interface array. Bioelectrochemistry 2020; 138:107694. [PMID: 33333457 DOI: 10.1016/j.bioelechem.2020.107694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/18/2023]
Abstract
The electrochemistry of catalase (CAT) was investigated at the interface between two immiscible electrolyte solutions (ITIES) as a step towards its detection. Electrochemistry at the ITIES offers advantages such as the non-redox detection of biomolecules. The electrochemical behaviour of CAT at the ITIES, in a micro-interface array format, displayed a distinct cyclic voltammogram when the aqueous phase pH was lower than the isoelectric point (pI) of CAT. No voltammetric response was observed when the aqueous phase pH > pI of CAT, indicating that neutral or negatively charged CAT has no capability to facilitate anion transfer from the organic phase. Adsorptive stripping voltammetry (AdSV) was assessed for detection of low concentrations at the µITIES array. Application of a positive preconcentration potential for a fixed time enabled interfacial accumulation of CAT as a complex; subsequently, a voltammetric scan to lower potentials desorbed the complex, providing the electroanalytical signal. Assessment of sample matrix effects by examining the electrochemistry of CAT in artificial serum indicated that detection in pH-adjusted samples is feasible. Together, these results demonstrate that CAT is electroactive at the liquid-liquid interface and this may be useful as a strategy to detect and characterize the enzyme in a label-free manner.
Collapse
Affiliation(s)
- Shaheda Zannah
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W M Arrigan
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
5
|
An electrochemical viewpoint on the solubility of silver halides in water. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Gschwend GC, Olaya A, Girault HH. How to polarise an interface with ions: the discrete Helmholtz model. Chem Sci 2020; 11:10807-10813. [PMID: 34094335 PMCID: PMC8162426 DOI: 10.1039/d0sc00685h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
The distribution of electrolytes in an electric field usually relies on theories based on the Poisson-Boltzmann formalism. These models predict that, in the case of a metallic electrode, ionic charges screen the electrode potential, leading to concentration-dependent ion distributions. This theoretical framework was first applied at solid-liquid interfaces and then transposed to soft interfaces. However, in this latter case, the potential in which the electrolytes evolve is not homogeneous, which is less amenable to a mean-field description. In this report, we show that at polarised soft interfaces the potential difference takes place between two closely interacting ionic monolayers. In this configuration, ions of opposite charges directly neutralise each other leading to an absence of diffuse layers and charge screening by surrounding ions. Thus, independently of the electrolyte concentrations, the surface charge density is a linear function of the potential difference, which results in a constant capacitance.
Collapse
Affiliation(s)
- Grégoire C Gschwend
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Astrid Olaya
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| |
Collapse
|
7
|
Koizumi A, Tahara H, Hirano T, Morita A. Revealing Transient Shuttling Mechanism of Catalytic Ion Transport through Liquid-Liquid Interface. J Phys Chem Lett 2020; 11:1584-1588. [PMID: 32020807 DOI: 10.1021/acs.jpclett.9b03742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hard, hydrophilic ions that hardly transport over the water-oil interface by imposing external electric potential could undergo facile transport with a trace of ligand. Such phenomena, called "shuttling", are elucidated by microscopic investigation with molecular dynamics simulations. The catalytic role manifests itself in a 2-D free-energy surface within the nanometer range of the interface. The free-energy landscape clearly distinguishes the condition that the catalytic shuttling plays a vital role in the ion transport. The mechanism associated with transient complex formation at the interface is shown to be widely relevant to the ion kinetics and extends the conventional concept of facilitated ion transport.
Collapse
Affiliation(s)
- Ai Koizumi
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Hirofumi Tahara
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Tomonori Hirano
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai 980-8578 , Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan
| |
Collapse
|
8
|
Electrochemical Behavior and Detection of Diclofenac at a Microporous Si3N4 Membrane Modified Water–1,6-dichlorohexane Interface System. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The electrochemical behavior when the liquid–liquid interface was modified by commercially available, microporous silicon nitride membrane, was achieved using cyclic voltammetry with tetramethyl ammonium. The transfer characteristics of the ionizable drug diclofenac ( DCF − ), as an anti-inflammatory, anti-rheumatic, antipyretic, and analgesic treatment in common use in biomedical applications, were also investigated across microporous silicon nitride-modified liquid interface. Thus, some thermodynamic variables for DCF − , such as the standard Gibbs energy of transfer, the standard transfer potential and lipophilicity were estimated. Furthermore, the influence of possible interfering substances (ascorbic acid, sugar, amino acid, urea, and metal ions) on the detection of DCF − was investigated. An electrochemical DCF sensor is investigated using differential pulse voltammetry (DPV) as the quantification technique, a linear range of 8–56 µM and a limit of detection of 1.5 µM was possible due to the miniaturized interfaces formed within silicon nitride.
Collapse
|
9
|
Baker LA, Jagdale GS. On the intersection of electrochemistry and mass spectrometry. CURRENT OPINION IN ELECTROCHEMISTRY 2019; 13:140-146. [PMID: 33981910 PMCID: PMC8112614 DOI: 10.1016/j.coelec.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The application of nanopipettes, developed first as a tool for electrochemistry and electrophysiology, as tools for mass spectrometry is considered. Recent examples of advances in electrospray ionization and sampling for mass spectrometry with nanopipettes is discussed. These examples show a scientific intersection that is ripe for further development.
Collapse
Affiliation(s)
- Lane A Baker
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gargi S Jagdale
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Holzinger A, Neusser G, Austen BJJ, Gamero-Quijano A, Herzog G, Arrigan DWM, Ziegler A, Walther P, Kranz C. Investigation of modified nanopore arrays using FIB/SEM tomography. Faraday Discuss 2018; 210:113-130. [DOI: 10.1039/c8fd00019k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FIB/SEM tomography and energy dispersive X-ray (EDX) spectroscopy are employed to study the interface between two immiscible electrolyte solutions at nanopore arrays, which were electrochemically modified by silica.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Benjamin J. J. Austen
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Alonso Gamero-Quijano
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Damien W. M. Arrigan
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Andreas Ziegler
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Paul Walther
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
11
|
Molina Á, Laborda E, González J. The reaction layer at microdiscs: A cornerstone for the analytical theoretical treatment of homogeneous chemical kinetics at non-uniformly accessible microelectrodes. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Goh E, Lee HJ. Applications of Electrochemistry at Liquid/Liquid Interfaces for Ionizable Drug Molecule Sensing. ACTA ACUST UNITED AC 2016. [DOI: 10.5189/revpolarography.62.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eunseo Goh
- Department of Chemistry and Green-NanoMaterials Research Center, Kyungpook National University
| | - Hye Jin Lee
- Department of Chemistry and Green-NanoMaterials Research Center, Kyungpook National University
| |
Collapse
|
13
|
Molina A, González J, Laborda E, Compton R. Analytical solutions for fast and straightforward study of the effect of the electrode geometry in transient and steady state voltammetries: Single- and multi-electron transfers, coupled chemical reactions and electrode kinetics. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Lee HJ, Arrigan DWM, Karim MN, Kim H. Amperometric Ion Sensing Approaches at Liquid/Liquid Interfaces for Inorganic, Organic and Biological Ions. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) has become an invaluable tool for the selective and sensitive detection of cationic and anionic species, including charged drug molecules and proteins. In addition, neutral molecules can also be detected at the ITIES via enzymatic reactions. This chapter highlights recent developments towards creating a wide spectrum of sensing platforms involving ion transfer across the ITIES. As well as outlining the basic principles needed for performing these sensing applications, the development of ITIES-based detection strategies for inorganic, organic, and biological ions is discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| | - Damien W. M. Arrigan
- Nanochemistry Research Institute, Department of Chemistry, Curtin University GPO Box U1987 Perth, Western Australia 6845 Australia
| | - Md. Nurul Karim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| | - Hyerim Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University 80 Daehakro, Buk-gu Daegu-city 702-701 Republic of Korea
| |
Collapse
|
15
|
Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7095-7105. [PMID: 26327927 PMCID: PMC4551492 DOI: 10.1039/c5ay00512d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| | - Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| |
Collapse
|
16
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Liu Y, Strutwolf J, Arrigan DWM. Ion-Transfer Voltammetric Behavior of Propranolol at Nanoscale Liquid–Liquid Interface Arrays. Anal Chem 2015; 87:4487-94. [DOI: 10.1021/acs.analchem.5b00461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Liu
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO
Box U1987, Perth, Western
Australia 6845, Australia
| | - Jörg Strutwolf
- Institute
of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Damien W. M. Arrigan
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO
Box U1987, Perth, Western
Australia 6845, Australia
| |
Collapse
|
18
|
Tian H, Li Y, Shao H, Yu HZ. Thin-film voltammetry and its analytical applications: A review. Anal Chim Acta 2015; 855:1-12. [DOI: 10.1016/j.aca.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
19
|
Herzog G. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 2015; 140:3888-96. [DOI: 10.1039/c5an00601e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most recent developments on electrochemical sensing of ions at the liquid–liquid interface are reviewed here.
Collapse
Affiliation(s)
- Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME)
- UMR 7564
- CNRS – Université de Lorraine
- Villers-lès-Nancy
- France
| |
Collapse
|
20
|
Oliveira ES, Fiorito PA, Suffredini HB. Single Oil Drop Electrochemistry on a Screen-Printed Electrode Surface. ELECTROANAL 2014. [DOI: 10.1002/elan.201400213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Takami T, Park BH, Kawai T. Nanopipette exploring nanoworld. NANO CONVERGENCE 2014; 1:17. [PMID: 28191397 PMCID: PMC5271136 DOI: 10.1186/s40580-014-0017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 06/06/2023]
Abstract
Nanopipettes, with tip orifices on the order of tens to hundreds of nanometers, have been utilized in the fields of analytical chemistry and nanophysiology. Nanopipettes make nanofabrication possible at liquid/solid interfaces. Moreover, they are utilized in time-resolved measurements and for imaging biological materials, e.g., living cells, by using techniques such as scanning ion-conductance microscopy and scanning electrochemical microscopy. We have successfully fabricated ion-selective nanopipettes that can be used to identify targeted ions such as sodium and potassium in- and outside of living cells. In this review, we discuss the extent of utilization of nanopipettes in investigating the nanoworld. In addition, we discuss the potential applications of future nanopipettes.
Collapse
Affiliation(s)
- Tomohide Takami
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 143-701 Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 143-701 Korea
| | - Tomoji Kawai
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 143-701 Korea
| |
Collapse
|
22
|
Molina A, Laborda E, Compton R. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid–liquid interfaces: Single and double potential pulse techniques. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 2014; 139:336-52. [DOI: 10.1039/c3an01651j] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Abstract
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.
Collapse
|
25
|
Arrigan D, Herzog G, Scanlon M, Strutwolf J. Bioanalytical Applications of Electrochemistry at Liquid-Liquid Microinterfaces. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2013. [DOI: 10.1201/b15576-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Facilitated Ion Transfers at the Micro-Water/1,2-Dichloroethane Interface by Crown Ether Derivatives. ELECTROANAL 2013. [DOI: 10.1002/elan.201200549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
|
28
|
Investigation of the electrochemical processes related to IT coupling with ET by hydrophilic droplet electrodes. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Lopes P, Kataky R. Chiral interactions of the drug propranolol and α1-acid-glycoprotein at a micro liquid-liquid interface. Anal Chem 2012; 84:2299-304. [PMID: 22250754 DOI: 10.1021/ac2029425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of chiral interactions of drugs with plasma proteins is of fundamental importance for drug efficacy and toxicity studies. In this paper, we demonstrate a simple liquid-liquid interface procedure for investigating chiral interactions. Chiral discrimination of the enantiomers of a basic drug, propranolol, was achieved at a micro liquid-liquid interface, using α(1)-acid-glycoprotein (AGP) as a chiral acute phase plasma protein. When the protein is added to an aqueous phase containing the enantiomers of propranalol hydrochloride, the binding of (S)- and (R)-propranolol hydrochloride to the protein results in a decrease in the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) current responses corresponding to the decrease in transfer of propranolol at an aqueous-1,2-dichloroethane interface. This decrease is a consequence of the complexation of the drug and the protein. The complex drug-protein does not transfer across the interface nor changes the transfer potential of the uncomplexed form of propranolol enantiomers. The bound concentration of propranolol enantiomers in the presence of AGP was found to be greater for (S)-propranolol than (R)-propranolol for solutions containing constant concentrations of AGP (50 μM). Scatchard analysis yielded association constants of 2.7 and 1.3 × 10(5) M(-1) for (S)- and (R)-propranolol, respectively.
Collapse
Affiliation(s)
- Paula Lopes
- Durham University, Department of Chemistry, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|
30
|
Molina Á, Serna C, Ortuño JA, Torralba E. Studies of ion transfer across liquid membranes by electrochemical techniques. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2pc90005j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Ellis JS, Strutwolf J, Arrigan DWM. Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid–liquid interface formed at a micropore. Phys Chem Chem Phys 2012; 14:2494-500. [DOI: 10.1039/c2cp23052f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Kaykal F, Bingol H, Sariguney AB, Coskun A, Akgemci EG. Synthesis and electrochemical properties of a novel calix[4]arene derivative for facilitated transfer of alkali metal ions across water/1,2-dichloroethane micro-interface. Supramol Chem 2011. [DOI: 10.1080/10610278.2011.575466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Voltammetric characterization of selective potassium ion transfer across micro-water/1,2-dichloroethane interface facilitated by a novel calix[4]arene derivative. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Selective sodium ion transfer across a water/1,2-dichloroethane micro-interface by a calix[4]arene derivative. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Liu S, Li Q, Shao Y. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem Soc Rev 2011; 40:2236-53. [DOI: 10.1039/c0cs00168f] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Bingol H, Kaykal F, Akgemci EG, Sirit A. Facilitated Transfer of Alkali and Alkaline-Earth Metal Ions by a Calix[4]arene Derivative Across Water/1,2-Dichloroethane Microinterface: Amperometric Detection of Ca2+. ELECTROANAL 2010. [DOI: 10.1002/elan.201000345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Strutwolf J, Arrigan DWM. Optimisation of the conditions for stripping voltammetric analysis at liquid–liquid interfaces supported at micropore arrays: a computational simulation. Anal Bioanal Chem 2010; 398:1625-31. [DOI: 10.1007/s00216-010-3866-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/07/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
38
|
Rodgers PJ, Amemiya S, Wang Y, Mirkin MV. Nanopipet voltammetry of common ions across the liquid-liquid interface. Theory and limitations in kinetic analysis of nanoelectrode voltammograms. Anal Chem 2010; 82:84-90. [PMID: 20000448 DOI: 10.1021/ac9022428] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Finite element simulations of ion transfer (IT) reactions at the nanopipet-supported interface between two immiscible electrolyte solutions (ITIES) were carried out, and the numerical results were generalized in the form of an analytical approximation. The developed theory is the basis of a new approach to kinetic analysis of steady-state voltammograms of rapid IT reactions. Unlike the conventional voltammetric protocol, our approach requires the initial addition of a transferable ion to both liquid phases, i.e., to the filling solution inside a nanopipet and the external solution. The resulting steady-state IT voltammogram comprises two waves corresponding to the ingress of the common ion into the pipet and its egress into the external solution. We demonstrate that both ingress and egress waves are required for characterization of pipet geometry and precise determination of thermodynamic and kinetic parameters for rapid IT reactions. In this way, one can eliminate large uncertainties in kinetic parameters, which are inherent in the previously reported approaches to analysis of nearly reversible steady-state voltammograms of either IT at pipet-supported ITIES or electron transfer at solid electrodes. Numerical simulations also suggest that higher current density at the edge of the nanoscale ITIES increases the significance of electrostatic effects exerted by the charged inner surface of a pipet on IT processes.
Collapse
Affiliation(s)
- Patrick J Rodgers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
39
|
Wang Y, Velmurugan J, Mirkin MV, Rodgers PJ, Kim J, Amemiya S. Kinetic study of rapid transfer of tetraethylammonium at the 1,2-dichloroethane/water interface by nanopipet voltammetry of common ions. Anal Chem 2010; 82:77-83. [PMID: 20000449 DOI: 10.1021/ac902244s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state voltammetry at the pipet-supported liquid/liquid interface has previously been used to measure kinetics of simple and facilitated ion transfer (IT) processes. Recently, we showed that the conventional experimental protocol and data analysis produce large uncertainties in kinetic parameters of rapid IT processes extracted from pipet voltammograms. Here, we used a new mode of nanopipet voltammetry, in which a transferable ion is initially present as a common ion in both liquid phases, and improved methodology for silanization of the outer pipet wall to investigate the kinetics of the rapid transfer of tetraethylammonium (TEA(+)) at the 1,2-dichloroethane/water interface. This reaction was often employed as a model system to check the IT theory. The determined standard rate constant and transfer coefficient of the TEA(+) transfer are compared with previously reported values to demonstrate limitations of conventional nanopipet voltammetry with a transferrable ion present only in one liquid phase.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry and Biochemistry, Queens College-City University of New York, Flushing, New York 11367, USA
| | | | | | | | | | | |
Collapse
|
40
|
Strutwolf J, Scanlon MD, Arrigan DW. The performance of differential pulse stripping voltammetry at micro-liquid–liquid interface arrays. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Li Q, Xie S, Liang Z, Meng X, Liu S, Girault HH, Shao Y. Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew Chem Int Ed Engl 2010; 48:8010-3. [PMID: 19768823 DOI: 10.1002/anie.200903143] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Morris CA, Friedman AK, Baker LA. Applications of nanopipettes in the analytical sciences. Analyst 2010; 135:2190-202. [DOI: 10.1039/c0an00156b] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Li Q, Xie S, Liang Z, Meng X, Liu S, Girault H, Shao Y. Fast Ion-Transfer Processes at Nanoscopic Liquid/Liquid Interfaces. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Collins CJ, Arrigan DWM. Ion-Transfer Voltammetric Determination of the β-Blocker Propranolol in a Physiological Matrix at Silicon Membrane-Based Liquid|Liquid Microinterface Arrays. Anal Chem 2009; 81:2344-9. [DOI: 10.1021/ac802644g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|
46
|
Use of the microchannel dimensions for studying assisted ion transfers at liquid–liquid supported microinterface. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Strutwolf J, Scanlon MD, Arrigan DWM. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays – simulations and experiments. Analyst 2009; 134:148-58. [DOI: 10.1039/b815256j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Boronic acid-facilitated α-hydroxy-carboxylate anion transfer at liquid/liquid electrode systems: the EICrev mechanism. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0709-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Scanlon MD, Herzog G, Arrigan DWM. Electrochemical Detection of Oligopeptides at Silicon-Fabricated Micro-Liquid∣Liquid Interfaces. Anal Chem 2008; 80:5743-9. [DOI: 10.1021/ac800089p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Micheál D. Scanlon
- Tyndall National Institute, Lee Maltings, University College, Cork, Ireland
| | - Grégoire Herzog
- Tyndall National Institute, Lee Maltings, University College, Cork, Ireland
| | | |
Collapse
|
50
|
Lu X, Wang Q, Liu X. Review: Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Anal Chim Acta 2007; 601:10-25. [PMID: 17904468 DOI: 10.1016/j.aca.2007.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/09/2007] [Accepted: 08/12/2007] [Indexed: 10/22/2022]
Abstract
Scanning electrochemical microscopy (SECM) has been proven to be a valuable technique for the quantitative investigation and surface analysis of a wide range of processes that occur at interfaces. In particular, there is a great deal of interest in studying the kinetics of charge transfer characteristics at the solid/liquid and liquid/liquid interface. This overview outlines recent advances and applications of SECM to the investigation of charge transfer reactions at the solid/liquid interface and liquid/liquid interface.
Collapse
Affiliation(s)
- Xiaoquan Lu
- College of Chemistry and Chemical Engineer, Northwest Normal University, Lanzhou, 730070, PR China
| | | | | |
Collapse
|