Pikina AP, Shkoporov AN, Kulagina EV, Khokhlova EV, Chaplin AV, Volodin NN, Kafarskaya LI, Korotkly NG, Efimov BA. [Comparative Genotyping of Staphylococcus aureus Strains Isolated from Skin Lesions, Nasal Cavities, and Feces of Children with Atopic Dermatitis].
ACTA ACUST UNITED AC 2018;
71:367-74. [PMID:
29297666 DOI:
10.15690/vramn695]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
The lesion of skin of the majority atopic dermatitis patients is chronically colonized by bacteria belonging to the species Staphylococcus aureus. Topical antibacterial and anti-inflammatory therapy treatment are often ineffective due to fast recolonization by S. aureus and exacerbation of allergic process.
Aims
Our aim was to determine a frequency of S. aureus colonization in skin lesions, mucous membranes of the nasal cavity and intestine of children with atopic dermatitis, to compare the genotypes of Staphylococcus aureus strains isolated from different biotopes of atopic dermatitis patients, and to clarify whether the intestinal and nasal cavities microbiota may act as a source of S. aureus recolonization of skin lesions.
Materials and Methods
Bacteriological examination of fecal samples, skin, and nasal swabs was conducted in 38 atopic dermatitis patients. The pure bacterial cultures of S. aureus were identified using API Staph (Biomerieux, France) and Vitek 2 MS (Biomerieux, France). Isolates of S. aureus were subjected to genotyping by analysis of rRNA internal 16S-23S rRNA spacer regions and high resolution melting analysis (HMR) of polymorphic spa X-regions.
Results
99% S. aureus strains were successfully identified using MALDI-TOF mass-spectrometry. S. aureus cultures were isolated from all biotopes in 31,6% of children, from skin and nasal cavities — in 42% of cases, from skin and feces — in 2,6% of cases, only from skin — in 10,5%, from nasal cavities and feces — in 2,6%, and only from nasal cavities — in 2,6% of cases. In 8% of children, S. aureus was not detected in any of the biotopes. Genotyping of the isolates enabled the detection of 17 different genotypes. A match between the genotypes of skin and nasal strains, and skin and fecal strains was observed in 88% and 61% of the cases respectively.
Conclusions
The observed a high-frequency matching genotypes suggests the possibility of migration of S. aureus strains inside biotopes in humans and the absence of specialization to colonization of any of the niches.
Collapse