1
|
Fernández N, Cabrera JJ, Varadarajan AR, Lutz S, Ledermann R, Roschitzki B, Eberl L, Bedmar EJ, Fischer HM, Pessi G, Ahrens CH, Mesa S. An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens. Front Microbiol 2019; 10:924. [PMID: 31134003 PMCID: PMC6515984 DOI: 10.3389/fmicb.2019.00924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023] Open
Abstract
The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.
Collapse
Affiliation(s)
- Noemí Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adithi R Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland.,Department of Health Sciences and Technology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | | | - Bernd Roschitzki
- Functional Genomics Center Zurich, ETH & UZH Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
Leppyanen IV, Kirienko AN, Lobov AA, Dolgikh EA. Differential proteome analysis of pea roots at the early stages of symbiosis with nodule bacteria. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, we have analyzed changes in the proteomic spectrum of pea Pisum sativum L. roots during inoculation with rhizobial bacteria with the aim of revealing new regulators of symbiosis development. To study the changes in the proteome spectrum of pea roots, a differential twodimensional (2-D) electrophoresis was performed using fluorescent labels Cy2 and Cy5. The images obtained made it possible to identify differences between the control variant (uninoculated roots) and the root variant after inoculation with Rhizobium leguminosarum bv. viciae RCAM 1026 (24 hours after treatment). 20 proteins were revealed and identified, the synthesis of which was enhanced during the inoculation of pea roots by nodule bacteria. To identify the proteins, a mass spectrometric analysis of tryptic peptides was performed on a quadrupole-time-of-flight mass spectrometer combined with a high-performance liquid chromatograph. Among such proteins, the beta-subunit of the G protein and the disulfide isomerase/phospholipase C were first found, whose function can be related to the signal regulation of symbiosis. This indicates that G-proteins and phospholipases can play a key role in the development of early stages of symbiosis in peas. Further experiments are expected to show whether the beta-subunit of the G protein interacts with the receptors to Nod factors, and how this affects the further signaling. Other proteins that might be interesting were annexin D8 and D1, protein kinase interacting with calcinerin B, actin-binding protein profilin, GTP-binding protein Ran1. They may be involved in the regulation of reactions with calcium, the reorganization of the actin cytoskeleton and other important processes in plants. The study of the role of such regulatory proteins will later become the basis for understanding the complex system of signal regulation, which is activated in pea plants by interaction with nodule bacteria.
Collapse
Affiliation(s)
- I. V. Leppyanen
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. N. Kirienko
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. A. Lobov
- Resource Center “Development of Molecular and Cellular Technologies”, Science Park, St. Petersburg State University
| | - E. A. Dolgikh
- All-Russian Scientific Research Institute of Agricultural Microbiology
| |
Collapse
|
3
|
Kumar A, Bimolata W, Kannan M, Kirti PB, Qureshi IA, Ghazi IA. Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Funct Integr Genomics 2015; 15:425-37. [PMID: 25648443 DOI: 10.1007/s10142-014-0431-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 12/13/2014] [Accepted: 12/25/2014] [Indexed: 01/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice and brutally affects the yield up to 50 % of total production. Here, we report a comparative proteomics analysis of total foliar protein isolated from infected rice leaves of susceptible Pusa Basmati 1 (PB1) and resistant Oryza longistaminata genotypes. Two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approaches identified 29 protein spots encoding unique proteins from both the genotypes. Identified proteins belonged to a large number of biological and molecular functions related to biotic and abiotic stress proteins which are potentially involved during Xoo infection. Biotic and abiotic stress-related proteins were induced during Xoo infection, indicating the activation of common stress pathway during bacterial blight infection. Candidate genes conferring tolerance against bacterial blight, which include germin-like protein, putative r40c1, cyclin-dependent kinase C, Ent-isokaur-15-ene synthase and glutathione-dependent dehydroascorbate reductase 1 (GSH-DHAR1), were also induced, with germin-like proteins induced only in the resistant rice genotype O. longistaminata. Energy, metabolism and hypothetical proteins were common among both the genotypes. Further, host defence/stress-related proteins were mostly expressed in resistant genotype O. longistaminata, indicating possible co-evolution of the pathogen and the wild rice, O. longistaminata.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
4
|
Fanucchi F, Alpi E, Olivieri S, Cannistraci CV, Bachi A, Alpi A, Alessio M. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:813-25. [PMID: 22510494 DOI: 10.1016/j.bbapap.2012.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 12/28/2022]
Abstract
This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at -10°C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries.
Collapse
|
5
|
Moretti M, Minerdi D, Gehrig P, Garibaldi A, Gullino ML, Riedel K. A bacterial-fungal metaproteomic analysis enlightens an intriguing multicomponent interaction in the rhizosphere of Lactuca sativa. J Proteome Res 2012; 11:2061-77. [PMID: 22360353 DOI: 10.1021/pr201204v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusarium oxysporum MSA 35 [wild-type (WT) strain] is an antagonistic isolate that protects plants against pathogenic Fusaria. This strain lives in association with ectosymbiotic bacteria. When cured of the prokaryotic symbionts [cured (CU) form], the fungus is pathogenic, causing wilt symptoms similar to those of F. oxysporum f.sp. lactucae. The aim of this study was to understand if and how the host plant Lactuca sativa contributes to the expression of the antagonistic/pathogenic behaviors of MSA 35 strains. A time-course comparative analysis of the proteomic profiles of WT and CU strains was performed. Fungal proteins expressed during the early stages of plant-fungus interaction were involved in stress defense, energy metabolism, and virulence and were equally induced in both strains. In the late phase of the interkingdom interaction, only CU strain continued the production of virulence- and energy-related proteins. The expression analysis of lettuce genes coding for proteins involved in resistance-related processes corroborated proteomic data by showing that, at the beginning of the interaction, both fungi are perceived by the plant as pathogen. On the contrary, after 8 days, only the CU strain is able to induce plant gene expression. For the first time, it was demonstrated that an antagonistic F. oxysporum behaves initially as pathogen, showing an interesting similarity with other beneficial organisms such as mychorrizae.
Collapse
Affiliation(s)
- Marino Moretti
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Field, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Djordjevic MA, Oakes M, Wong CE, Singh M, Bhalla P, Kusumawati L, Imin N. Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4649-59. [PMID: 21633083 PMCID: PMC3170558 DOI: 10.1093/jxb/err185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/17/2011] [Accepted: 05/09/2011] [Indexed: 05/22/2023]
Abstract
CLE (CLAVATA3/ESR-related) peptides are developmental regulators that are secreted into the apoplast. Little is known about the role of the sequences that flank CLE peptides in terms of their biological activity or how they are targeted by proteases that are known to liberate the final active CLE peptides from their precursor sequences. The biological activity of Medicago truncatula CLE36, which possesses broadly conserved border sequences flanking the putative final active CLE36 peptide product, was assessed. Using in vitro root growth assays and an in vitro root and callus formation assay it is shown that CLE36 peptides of different lengths possess differential biological activities. Using mass spectrometry, Glycine max and Medicago extracellular fluids were each shown to possess an endoproteolytic activity that recognizes and cleaves at border sequences in a synthetic 31 amino acid CLE36 'propeptide bait' to liberate biologically active peptide products. Inhibitor studies suggest that a subtilisin, in combination with a carboxypeptidase, liberated and trimmed CLE36, respectively, to form biologically relevant 11-15 amino acid cleavage products. The 15 amino acid cleavage product is more biologically potent on Arabidopsis than shorter or longer CLE peptides. In situ hybridization shows that the soybean orthologue of CLE36 (GmCLE34) is expressed in the provascular tissue. The results suggest that secreted subtilisins can specifically recognize the border sequences of CLE36 propeptides and liberate biologically active cleavage products. These secreted proteases may affect the stability and biological activity of CLE peptides in the apoplast or be involved in CLE36 processing.
Collapse
Affiliation(s)
- Michael A Djordjevic
- Australian Research Council Centre of Excellence for Integrative Legume Research, Plant Science Division, Research School of Biology, Australian National University, Canberra ACT Australia, 0200.
| | | | | | | | | | | | | |
Collapse
|
7
|
Rolfe BG, Mathesius U, Djordjevic M, Weinman J, Hocart C, Weiller G, Bauer WD. Proteomic analysis of legume-microbe interactions. Comp Funct Genomics 2011; 4:225-8. [PMID: 18629116 PMCID: PMC2447403 DOI: 10.1002/cfg.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 02/04/2003] [Indexed: 11/22/2022] Open
Affiliation(s)
- Barry G Rolfe
- Genomic Interactions Group The Australian National University GPO Box 475 ACT Canberra 2601 Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Moretti M, Grunau A, Minerdi D, Gehrig P, Roschitzki B, Eberl L, Garibaldi A, Gullino ML, Riedel K. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 2011; 10:3292-320. [PMID: 20707000 DOI: 10.1002/pmic.200900716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.
Collapse
Affiliation(s)
- Marino Moretti
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Field, University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 2010; 10:1391-400. [PMID: 20104621 DOI: 10.1002/pmic.200900710] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/03/2009] [Indexed: 11/07/2022]
Abstract
Bradyrhizobium japonicum, a gram-negative soil bacterium that establishes an N(2)-fixing symbiosis with its legume host soybean (Glycine max), has been used as a symbiosis model system. Using a sensitive geLC-MS/MS proteomics approach, we report the identification of 2315 B. japonicum strain USDA110 proteins (27.8% of the theoretical proteome) that are expressed 21 days post infection in symbiosis with soybean cultivated in growth chambers, substantially expanding the previously known symbiosis proteome. Integration of transcriptomics data generated under the same conditions (2780 expressed genes) allowed us to compile a comprehensive expression profile of B. japonicum during soybean symbiosis, which comprises 3587 genes/proteins (43% of the predicted B. japonicum genes/proteins). Analysis of this data set revealed both the biases and the complementarity of these global profiling technologies. A functional classification and pathway analysis showed that most of the proteins involved in carbon and nitrogen metabolism are expressed, including a complete set of tricarboxylic acid cycle enzymes, several gluconeogenesis and pentose phosphate pathway enzymes, as well as several proteins that were previously not considered to be present during symbiosis. Congruent results were obtained for B. japonicum bacteroids harvested from soybeans grown under field conditions.
Collapse
|
10
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
11
|
Freitas-Astúa J, Bastianel M, Locali-Fabris EC, Novelli VM, Silva-Pinhati AC, Basílio-Palmieri AC, Targon MLP, Machado MA. Differentially expressed stress-related genes in the compatible citrus-Citrus leprosis virus interaction. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; Embrapa Mandioca e Fruticultura Tropical, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mark G, Morrissey JP, Higgins P, O'gara F. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 2006; 56:167-77. [PMID: 16629747 DOI: 10.1111/j.1574-6941.2006.00056.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Exploitation of beneficial plant-microbe interactions in the rhizosphere can result in the promotion of plant health and have significant implications for low input sustainable agriculture applications such as biocontrol. Bacteria such as Bacillus and Pseudomonas, and fungi such as Trichoderma, have been developed as commercial biocontrol products. Registration of microbial inocualants as biocontrol agents in either the European Union or the United States requires production of extensive dossiers covering efficacy, safety and risk assessment. Despite the fact that a number of Pseudomonas biocontrol products have been marketed there are still some limitations hampering the development of this technology for widespread use in agriculture. Although many strains show good performance in specific trials, this is often not translated into consistent, effective biocontrol in diverse field situations. Advances in 'Omics' technology and the publication of complete genome sequences of a number of plant-associative bacterial strains, has facilitated investigations into the molecular basis underpinning the establishment of beneficial plant-microbe interactions in the rhizosphere. The understanding of these molecular signalling processes and the functions they regulate is fundamental to promoting beneficial microbe-plant interactions, to overcome existing limitations and to designing improved strategies for the development of novel Pseudmonas biocontrol inoculant consortia.
Collapse
Affiliation(s)
- Genevievel Mark
- The BIOMERIT Research Centre, Department of Microbiology, National University of Ireland (University College Cork), Cork, Ireland
| | | | | | | |
Collapse
|
13
|
Morris AC, Djordjevic MA. The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:471-9. [PMID: 16673934 DOI: 10.1094/mpmi-19-0471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The clover-nodulating Rhizobium leguminosarum bv. trifolii ANU794 initiates normal root-nodule development with abnormally low efficiency on the Trifolium subterraneum cv. Woogenellup. The cellular and developmental responses of Woogenellup roots to the site- and dose-defined inoculation of green fluorescent protein (gfp)-labeled cells of ANU843 (nodulation proficient) and ANU794 was investigated using light, fluorescence, and confocal microscopy. Strain ANU794-gfp induced three primordia types and four developmental responses at the inoculation site: true or aberrant nodules (on 5 and 25% of plants, respectively), hybrid structures (20% of plants), or lateral roots (50% of plants). The novel hybrid structures possessed nodule and lateral root-like features and unusual vascular patterning. Strain ANU794-gfp induces lateral root formation by stimulating pericycle cell divisions at all nearby protoxylem poles. Only true nodules induced by ANU794-gfp contained intracellular bacteria. In contrast, strain ANU843-gfp induced nodules only and lateral root formation was suppressed at spot inoculation sites. Primordium types were distinguishable by the emission spectrum characteristics of phenolic UV-absorbing and fluorescent compounds that accumulate in primordium cells. Hybrid primordia contained (at least) two fluorescent cell populations, suggesting that they are chimeric. The results suggest that ANU794 may produce both nodule- and lateral root-generating signals simultaneously.
Collapse
Affiliation(s)
- Angela Carmen Morris
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, GPO Box 475, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
14
|
Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O'Gara F. Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. MICROBIAL ECOLOGY 2006; 51:257-66. [PMID: 16596439 DOI: 10.1007/s00248-006-9019-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 05/08/2023]
Abstract
The rhizosphere is the site of intense interactions between plant, bacterial, and fungal partners. In plant-bacterial interactions, signal molecules exuded by the plant affect both primary initiation and subsequent behavior of the bacteria in complex beneficial associations such as biocontrol. However, despite this general acceptance that plant-root exudates have an effect on the resident bacterial populations, very little is still known about the influence of these signals on bacterial gene expression and the roles of genes found to have altered expression in plant-microbial interactions. Analysis of the rhizospheric communities incorporating both established techniques, and recently developed "omic technologies" can now facilitate investigations into the molecular basis underpinning the establishment of beneficial plant-microbial interactomes in the rhizosphere. The understanding of these signaling processes, and the functions they regulate, is fundamental to understanding the basis of beneficial microbial-plant interactions, to overcoming existing limitations, and to designing improved strategies for the development of novel Pseudomonas biocontrol strains.
Collapse
Affiliation(s)
- P D Kiely
- Biomerit Research Centre, Department of Microbiology, National University of Ireland (UCC), Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW. A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367 Proteins from a Cell Suspension Culture of the Model Legume Medicago truncatula. Mol Cell Proteomics 2005; 4:1812-25. [PMID: 16048909 DOI: 10.1074/mcp.d500005-mcp200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteome of a Medicago truncatula cell suspension culture was analyzed using two-dimensional electrophoresis and nanoscale HPLC coupled to a tandem Q-TOF mass spectrometer (QSTAR Pulsar i) to yield an extensive protein reference map. Coomassie Brilliant Blue R-250 was used to visualize more than 1661 proteins, which were excised, subjected to in-gel trypsin digestion, and analyzed using nanoscale HPLC/MS/MS. The resulting spectral data were queried against a custom legume protein database using the MASCOT search engine. A total of 1367 of the 1661 proteins were identified with high rigor, yielding an identification success rate of 83% and 907 unique protein accession numbers. Functional annotation of the M. truncatula suspension cell proteins revealed a complete tricarboxylic acid cycle, a nearly complete glycolytic pathway, a significant portion of the ubiquitin pathway with the associated proteolytic and regulatory complexes, and many enzymes involved in secondary metabolism such as flavonoid/isoflavonoid, chalcone, and lignin biosynthesis. Proteins were also identified from most other functional classes including primary metabolism, energy production, disease/defense, protein destination/storage, protein synthesis, transcription, cell growth/division, and signal transduction. This work represents the most extensive proteomic description of M. truncatula suspension cells to date and provides a reference map for future comparative proteomic and functional genomic studies of the response of these cells to biotic and abiotic stress.
Collapse
Affiliation(s)
- Zhentian Lei
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | | | | | | | |
Collapse
|
16
|
Colditz F, Braun HP, Jacquet C, Niehaus K, Krajinski F. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula. PLANT MOLECULAR BIOLOGY 2005; 59:387-406. [PMID: 16235107 DOI: 10.1007/s11103-005-0184-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/23/2005] [Indexed: 05/03/2023]
Abstract
To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.
Collapse
Affiliation(s)
- Frank Colditz
- Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | | | | | | | | |
Collapse
|
17
|
Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G. Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:458-67. [PMID: 15915644 DOI: 10.1094/mpmi-18-0458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.
Collapse
Affiliation(s)
- Jinrong Wan
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Méchin V, Balliau T, Château-Joubert S, Davanture M, Langella O, Négroni L, Prioul JL, Thévenot C, Zivy M, Damerval C. A two-dimensional proteome map of maize endosperm. PHYTOCHEMISTRY 2004; 65:1609-18. [PMID: 15276456 DOI: 10.1016/j.phytochem.2004.04.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/27/2004] [Indexed: 05/23/2023]
Abstract
We have established a proteome reference map for maize (Zea mays L.) endosperm by means of two-dimensional gel electrophoresis and protein identification with LC-MS/MS analysis. This investigation focussed on proteins in major spots in a 4-7 pI range and 10-100 kDa M(r) range. Among the 632 protein spots processed, 496 were identified by matching against the NCBInr and ZMtuc-tus databases (using the SEQUEST software). Forty-two per cent of the proteins were identified against maize sequences, 23% against rice sequences and 21% against Arabidopsis sequences. Identified proteins were not only cytoplasmic but also nuclear, mitochondrial or amyloplastic. Metabolic processes, protein destination, protein synthesis, cell rescue, defense, cell death and ageing are the most abundant functional categories, comprising almost half of the 632 proteins analyzed in our study. This proteome map constitutes a powerful tool for physiological studies and is the first step for investigating the maize endosperm development.
Collapse
Affiliation(s)
- Valérie Méchin
- INRA/INA-PG/UPS/CNRS UMR8120, Ferme du Moulon, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F. What can bacterial genome research teach us about bacteria-plant interactions? CURRENT OPINION IN PLANT BIOLOGY 2004; 7:137-147. [PMID: 15003213 DOI: 10.1016/j.pbi.2004.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological research is changing dramatically. Genomic and post-genomic research is responsible for the accumulation of enormous datasets, which allow the formation of holistic views of the organisms under investigation. In the field of microbiology, bacteria represent ideal candidates for this new development. It is relatively easy to sequence the genomes of bacteria, to analyse their transcriptomes and to collect information at the proteomic level. Genome research on symbiotic, pathogenic and associative bacteria is providing important information on bacteria-plant interactions, especially on type-III secretion systems (TTSS) and their role in the interaction of bacteria with plants.
Collapse
Affiliation(s)
- Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, 33594 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Hoa LTP, Nomura M, Kajiwara H, Day DA, Tajima S. Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules. PLANT & CELL PHYSIOLOGY 2004; 45:300-8. [PMID: 15047878 DOI: 10.1093/pcp/pch035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Symbiotic interactions between legume plants and rhizobia induce specific metabolisms and intracellular organelles in nodules. For surveying symbiotic differentiation of a key organelle, mitochondria, protein constituents of soybean nodule and root mitochondria were compared after two-dimensional (2-D) electrophoresis, and the proteins were characterized in combination with matrix-assisted desorption/ionization time-of-flight mass spectrometry, electrospray ionization mass spectrometry and N-terminal amino acid sequencing. Of the proteins that were detected only in nodule mitochondria, phosphoserine aminotransferase, flavanone 3-hydroxylase, coproporphyrinogen III oxidase, one ribonucleoprotein and three unknown proteins were identified. Seven up-regulated, eight down-regulated and two strongly suppressed protein spots in nodule mitochondria were also assigned protein identities. The physiological roles of these differential expressions were discussed in relation to nodule-specific metabolisms in soybean nodules.
Collapse
Affiliation(s)
- Le Thi-Phuong Hoa
- Department of Life Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | | | | | | | | |
Collapse
|
21
|
Nouwens AS, Walsh BJ, Cordwell SJ. Application of proteomics to Pseudomonas aeruginosa. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 83:117-40. [PMID: 12934928 DOI: 10.1007/3-540-36459-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The recent completion of the Pseudomonas Genome Project, in conjunction with the Pseudomonas Community Annotation Project (PseudoCAP) has fast-tracked our ability to apply the tools encompassed under the term 'proteomics' to this pathogen. Such global approaches will allow the research community to answer long-standing questions regarding the ability of Pseudomonas aeruginosa to survive diverse habitats, its high intrinsic resistance to antibiotics and its pathogenic nature towards humans. Proteomics provides an array of tools capable of confirming the expression of Open Reading Frames (ORF), the relative levels of their expression, the environmental conditions required for this expression and the sub-cellular location of the encoded gene-products. Since proteins are important cellular effectors, the biological questions we pose can be defined in terms of changes in protein expression detectable by separation to purity using two-dimensional gel electrophoresis (2-DGE) and relation to gene sequences via mass spectrometry. As such, we can compare strains with well-characterized phenotypic differences, growth under a variety of stresses, protein interactions and complexes and aid in defining proteins of unknown function. While the complete genome has only recently been finished, a number of studies have already utilized this information and examined various protein gene-products using proteomics. This review summarizes the application of proteomics to P. aeruginosa and highlights potential areas of future research, including overcoming the traditional technical limitations associated with 2-DGE. More focused approaches that target sub-cellular fractions ('sub-proteomes') prior to 2-DGE can provide further functional information. A review of current and previous proteomic projects on P. aeruginosa is presented, as well as theoretical considerations of the importance of sub-proteomic approaches to enhance these investigations.
Collapse
|
22
|
Watson BS, Asirvatham VS, Wang L, Sumner LW. Mapping the proteome of barrel medic (Medicago truncatula). PLANT PHYSIOLOGY 2003; 131:1104-23. [PMID: 12644662 PMCID: PMC166875 DOI: 10.1104/pp.102.019034] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Revised: 12/24/2002] [Accepted: 01/03/2003] [Indexed: 05/18/2023]
Abstract
A survey of six organ-/tissue-specific proteomes of the model legume barrel medic (Medicago truncatula) was performed. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from leaves, stems, roots, flowers, seed pods, and cell suspension cultures were obtained. Five hundred fifty-one proteins were excised and 304 proteins identified using peptide mass fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Nanoscale high-performance liquid chromatography coupled with tandem quadrupole time-of-flight mass spectrometry was used to validate marginal matrix-assisted laser desorption ionization time-of-flight mass spectrometry protein identifications. This dataset represents one of the most comprehensive plant proteome projects to date and provides a basis for future proteome comparison of genetic mutants, biotically and abiotically challenged plants, and/or environmentally challenged plants. Technical details concerning peptide mass fingerprinting, database queries, and protein identification success rates in the absence of a sequenced genome are reported and discussed. A summary of the identified proteins and their putative functions are presented. The tissue-specific expression of proteins and the levels of identified proteins are compared with their related transcript abundance as quantified through EST counting. It is estimated that approximately 50% of the proteins appear to be correlated with their corresponding mRNA levels.
Collapse
Affiliation(s)
- Bonnie S Watson
- Plant Biology Division, The Samuel Roberts Noble Foundation, PO Box 2180, Ardmore, Oklahoma 73402, USA
| | | | | | | |
Collapse
|
23
|
Wienkoop S, Saalbach G. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. PLANT PHYSIOLOGY 2003; 131:1080-90. [PMID: 12644660 PMCID: PMC166873 DOI: 10.1104/pp.102.015362] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Revised: 11/21/2002] [Accepted: 12/29/2002] [Indexed: 05/18/2023]
Abstract
The peribacteroid membrane (PBM) forms the structural and functional interface between the legume plant and the rhizobia. The model legume Lotus japonicus was chosen to study the proteins present at the PBM by proteome analysis. PBM was purified from root nodules by an aqueous polymer two-phase system. Extracted proteins were subjected to a global trypsin digest. The peptides were separated by nanoscale liquid chromatography and analyzed by tandem mass spectrometry. Searching the nonredundant protein database and the green plant expressed sequence tag database using the tandem mass spectrometry data identified approximately 94 proteins, a number far exceeding the number of proteins reported for the PBM hitherto. In particular, a number of membrane proteins like transporters for sugars and sulfate; endomembrane-associated proteins such as GTP-binding proteins and vesicle receptors; and proteins involved in signaling, for example, receptor kinases, calmodulin, 14-3-3 proteins, and pathogen response-related proteins, including a so-called HIR protein, were detected. Several ATPases and aquaporins were present, indicating a more complex situation than previously thought. In addition, the unexpected presence of a number of proteins known to be located in other compartments was observed. Two characteristic protein complexes obtained from native gel electrophoresis of total PBM proteins were also analyzed. Together, the results identified specific proteins at the PBM involved in important physiological processes and localized proteins known from nodule-specific expressed sequence tag databases to the PBM.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Department of Plant Research, Risø National Laboratory, Roskilde, Denmark
| | | |
Collapse
|
24
|
Chapter Three Metabolomics: A developing and integral component in functional genomic studies of medicago truncatula. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0079-9920(02)80019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
25
|
Advances in bacterial proteome analysis. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)33012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2448396 DOI: 10.1002/cfg.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|